Riv. Mat. Univ. Parma, Vol. 15, No. 1, 2024
François Golse[a]
Regularity of solutions of Fokker-Planck equations with rough coefficients
Pages: 143-173
Received: 6 August 2023
Accepted: 25 January 2024
Mathematics Subject Classification: 35H10, 35B65, 35Q84.
Keywords: Fokker-Planck equations, Hypoelliptic equations, De Giorgi-Nash-Moser iteration method.
Authors address:
[a]: École polytechnique & IP Paris, CMLS, 91128 Palaiseau Cedex, France
Full Text (PDF)
Abstract:
The purpose of this article is to review recent progress on the regularity theory for kinetic models
of Fokker-Planck type. Such equations are known to be hypoelliptic, and our aim is to explain
how De Giorgi-Nash-Moser iterations can be used on such problems. Most of this note is based on
our recent joint work with C. Imbert, C. Mouhot and A. Vasseur [Ann. Sc. Norm. Super. Pisa
Cl. Sci. (5), Vol. XIX (2019), 253-295].
References
- [1]
-
V. I. Agoshkov,
Spaces of functions with differential-difference characteristics and smoothness of solutions of the transport equation,
Dokl. Akad. Nauk SSSR 276 (1984), 1289-1293.
MR
- [2]
-
F. Anceschi, M. Eleuteri and S. Polidoro,
A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients,
Commun. Contemp. Math. 21 (2019), Article ID 1850057.
DOI
- [3]
-
F. Bouchut,
Hypoelliptic regularity in kinetic equations,
J. Math. Pures Appl. (9) 81 (2002), 1135-1159.
DOI
- [4]
-
L. A. Caffarelli and X. Cabré,
Fully nonlinear elliptic equations,
Amer. Math. Soc., Providence, RI, 1995.
MR
- [5]
-
L. A. Caffarelli and A. F. Vasseur,
The De Giorgi Method for Nonlocal Fluid Dynamics,
In "Nonlinear Partial Differential Equations'', X. Cabré, J. Soler, eds.
Birkhäuser, Springer Basel AG, 2011, 1-38.
DOI
- [6]
-
E. De Giorgi,
Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari,
Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43.
MR
- [7]
-
L. Desvillettes and F. Golse,
On a model Boltzmann equation without angular cutoff,
Differ. Integral Equ. 13 (2000), 567-594.
DOI
- [8]
-
R. J. DiPerna and P.-L. Lions,
Global weak solutions of Vlasov-Maxwell systems,
Comm. Pure Appl. Math. 42 (1989), 729-757.
DOI
- [9]
-
F. Golse, M.-P. Gualdani, C. Imbert and A. Vasseur,
Partial regularity in time for the space-homogeneous Landau equation with Coulomb potential,
Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), 1575-1611.
DOI
- [10]
-
F. Golse, C. Imbert, C. Mouhot and A. Vasseur,
Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation,
Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 19 (2019), 253-295.
DOI
- [11]
-
F. Golse, C. Imbert, S. Ji and A. F. Vasseur,
Local regularity for the space-homogeneous Landau equation with very soft potentials,
arXiv:2206.05155, preprint, 2024.
DOI
- [12]
-
F. Golse, P.-L. Lions, B. Perthame and R. Sentis,
Regularity of the moments of the solution of a transport equation,
J. Funct. Anal. 76 (1988), 110-125.
DOI
- [13]
-
F. Golse, B. Perthame and R. Sentis,
Un résultat de compacité pour les équations de transport et application au
calcul de la limite de la valeur propre principale d’un opérateur de transport,
C. R. Acad. Sci., Paris, Sér. I 301 (1985), 341-344.
MR |
ARTICLE
- [14]
-
F. Golse and F. Poupaud,
Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac,
Asymptotic Anal. 6 (1992), 135-160.
DOI
- [15]
-
J. Guerand and C. Imbert,
Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations,
J. Inst. Math. Jussieu 22 (2023), 2749-2774.
DOI
- [16]
-
J. Guérand and C. Mouhot,
Quantitative De Giorgi methods in kinetic theory,
J. Éc. Polytech. Math. 9 (2022), 1159-1181.
DOI
- [17]
-
Q. Han and F. Lin,
Elliptic Partial Differential Equations,
Courant Lect. Notes Math., 1,
Amer. Math. Soc., Providence, RI, 2011.
MR
- [18]
-
L. Hörmander,
Hypoelliptic second order differential equations,
Acta Math. 119 (1967), 147-171.
DOI
- [19]
-
C. Imbert and L. Silvestre,
The weak Harnack inequality for the Boltzmann equation without cut-off,
J. Eur. Math. Soc. 22 (2020), 507-592.
DOI
- [20]
-
C. Imbert and L. Silvestre,
Regularity for the Boltzmann equation conditional to macroscopic bounds,
EMS Surv. Math. Sci. 7 (2020), 117-172.
DOI
- [21]
-
A. N. Kolmogorov,
Zufällige Bewegungen (Zur Theorie der Brownschen Bewegung),
Ann. of Math. (2) 35 (1934), 116-117.
DOI
- [22]
-
P.-L. Lions,
On Boltzmann and Landau Equations,
Philos. Trans. Roy. Soc. London Ser. A 346 (1994), 191-204.
Article
- [23]
-
C. B. Morrey Jr,
On the solutions of quasilinear elliptic partial differential equations,
Trans. Amer. Math. Soc. 43 (1938), 126-166.
DOI
- [24]
-
J. Moser,
A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations,
Comm. Pure Appl. Math. 13 (1960), 457-468.
DOI
- [25]
-
J. F. Nash,
Continuity of solutions of parabolic and elliptic equations,
Amer. J. Math. 80 (1958), 931-954.
DOI
- [26]
-
A. Pascucci and S. Polidoro,
The Moser's iterative method for a class of ultraparabolic equations,
Commun. Contemp. Math. 6 (2004), 395-417.
DOI
- [27]
-
D. Serre and L. Silvestre,
Multi-dimensional Burgers Equation with Unbounded Initial Data: Well-Posedness and Dispersive Estimates,
Archive Rational Mech. Anal. 234 (2019), 1391-1411.
DOI
- [28]
-
A. F. Vasseur,
The De Giorgi method for elliptic and parabolic equations and some applications,
In "Lectures on the Analysis of Nonlinear Partial Differential Equations'', Part 4 (2016),
195-222, Morningside Lect. Math., Int. Press, Somerville, MA, 2016.
MR
- [29]
-
W. Wang and L. Zhang,
The \(C^\alpha\) regularity of a class of non-homogeneous ultraparabolic equations,
Sci. China Ser. A 52 (2009), 1589-1606.
DOI
- [30]
-
W. Wang and L. Zhang,
The \(C^\alpha\) regularity of weak solutions of ultraparabolic equations,
Discrete Contin. Dynam. Systems 29 (2011), 1261-1275.
DOI
- [31]
-
Y. Zhu,
Velocity Averaging and Hölder Regularity for Kinetic Fokker-Planck Equations with
General Transport Operators and Rough Coefficients,
SIAM J. Math. Anal. 53 (2021), 2746-2775.
DOI
- [32]
-
N. Guillen and L. Silvestre,
The Landau equation does not blow up,
arXiv:2311.09420, preprint 2023. (Added in proof.)
DOI
Home Riv.Mat.Univ.Parma