Riv.Mat.Univ.Parma, Volume 7 - Number 1 - 2016
Proceedings of the
Third Italian Number Theory Meeting
Pisa (Italy), 21-24 September 2015
Edited by
Andrea Bandini, Ilaria Del Corso
Contents
| Introduction | III |
| C. Gasbarri | |
| On some differences between number fields and function fields | 1-18 |
| Details | Full Text (PDF) |
| A. Languasco | |
| Applications of some exponential sums on prime powers: a survey | 19-37 |
| Details | Full Text (PDF) |
| M. Longo and S. Vigni | |
| Quaternionic Darmon points on abelian varieties | 39-70 |
| Details | Full Text (PDF) |
| F. Pellarin | |
| A note on multiple zeta values in Tate algebras | 71-100 |
| Details | Full Text (PDF) |
| E. Viada | |
| Explicit height bounds and the effective Mordell-Lang Conjecture | 101-131 |
| Details | Full Text (PDF) |
| A. Zaccagnini | |
| The Selberg integral and a new pair-correlation function for the zeros of the Riemann zeta-function | 133-151 |
| Details | Full Text (PDF) |
| G. Amato, M. Hasler, G. Melfi and M. Parton | |
| Primitive weird numbers having more than three distinct prime factors | 153-163 |
| Details | Full Text (PDF) |
| D. Bazzanella | |
| Integer polynomials with small integrals | 165-179 |
| Details | Full Text (PDF) |
| F. Caldarola | |
| Invariants and coinvariants of class groups in \(\mathbb{Z}_p\)-extensions and Greenberg's Conjecture | 181-192 |
| Details | Full Text (PDF) |
| J. K. Canci and L. Paladino | |
| On preperiodic points of rational functions defined over \(F_p(t)\) | 193-203 |
| Details | Full Text (PDF) |
| L. Demangos | |
| A few remarks on a Manin-Mumford conjecture in function field arithmetic and generalized Pila-Wilkie estimates | 205-216 |
| Details | Full Text (PDF) |
| M. Greenberg and M. A. Seveso | |
| Formal period integrals and special value formulas | 217-237 |
| Details | Full Text (PDF) |
| V. Mantova | |
| Algebraic equations with lacunary polynomials and the Erdos-Renyi conjecture | 239-246 |
| Details | Full Text (PDF) |
| V. Talamanca | |
| On canonical heights on endomorphism rings over global function fields | 247-258 |
| Details | Full Text (PDF) |