Riv. Mat. Univ. Parma, Vol. 14, No. 2, 2023

Esteban Pablo-Díaz [a], Avenilde Romo-Vázquez [b] and Mario Sánchez Aguilar [c]

A Redesign of a mathematical modelling teaching proposal based on the Hazen-Williams model for engineering education

Pages: 299-315
Received: 10 April 2022
Accepted in revised form: 18 September 2023
Mathematics Subject Classification: 97M10, 97C70.
Keywords: Mathematical models, higher education, engineering education.
Authors address:
[a],[c]: Instituto Politécnico Nacional, CICATA Unidad Legaria, Mexico City, Mexico
[b]: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV, Mexico City, Mexico

Full Text (PDF)

Abstract: This article reports ongoing research about training for engineers framed in the Anthropological Theory of the Didactic (ATD). Specifically, we show the redesigning of a mathematical modelling teaching proposal based on a civil engineering situation following two aims: 1) bringing an authentic mathematical modelling activity from the engineering workplace to engineering education and 2) framing it as closely as possible into an inquiry-based approach. For this purpose, we use the didactic engineering methodology. Firstly, we deepen the analysis of the mathematical modelling activity of a civil engineer’s workplace, which is based on the Hazen-Williams model to design pipelines and on different notions of hydraulics, topography and mathematics. Then, we perform a more specific didactic transposition over this workplace mathematical modelling activity to convert it into knowledge to be taught. Based on this and the characteristics of an engineering training Mexican university, we redesigned a mathematical modelling teaching proposal, generating a 'didactic milieu', a set of resources, to allow the engineer's students to perform, under an inquiry approach, the central modelling task: to determine the Diameter of the pipe and ensure a water flow rate of 50 lt/sec. According to our a priori analysis, the didactic milieu proposed motivates students to analyse the Hazen-Williams model qualitatively, relate knowledge of various kinds, investigate, work autonomously, and use practical and theoretical knowledge.

References
[1]
E. Alegret and Y. Martinez, Coeficiente de Hazen-Williams en función del número de Reynolds y la rugosidad relativa, Ingeniería Hidráulica y Ambiental, SciELO XL (2019), no. 3, 41-55.
[2]
M. Artigue, Perspectives on Design Research: The Case of Didactical Engineering, In: A. Bikner-Ahsbahs, C. Knipping, N. Presmeg, eds, ''Approaches to Qualitative Research in Mathematics Education'', Advances in Mathematics Education, Springer, Dordrecht, 2015, 467-496. DOI
[3]
B. Barquero and M. Bosch, Didactic Engineering as a Research Methodology: From Fundamental Situations to Study and Research Paths, In: A. Watson, M. Ohtani, eds, ''Task Design In Mathematics Education'', New ICMI Study Series, Springer, Cham, 2015, 249-272. DOI
[4]
B. Barquero, M. Bosch and J. Gascon, The unit of analysis in the formulation of research problems: the case of mathematical modelling at university level, Research in Mathematics Education 21 (2019), no. 3, 314-330. DOI
[5]
M. Bosch and J. Gascon, 25 years of the didactic transposition, ICMI Bulletin 58 (2006), no. 1, 51-65. Volume(pdf)
[6]
Y. Chevallard, Introducing the anthropological theory of the didactic: An attempt at a principled approach, Hiroshima Journal of Mathematics Education 12 (2019), 71-114. DOI
[7]
Y. Chevallard, Teaching mathematics in tomorrow’s society: A case for an oncoming counter paradigm, In: S. J. Cho, ed., ''The Proceedings of the 12th International Congress on Mathematical Education'', Springer, Cham, 2015, 173-187. DOI
[8]
Y. Chevallard, L'analyse des pratiques enseignantes in théorie anthropologique du didactique, Recherches en Didactique des Mathématiques 19 (1999), no. 2, 221-266. Article
[9]
Y. Chevallard, La transposition didactique: du savoir savant au savoir enseigné, 2nd ed., La Pensée Sauvage Editions, Grenoble, 1991.
[10]
P. Frejd and C. Bergsten, Mathematical modelling as a professional task, Educ. Stud. Math. 91 (2016), 11-35. DOI
[11]
J. Gainsburg, The mathematical disposition of structural engineers, Journal for Research in Mathematics Education 38 (2007), no. 5, 477-506. DOI
[12]
N. Galindo, A. Romo-Vázquez and J. Barroso, Diseño y viabilidad de recursos para enseñar la modelización QSAR en ingeniería química, Enseñanza de las Ciencias 41 (2023), no. 2, 93-115. DOI
[13]
A. S. González-Martín, G. Gueudet, B. Barquero and A. Romo-Vázquez, Mathematics and other disciplines, and the role of modelling: Advances and challenges, In: V. Durand-Guerrier, R. Hochmuth, E. Nardi, C.Winsløw, eds, ''Research and Development in University Mathematics Education'', Routledge, 2021, 169-191.
[14]
F. J. García, B. Barquero, I. Florensa and M. Bosch, Diseño de tareas en el marco de la Teoría Antropológica de lo Didáctico [Task design in the framework of the Anthropological Theory of the Didactic], AIEM - Avances de Investigación en Educación Matemática 15 (2019), 75-94. DOI
[15]
E. Pablo-Díaz and A. Romo-Vázquez, Design of a didactic activity based on the Hazen-Williams model for engineering education, Proc. Twelfth Congress of the European Society for Research in Mathematics Education (CERME12, Feb 2022, Bolzano, Italy), 2022, 1133-1140. hal-03759044
[16]
B. Pepin, R. Biehler and G. Gueudet, Mathematics in Engineering Education: a Review of the Recent Literature with a View towards Innovative Practices, Int. J. Res. Undergrad. Math. Ed. 7 (2021), no. 2, 163-188. DOI
[17]
H. O. Pollak, Mathematics as a service subject – Why?, In: A. Howson, J. Kahane, P. Lauginie and E. Turckheim, eds, ''Mathematics as a Service Subject'', Cambridge University Press, Cambridge, 1988, 28-34. DOI
[18]
A. Romo-Vázquez, La formation mathématique des futurs ingénieurs,doctoral dissertation, Université Paris-Diderot, 2009. HAL theses
[19]
A. Romo, S. Tolentino and R. Romo-Vázquez, Didactical activities to engineering training: methodological proposal, Proc. Ten Congress of the European Society for Research in Mathematics Education (CERME 10, Feb 2017, Dublin, Ireland), 2017, 980-987. CERME Proc.
[20]
A. Romo-Vázquez and M. Artigue, Challenges for Research on Tertiary Mathematics Education for Non-specialists: Where Are We and Where Are We to Go?, In: R. Biehler, M. Liebendörfer, G. Gueudet, C. Rasmussen, C. Winsløw, eds, '''Practice-Oriented Research in Tertiary Mathematics Education'', Advances in Mathematics Education, Springer, Cham, 2022, 535-557. DOI
[21]
J. R. Savery, Overview of Problem-based Learning: Definitions and Distinctions, Interdisciplinary Journal of Problem-Based Learning 1 (2006), 9-20. DOI
[22]
K. Schmidt and C. Winsløw, Authentic Engineering Problems in Service Mathematics Assignments: Principles, Processes and Products from Twenty Years of Task Design, Int. J. Res. Undergrad. Math. Ed. 7 (2021), no. 2, 261-283. DOI
[23]
R. Vázquez, Diseño de actividades didácticas basadas en modelización para la formación matemática de futuros ingenieros [Design of didactical activities based on modelling for the mathematical training of future engineers], doctoral dissertation, IPN, CICATA, 2017.
[24]
K. Velten, Mathematical modeling and simulation. Introduction for scientists and engineers, Wiley-VCH, Weinheim, 2009. DOI
[25]
G. S. Williams and A. Hazen, Hydraulic tables, 3rd ed. revised, John Wiley, New York, 1933.
[26]
R. K. Yin, Case study research and applications: Design and methods, SAGE Publications, ebook, 2017.


Home Riv.Mat.Univ.Parma