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Regularity of solutions of Fokker-Planck equations

with rough coefficients

Abstract. The purpose of this article is to review recent progress on
the regularity theory for kinetic models of Fokker-Planck type. Such
equations are known to be hypoelliptic, and our aim is to explain how
De Giorgi-Nash-Moser iterations can be used on such problems. Most of
this note is based on our recent joint work with C. Imbert, C. Mouhot
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1 - Local Regularity for Fokker-Planck Equations

We are concerned with the local regularity of weak solutions of Fokker-
Planck equations of the form

(1) (∂t+v ·∇x)f(t, x, v) = divv(A(t, x, v)∇vf(t, x, v))+g(t, x, v) , x, v ∈ Rd ,

or more generally
(2)
(∂t + b(v) · ∇x)f(t, x, v) = divv(A(t, x, v)∇vf(t, x, v)) + g(t, x, v) , x, v ∈ Rd .

In these equations, the unknown is the real-valued function f ≡ f(t, x, v). In
some cases f is the (velocity) distribution function as in the kinetic theory of
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gases, i.e. f(t, x, v) is the density at time t of particles located at the position
x and moving at velocity v, in which case f(t, x, v) ≥ 0. But f could also
designate more general objects, such as fluctuations of the distribution function
about some equilibrium state, in which case f has no definite sign. Likewise,
v designates the particles’ velocity in (1), but could designate other physical
quantities as in (2), where the particles’ velocity is b(v) instead of v. (One
typical example in the kinetic theory of relativistic particles of mass m at rest
is b(v) := ∇v

√
m2c4 + c2|v|2, with c being the speed of light in vacuum and v

the momentum variable.)
The diffusion coefficient (t, x, v) �→ A(t, x, v) ∈ RN×N is a given, measurable

matrix-valued map s.t.

1

Λ
I ≤ A(t, x, v) = A(t, x, v)T ≤ ΛI , for some real constant Λ > 1 .

Finally, the function g ≡ g(t, x, v) on the r.h.s. of (1) or (2) is a given source
term.

Although the techniques presented in this paper work for (2) as well as for
(1), we shall mostly focus on (1), and provide the reader interested in (2) with
the relevant references.

Let us briefly discuss the notion of weak solution of (1) to be considered
below.

Multiplying both sides of (1) by 2f and integrating by parts in x, v ∈ Rd,
assuming that f decays fast enough as |x| + |v| → ∞, one (formally) obtains
the inequality1

‖f(t)‖2L2
x,v

+
2

Λ

∫ t

t0

‖∇vf(s)‖2L2
x,v

ds

≤ ‖f(t)‖2L2
x,v

+ 2

∫ t

t0

∫∫
R2d

∇vf(s, x, v) ·A(s, x, v)∇vf(s, x, v)dxdvds

= ‖f(t0)‖2L2
x,v

+ 2

∫ t

t0

∫∫
R2d

f(s, x, v)g(s, x, v)dxdvds

≤ ‖f(t0)‖2L2
x,v

+ 2

∫ t

t0

‖g(s)‖L2
x,v

‖f(s)‖L2
x,v

ds ,

so that

(3)

− T < t0 < t =⇒ ‖f(t)‖2L2
x,v

+
2

Λ

∫ t

t0

‖∇vf(s)‖2L2
x,v

ds

≤
(
‖f(t0)‖2L2

x,v
+

∫ t

t0

‖g(s)‖2L2
x,v

ds

)
+

∫ t

t0

‖f(s)‖2L2
x,v

ds .

1In the sequel, L2
x,v stands for L2(Rd ×Rd).
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This is the “energy” inequality for weak solutions of (1) (or (2)).

Assuming g ∈ L2
loc(−T,∞;L2

x,v), we can apply the Gronwall inequality to
find that

−T < t0 < t ⇒ ‖f(t)‖2L2
x,v

+
2

Λ

∫ t

t0

‖∇vf(s)‖2L2
x,v

ds

≤ (‖f(t0)‖2L2
x,v

+ ‖g‖2L2([t0,t];L2
x,v)

)eT+t .

This justifies considering the following notion of weak solution of (1).

D e f i n i t i o n 1.1. A weak solution of (2) on (−T,+∞) × Rd × Rd is a
measurable function

f ∈ C(−T,+∞;L2
x,v) , s.t. ∇vf ∈ L2

loc(−T,+∞;L2
x,v)

satisfying the following “renormalized” form of (1): for all χ ∈ C2(R) such
that z �→ χ(z)/(1 + z2) is bounded on R, it holds2

(4) (∂t + b(v) · ∇x)χ(f) = divv(A∇vχ(f))− χ′′(f)A : (∇vf)
⊗2 + χ′(f)g

in the sense of distributions on (−T,+∞)×Rd ×Rd.

In the sequel, it will be convenient to use the following notations. Let O be
a domain of R×Rd ×Rd. For each Λ > 1 we set

S[O,Λ] := {O � (t, x, v) �→ A(t, x, v) = AT (t, x, v) ∈ Rd×d measurable

s.t. Λ−1I ≤ A(t, x, v) ≤ ΛI a.e. on O} .

For each domain O of the form I × Ω where I ⊂ R is an open interval and Ω
a domain of Rd ×Rd, each Λ > 1, each diffusion matrix A ∈ S[O,Λ] and each
source term g ∈ L2

loc(I;L
2(Ω)), we set

FP [A, g,O] := {f ∈ C(I;L2(Ω)) s.t. ∇vf ∈ L2
loc(I;L

2(Ω)) and

(∂t + v · ∇x)χ(f) = divv(A∇vχ(f))− χ′′(f)A : (∇vf)
⊗2 + χ′(f)g in D′(Ω)

for all χ ∈ C2(R) s.t. z �→ χ(z)
1+z2

∈ L∞(R)} .

2If u ∈ Rd, the notation u⊗2 designates the second order tensor u⊗ u, identified with the
matrix with entries uiuj for 1 ≤ i, j ≤ d, where u1, . . . , ud are the components of the vector u.
The notation A : u⊗2 designates the contraction of the second order tensors A and u⊗ u, i.e.

A : u⊗2 :=

d∑

i,j=1

Aijuiuj .



146 françois golse [4]

Finally, for each r > 0, we set

Q[r] := (−r, 0]×B(0, r)×B(0, r) , Q̂ := (−3
2 ,−1]×B(0, 1)×B(0, 1) .

(Notice the difference with parabolic cylinders of the form (−r2, 0] × B(0, r)
used in the context of space-homogeneous solutions f ≡ f(t, v) of (1), i.e. of
solutions of (1) that are independent of the space-variable x, in which case the
resulting equation is a variant of the heat equation.)

Our first main result in this paper is the following theorem (Theorem 1.4
in [10]).

T h e o r em 1.2. Let Ω be a domain of Rd×Rd, and let I be an open interval
of R. Let A ∈ S[I × Ω;Λ] where Λ > 1, and let g ∈ L∞(I × Ω). Then, there
exists a Hölder exponent σ ∈ (0, 1) such that

f ∈ FP [A, g, I × Ω] =⇒ f
∣∣
K

∈ C0,σ(K)

for each compact K ⊂ I × Ω.

The proof of Theorem 1.2 is based on using De Giorgi-Nash-Moser itera-
tions, in a way that differs from the combined works of [26] and [29,30]. In
particular, our approach does not use the fundamental solution of the Kol-
mogorov operator

∂t + v · ∇x −Δv

at variance with [26,29,30]. One advantage of our approach is that it applies
without major modifications to (2): see [31].

De Giorgi-Nash-Moser iterations appeared for the first time in connection
with Hilbert’s 19th problem: let L ∈ Cω(Rd) such that Λ−1I ≤ ∇2L ≤ ΛI on
Rd, and let O be an open set of Rd. Do extremals of the functional∫

O
L(∇u(x))dx

belong to Cω(O)? After various contributions by Bernstein, Petrovski, Hopf...,
the problem was solved by Morrey [23] in the late 1930s in the case d = 2, and
by De Giorgi [6] and Nash [25] independently in any space dimension. Moser
proposed a slightly different approach later in [24], aimed at symplifying Nash’s
argument.

While De Giorgi-Nash-Moser iterations have been known for a long time in
the context of elliptic or parabolic equations, their applications in the context of
kinetic models is more recent — see for instance [9,11,16,19,20] to quote only
a few references. The present paper is meant to be a “gentle” (i.e. pedagogical)
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introduction to this circle of ideas in the context of kinetic equations. We shall
mostly follow [10], suggesting alternative approaches whenever appropriate. In
order to keep this introduction as concise as possible, we shall however not
discuss the Harnack inequality stated as Theorem 1.6 in [10], although it is
intimately related to the control of oscillations of weak solutions of (1) (and
therefore to their Hölder modulus of continuity). The reader interested in the
Harnack inequality is advised to read [2, 15, 16], in addition to Theorem 1.6
in [10].

Of course, there exist various presentations of the De Giorgi argument in the
recent literature: see for instance [5,17,28] to quote only a few. Moser’s original
paper [24] is very short and nicely written. Most results on second order ellip-
tic PDE’s with variable coefficients postulate either that the diffusion matrix
is close to some constant multiple of the identity (as in the Cordes-Nirenberg
theory), of that the diffusion matrix is continuous (as in the Schauder or the
Calderón-Zygmund theories): see the introduction of the book [4]. The idea
is that, when zooming in near some point, the oscillations in the coefficients
converge to zero, so that, in the limit, the equation to be studied is expected to
behave as an equation with constant coefficients. For instance, in the case of
a second order elliptic equation, solutions are expected to retain some features
of harmonic functions. Now, in the case of bounded but discontinuous coeffi-
cients, for instance with a jump discontinuity in one of the variables, zooming
in near a point of discontinuity will not does not change anything as this jump
discontinuity persists. De Giorgi iterations are precisely aimed at exploring the
regularity properties of solutions of elliptic (or parabolic) equations when the
method of frozen coefficients does not apply, i.e. in the case of bounded but
possibly discontinuous coefficients.

While the first applications of the De Giorgi-Nash-Moser iterations were
in the field of elliptic or parabolic equations, one should not think of it as a
purely elliptic or parabolic method. Very recently, striking applications of the
De Giorgi-Nash-Moser method have been proposed in the field of hyperbolic
conservation laws [27].

In the present paper as in [10], we discuss the case of hypoelliptic equations.
Of course, the prototype of hypoelliptic operators is Kolmogorov’s operator

∂t + v · ∇x −Δv

for which a fundamental solution can be computed explicitly in terms of the
Fourier transform of a Gaussian [21]. Generalizations of this operator have
been considered by Hörmander [18], and take the form

X0 +
n∑

j=1

X2
j
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where Xj for j = 0, . . . , n are vector fields on Rd such that the rank of the
Lie algebra generated by X0, . . . , Xn is d at each point of Rd. Of course, the
Kolmogorov operator falls in this class, as can be seen by taking

X0 := ∂t + v · ∇x , Xj = ∂vj , j = 1, . . . , d .

Indeed

∂xj = [Xj , X0] , j = 1, . . . , d ,

so that the tangent space at each point of Rd is spanned by

X0, X1, . . . , Xd, [X1, X0], . . . , [Xd, X0] .

Of course, Hörmander considers only vector fields with C∞ coefficients. The
purpose of [10] and of the present paper is to explain how this assumption can
be alleviated in the case of the Fokker-Planck equation (1).

Giampiero Spiga has been a distinguished leader in the field of kinetic mod-
els. His untimely passing away is a great shock to our community. This modest
contribution is dedicated to his memory.

2 - From the Energy Class to L∞

We have split the proof of Theorem 1.2 into two parts: in the first part, we
prove that weak solutions of (1), which are only known to satisfy the bounds
deduced from the energy estimate, and therefore are only square-integrable in
x a priori, are in fact locally bounded. Hölder regularity will be proved in
the next section. It is often the case that this first step immediately implies
local regularity for specific examples of Fokker-Planck equations (1) enjoying
additional properties. The space homogeneous Landau equation (with Coulomb
potential) is known to fall in this case. Thus, the method used in this section is
already of independent interest for applications to some specific kinetic models.

Our aim is to prove the following statement, which is Theorem 3.1 in [10].

T h e o r em 2.1. For each Λ > 1, each γ > 0 and each Lebesgue exponent
q > 12d + 6, there exists κ[d,Λ, γ, q] ∈ (0, 1) satisfying the following property:
for each diffusion matrix A ∈ S[Q[32 ],Λ], each g ∈ Lq(Q[32 ]) satisfying the bound
‖g‖Lq(Q[ 3

2
]) ≤ γ and each f ∈ C(−3

2 , 0;L
2(B(0, 32)

2)) ∩ FP [A, g,Q[32 ]], it holds∫
Q[ 3

2
]
f(t, x, v)2+dtdxdv < κ =⇒ f ≤ 1

2 a.e. on Q[12 ] .
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In the sequel, we sketch the proof of this theorem.

All the proofs involve some preliminary step in which L2 integrability on
some cylinder is improved into Lp integrability with p > 2 on a smaller cylinder.
The gain in Lebesgue exponent is independent of the reduction in the size of the
cylinder, but the embedding constant is obviously not. In the sequel, we study
in detail this improvement of integrability — see sections 2.1 to 2.3. Once this
is done, we shall present two different iteration methods (the De Giorgi and the
Moser iteration methods) leading to the inequality in Theorem 2.1.

2.1 - Local Energy Estimate

Write the weak formulation of the renormalized variant of equation (2) with
normalizing nonlinearity χ(f) := 1

2(f − c)2+, and pick the test function in the
form

ψ(τ, x, v) := 1s<τ<tφ(x, v) , φ(x, v) = η(x)η(v)2

where η ∈ C∞
c (Rd). (Obviously, we should replace f �→ χ(f) := 1

2(f − c)2+ with
a C2 approximation, and 1s<τ<t with a C∞ approximation τ �→ θ(τ), but we
shall skip both steps since they do not involve any technical difficulty.)

Since χ′′(f) = 1f>c, one has

χ′′(f)(∇vf)
⊗2 = (∇v(f − c)+)

⊗2 ,

and hence

2η(v)A : ∇vχ(f)⊗∇η(v) + η(v)2χ′′(f)A : (∇vf)
⊗2

= A : (∇v(η(v)(f − c)+))
⊗2 − (f − c)2+A : (∇vη)

⊗2 .

(For the reader already familiar with the De Giorgi iteration method in the case
of elliptic equations, we observe that this identity is reminiscent of the (proof of
the) Caccioppoli inequality, which is itself reminiscent of Cauchy’s inequality
for holomorphic functions, and is a first step in the De Giorgi method: see
inequality (20) in [6].)

Substituting the r.h.s. of the preceding identity in the dissipation term of
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the “energy” equality, one finds that

(5)

1
2

∫∫
R2d

η(x)η(v)2(f(t, x, v)− c)2+dxdv

+
1

Λ

∫ t

s

∫∫
R2d

η(x)|∇v(η(v)(f(τ, x, v)− c)+)|2dxdvdτ

≤ 1
2

∫∫
R2d

η(x)η(v)2(f(s, x, v)− c)2+dxdv

+ Λ

∫ t

s

∫∫
R2d

η(x)(f(τ, x, v)− c)2+|∇η(v)|2dxdvdτ

+

∫ t

s

∫∫
R2d

η(v)2 12(f(τ, x, v)− c)2+b(v) · ∇η(x)dxdvdτ

+

∫ t

s

∫∫
R2d

η(v)2g(τ, x, v)(f(τ, x, v)− c)+η(x)dxdvdτ .

This is the local variant of the energy inequality (3) used to define the notion
of weak solution of (1) or (2). Observing that

g(f − c)+ = g1f>c(f − c)+ ≤ 1
2g

21f>c +
1
2(f − c)2+ ,

we pick 0 < r < R < +∞ and assume that

1B(0,r) ≤ η ≤ 1B(0,R) and ‖∇η‖L∞ ≤ 2
R−r .

Then we average both sides of (5) in s ∈ (−R, r) to arrive at the following
statement.

L emma 2.2 (Local energy bound). Let Λ > 2, and R > r > 0. Assume
that A ∈ S[Q[R],Λ], and let f be a weak solution, or a nonnegative subsolution
of (2) on Q[R]. Then

(6)

sup
−r<t<0

∫
B(0,r)2

(f(t, x, v)− c)2+dxdv +

∫
Q[r]

|∇v(f(τ, x, v)− c)+|2dxdvdτ

≤ Λ

2

(
1 +

1 + 2‖b‖L∞(B(0,R)

R− r
+

8Λ

(R− r)2

)∫
Q[R]

(f(τ, x, v)− c)2+dxdvdτ

+
Λ

2

∫
Q[R]

g(τ, x, v)21f(τ,x,v)>cdxdvdτ .

2.2 - A Local Barrier Function

Consider a positive subsolution of (2), i.e.

(7) (∂t+b(v) ·∇x)f−divv(A(t, x, v)∇vf) ≤ g , and f ≥ 0 a.e. on Q[R]
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for some R > 0.
Pick 0 < r < R, and set Qext := Q[R], while Qint := Q[r] and Qmid :=

Q[R+r
2 ]. Choose χ,X ∈ C∞(R×Rd ×Rd) such that

(8) 1Qint ≤ χ ≤ 1Qmid
≤ X ≤ 1Qext , with |∇χ|, |∇X| ≤ 4

R−r .

Multiplying both sides of (7) by χ, we find that

(∂t+b(v) ·∇x)(χf)−divv(A(t, x, v)∇v(χf)) ≤ H0+divv H1 on R×Rd×Rd ,

where

(9)

{
H0 :=χg1f>0 +Xf(∂t + b(v) · ∇x)χ−∇vχ ·A∇v(Xf) ,

H1 :=−XfA∇vχ .

Let F ≡ F (t, x, v) be the solution of

(10)

{
(∂t + b(v) · ∇x)F − divv(A(t, x, v)∇vF ) = H0 + divv H1 , x, v ∈ Rd ,

F
∣∣
t=−R

= 0 .

Equivalently{
(∂t + b(v) · ∇x)F − divv(A(t, x, v)∇vF ) = H0 + divv H1 , x, v ∈ Rd, t ∈ R ,

supp(F ) ⊂ (−R,+∞)×Rd ×Rd .

Then, we claim that

(11) 0 ≤ χf ≤ F a.e. on R×Rd ×Rd , so that 0 ≤ f ≤ F a.e. on Q[r] .

Indeed, by linearity of (2), the difference h = χf − F satisfies{
(∂t + b(v) · ∇x)h ≤ divv(A(t, x, v)∇vh) , x, v ∈ Rd ,

h
∣∣
t=−R

= 0 .

Now, arguing as in (3), we conclude that h+, which is also a subsolution of (2)
with g = 0, by convexity of h �→ h+ and (4), must be identically 0, and this
implies the desired conclusion.

2.3 - Gain of Local Integrability

In this section, we shall prove a gain of local regularity on the local barrier
function F , but not on the positive subsolution f itself. However, this is enough
to imply a gain of local integrability on f , which is all we need in the sequel.
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First, the energy inequality for F is

1
2

∫∫
Rd×Rd

F (t, x, v)2dxdv +
1

Λ

∫ t

−R

∫∫
Rd×Rd

|∇vF (s, x, v)|2dxdvds

≤
∫ t

−R

∫∫
Rd×Rd

H0F (s, x, v)dxdvds−
∫ t

−R

∫∫
Rd×Rd

H1 · ∇vF (s, x, v)dxdvds ,

which implies that

1
2

∫∫
Rd×Rd

F (t, x, v)2dxdv +
1

2Λ

∫ t

−R

∫∫
Rd×Rd

|∇vF (s, x, v)|2dxdvds

≤ 1
2

∫ 0

−R

∫∫
Rd×Rd

H0(s, x, v)
2dxdvds+ Λ

2

∫ 0

−R

∫∫
Rd×Rd

H1(s, x, v)
2dxdvds

+ 1
2

∫ t

−R

∫∫
Rd×Rd

F (s, x, v)2dxdvds ,

for all t ≥ −R, since H0 = H1 = 0 for t > 0. By Gronwall’s inequality

1
2

∫∫
Rd×Rd

F (t, x, v)2dxdv +
1

2Λ

∫ t

−R

∫∫
Rd×Rd

|∇vF (s, x, v)|2dxdvds

≤ et+R

∫ 0

−R

∫∫
Rd×Rd

1
2(H0(s, x, v)

2 + ΛH1(s, x, v)
2)dxdvds .

Pick Θ ≡ Θ(t) in C∞(R) such that

1[−(3R+r)/4,0] ≤ Θ ≤ 1[−R,(R−r)/4] , and |Θ′| ≤ 8
R−r .

Then∫
R×Rd×Rd

(Θ(t)F (t, x, v))2dxdvdt+

∫
R×Rd×Rd

|∇v(Θ(t)F (t, x, v))|2dxdvdt

≤ 4ΛRe2R(‖H0‖2L2 + ‖H1‖2L2) .

At this point, one has the choice of two strategies.

2.3.1 - Bouchut’s Hypoellipticity Lemma

The first method applies to the special case b(v) = v. Pick η ∈ C∞(Rd)
such that 1B(0,2R) ≤ η ≤ 1B(0,3R). Observe that

(∂t + v · ∇x)(Θ(t)η(v)F (t, x, v)) = Θ(t)η(v)H0(t, x, v)

+ divv(Θ(t)η(v)(H1(t, x, v) +A(t, x, v)∇vF (t, x, v))

−Θ(t)∇η(v) · (H1(t, x, v) +A(t, x, v)∇vF (t, x, v))

+ Θ′(t)η(v)F (t, x, v) .
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Applying Theorem 1.3 of [3] with p = 2, r = 0 and m = 1 shows that

(12)

‖∇v(Θ(t)η(v)F (t, x, v))‖2L2

+ ‖D1/3
t (Θ(t)η(v)F (t, x, v))‖2L2 + ‖D1/3

x (Θ(t)η(v)F (t, x, v))‖2L2

≤ C[d,Λ]2(1 +R2)2
(
1 + 8

R−r

)2
e2R(‖H0‖2L2 + ‖H1‖2L2) .

2.3.2 - Velocity Averaging

The second method is not specific to (1), and applies to the more general
case (2). We only sketch the argument here, and refer the interested reader to
the relevant literature.

The idea is to use velocity averaging combined with the dissipation rate
coming from the energy inequality (3). Velocity averaging refers to a method
for obtaining a regularizing effect from the free transport operator. Of course,
this seems to be a desperate endeavour, since the free transport operator is
hyperbolic, and therefore propagates singularities. Velocity averaging refers to
a regularizing effect on the macroscopic densities obtained from the velocity
distribution function by averaging in the velocity variable v, observed for the
first time in [1,13] and studied more systematically in [12]. However, for the
purpose of proving Theorem 2.1, we need a regularizing effect on the velocity
distribution function itself, and not only on its averages in the velocity variable.

The idea is to start from the equation satisfied by Θ(t)η(v)F (t, x, v), i.e.

(∂t + b(v) · ∇x)(Θ(t)η(v)F (t, x, v)) = K0(t, x, v) + divv K1(t, x, v)

with3 K0,K1 ∈ L2
comp(R × Rd × Rd), and to apply a poor man’s version of

the DiPerna-Lions variant of velocity averaging [8] used to construct global
renormalized solutions to the Vlasov-Maxwell system.

Now DiPerna and Lions treated the case b(v) = v, but the more general
case of interest here can be found in Proposition 3.2 of [14]. The final remark
of [14] makes it very clear that Proposition 3.2 of of [14] cannot give the optimal
regularity exponent — however, this is by no means important in the present
work. The idea is to use the proof of Proposition 3.2 of of [14] to obtain a
bound on velocity averages of the form∥∥∥∥∫

Rd

Θ(t)η(w)F (t, x, w)ζε(v − w)dw

∥∥∥∥
Hs

t,x

3The notation L2
comp(R

n) designates the subspace of elements of L2(Rn) vanishing a.e. in
the complement of some compact subset of Rn.
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for some s > 0 which depends on the exponent α ∈ (0, 1) such that

sup
ω2+|k|2=1

|{v ∈ Rd s.t. |ω + b(v) · k| ≤ δ}| ≤ Cδα .

In the expression above, ζε is a mollifier on Rd, and the idea is to consider the
decomposition

Θ(t)η(v)F (t, x, v) =

∫
Rd

Θ(t)η(w)F (t, x, w)ζε(v − w)dw

+Θ(t)η(v)F (t, x, v)−
∫
Rd

Θ(t)η(w)F (t, x, w)ζε(v − w)dw .

The bound on the first term coming from velocity averaging involves the W 1,∞

norm of ζε, which is of order 1/εd+1. The second term can be recast as∫
Rd

Θ(t)(η(v)F (t, x, v)− η(v + z)F (t, x, v + z))ζε(z)dz

and is vanishingly small in L2(R×Rd×Rd) as ε → 0+, because of the estimate
on ‖∇v(Θ(t)F )‖L2 coming from the local energy bound.

This strategy for obtaining a regularizing effect on the velocity distribution
itself, and not only on its macroscopic averages, comes from [7], where it used
on a model of the Boltzmann equation without angular cutoff. A precursor
of this idea has been used by [22] to prove the strong L1

loc compactness of
sequences of solutions of the Landau equation.

We refer the interested reader to Lemmas 2.1 and 2.4 of [31], where these
(rather technical) estimates are worked out in detail.

2.3.3 - Conclusion

At this point, we specialize our discussion to (1), i.e. b(v) = v, and combine
the inequality (11) with (12). The Sobolev embedding and (12) imply that(∫

R×Rd×Rd

|Θ(t)η(v)F (t, x, v)|pdtdxdv
)1/p

≤ CS(d)C[d,Λ](1 +R2)
(
1 + 8

R−r

)
eR(‖H0‖L2 + ‖H1‖L2)

with 1
p = 1

2 − 1
3(2d+1) , i.e. p := 12d+6

6d+1 > 2. Since Θ(t)η(v) and χ are identically

equal to 1 on Q[r], this inequality and (11) imply that

‖f‖Lp(Q[r]) ≤ CS(d)C[d,Λ](1 +R2)
(
1 + 8

R−r

)
eR(‖H0‖L2 + ‖H1‖L2) .
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It remains to bound the right-hand side. By construction

‖H1‖L2 ≤ 4Λ
R−r‖f‖L2(Q[R]) ,

while

‖H0‖L2 ≤ ‖g1f>0‖L2(Q[R]) +
4(1+R)
R−r ‖f‖L2(Q[R]) +

4Λ
R−r‖∇vf‖L2(Q[(R+r)/2]) .

This last term is controlled by (6): assuming without loss of generality that
Λ > 2, one has

‖∇vf‖2L2(Q[(R+r)/2]) ≤ Λ
2 ‖g1f>0‖2L2(Q[R]) +

Λ
2 (1 +

2(1+2R)
R−r + 32Λ

(R−r)2
)‖f‖2L2(Q[R]) ,

so that

‖∇vf‖L2(Q[(R+r)/2]) ≤ Λ
2 ‖g1f>0‖L2(Q[R]) +

Λ
2

(
1 + 2R+ 4Λ

R−r

)
‖f‖L2(Q[R]) ,

and hence

‖H0‖L2 ≤ (1 + 2Λ2

R−r )‖g1f>0‖L2(Q[R]) +
(
4(1+R)(1+Λ2)

R−r + 8Λ3

(R−r)2

)
‖f‖L2(Q[R]) .

Summarizing, we have proved the following estimate.

L emma 2.3. Let Λ > 2, and R > r > 0. Assume that A ∈ S[Q[R],Λ], and
let f be a nonnegative weak subsolution of (2) on Q[R]. Then

‖f‖Lp(Q[r]) ≤ C[d,R,Λ]
(
(1 + 1

(R−r)3
)‖f‖L2(Q[R]) + (1 + 1

R−r )‖g1f>0‖L2(Q[R])

)
for some constant C[d,R,Λ] > 0 which is increasing in R > 0, and for the
Lebesgue exponent p := (12p+ 6)/(6p+ 1) > 2.

2.4 - De Giorgi’s Iterations

First, we set up a system of dyadic truncations as follows. The idea is to
pick level sets corresponding to values of the Fokker-Planck solution increasing
from 0 to 1/2, while, at the same time, this Fokker-Planck solution is restricted
to a decreasing sequence of nested cylinders. In other words, we are restricting
simultaneously the domain on which the solution is observed and the set of
values taken by that solution.

Specifically, for each integer k ≥ 0, we set

Rk := 1
2(1 + 2−k) =: −Tk , Bk := B(0, Rk) , Qk := Q[Rk] ,
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Fig. 1. The nested system of space-time cylinders Qk in the past centered at the
origin, and the space-time cylinder Q̂

and we pick η ∈ C∞(Rd) such that

1Bk
≤ ηk ≤ 1Bk−1

, ‖∇ηk‖L∞ ≤ 2k+2 .

The nested cylinders mentioned above are the Qk’s, and restricting the solution
to Qk is achieved by means of the blob function ηk.

On the other hand, we set

Ck := 1
2(1− 2−k) , and fk := (f − Ck)+ .

In other words, the decreasing sequence of level sets of the solution f is defined
by the sequence of inequalities f ≥ Ck.

With the definitions above, we set

Uk := sup
Tk≤t≤0

1
2

∫∫
R2d

ηk(x)ηk(v)
2fk(t, x, v)

2dxdv

+
1

Λ

∫ 0

Tk

∫∫
R2d

ηk(x)|∇v(ηk(v)fk(τ, x, v))|2dxdvdτ .

Observe that, by construction,

0 ≤ . . . ≤ Uk ≤ Uk−1 ≤ . . . ≤ U1 ≤ U0 < +∞ .

At this point, we
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(a) write the local energy inequality (5) with η = ηk, with c = Ck and for all
s ∈ (Tk−1, Tk), and

(b) average both sides of the resulting inequality over s ∈ (Tk−1, Tk).

After elementary computations left to the reader, we arrive at the inequality

(13) Uk ≤ 22k+3(1 + 2Λ)

∫
Qk−1

(fk(τ, x, v) + |g(τ, x, v)|)fk(τ, x, v)dxdvdτ

for all k ≥ 0.

2.4.1 - The Nonlinearization Procedure

Now comes the first truly original argument in the De Giorgi iteration
method. In the preceding inequality, Uk is a quadratic quantity in fk, while
the r.h.s. is quadratic in (fk, |g|). In other words, both sides of this inequality
have the same homogeneity, which is only natural since (1) is a linear equation
with source term g.

But the definition of fk suggests involving the level set defined by the in-
equality fk > 0, and this will be used to change the homogeneity of the r.h.s..
Specifically, let q > 12d+ 6, and recall that p := 12d+6

6d+1 ; hence

(14)
1

p
+

2

q
<

6d+ 1

12d+ 6
+

2

12d+ 6
=

6d+ 3

12d+ 6
=

1

2
.

By Hölder’s inequality4∫
Qk−1

(|g|+ fk)fkdxdvdτ =

∫
Qk−1

(|g|+ fk)fk1fk>0dxdvdτ

≤ ‖fk‖Lp(Qk−1)‖g‖Lq(Qk−1)|{fk > 0} ∩Qk−1|1−
1
p
− 1

q

+ ‖fk‖2Lp(Qk−1)
|{fk > 0} ∩Qk−1|1−

2
p .

Then

|{fk > 0}| = |{f > Ck}| = |{fk−1 > Ck − Ck−1 = 2−k−1}| ,

and, applying the Bienaymé-Chebyshev inequality shows that

(15) |{fk > 0}| ≤ 22k+2‖fk−1‖2L2(Qk−1)
≤ 22k+2|Tk−1|Uk−1 ≤ 3 · 22k+1Uk−1 .

4For each measurable A ⊂ Rd, the notation |A| designates the Lebesgue measure of A.
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Injecting this information in the r.h.s. of the inequality (13), we conclude that

Uk ≤ 3(1 + 2Λ) · 24k+4U
1− 2

p

k−1 ‖fk‖
2
Lp(Qk−1)

+ 3γ · 22k+1U
1− 1

p
− 1

q

k−1 ‖fk‖Lp(Qk−1) ,

since ‖g‖Lq ≤ γ.

2.4.2 - Using the Gain in Integrability

By Lemma 2.3 and (15), it holds

‖fk‖Lp(Qk−1) ≤C[d, 32 ,Λ]((1 + 23k)‖f‖L2(Qk−2) + (1 + 2k)γ|{fk > 0}|1/2−1/q)

≤C[d, 32 ,Λ](2
3k+1‖f‖L2(Qk−2) + 22k+3γU

1/2−1/q
k−1 )

≤C[d, 32 ,Λ] · 2
3(k+1) ·

(
|Tk−2|1/2U1/2

k−2 + γU
1/2−1/q
k−1

)
≤C[d, 32 ,Λ] · 2

3(k+1) · (U1/q
0 + γ)U

1/2−1/q
k−2 .

Hence

Uk ≤ 3(1 + 2Λ)C[d, 32 ,Λ]
2(U

1/q
0 + γ)2 · 210k+10U

2− 2
p
− 2

q

k−2

+ 3γ · C[d, 32 ,Λ] · (U
1/q
0 + γ) · 25k+5U

3
2
− 1

p
− 2

q

k−2 ,

and since (
2− 2

p
− 2

q

)
−
(
3

2
− 1

p
− 2

q

)
=

1

2
− 1

p
> 0 ,

we conclude that
Uk ≤ M · 210kUα

k−2 ,

with

M :=3 · 210(1 + 2Λ)C[d, 32 ,Λ]
2(U

1/q
0 + γ)2U

1
2
− 1

p

0 210

+ 3 · 25γ · C[d, 32 ,Λ] · (U
1/q
0 + γ) ,

α :=
3

2
− 1

p
− 2

q
.

2.4.3 - Conclusion

The idea is then to use the nonlinearity in Uk−2 on the r.h.s. to fight the
exponential growth in 210k. Setting

ρ := 210(1 +M) , Vk := U2k ,
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one has

Vk+1 ≤ ρkV α
k ,

and an easy induction shows that

Vk ≤ ρk+α(k−1)+α2(k−2)+...+αk−1
V αk

0 .

Since

k + α(k − 1) + α2(k − 2) + . . .+ αk−1 = k
αk − 1

α− 1
− α

(
αk − 1

α− 1

)′
≤ αk+1

(α− 1)2
,

we conclude that

Vk ≤
(
ρ

α
(α−1)2 U0

)αk

,

and the choice

U0 < ρ
− α

(α−1)2

implies that

U2k → 0 as k → ∞ .

Since ∫
Qk

(f − Ck)
2
+dtdxdv ≤ TkUk ≤ Uk ,

applying Fatou’s lemma shows that

f − 1
2 ≤ 0 a.e. on

⋂
k≥0

Qk = Q[12 ] .

On the other hand, (13) shows that

U0 ≤ 8(1 + 2Λ)‖f0‖L2(Q[3/2])

(
‖f0‖L2(Q[3/2]) + γ|Q[3/2]|

1
2
− 1

q

)
,

so that U0 < ρ
− α

(α−1)2 can be realized by taking ‖f0‖L2(Q[3/2]) smaller than some
threshold depending only on ρ,Λ, α, γ, d. This concludes the proof of Theorem
2.1.

2.5 - Moser’s Iterations

In this section, we briefly sketch Moser’s iteration argument in the simplest
possible setting, so that the interested reader can compare it with De Giorgi’s.
In the interest of simplicity, we shall assume that the source term g = 0.
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2.5.1 - Step 1: constructing positive subsolutions

Assuming that A ∈ S[Q[32 ],Λ], consider

f ∈ C(−3
2 , 0;L

2(B(0, 32)
2)) ∩ FP [A, 0, Q[32 ]].

Pick χε ∈ C2(R) so that χ′′
ε ≥ 0 while χε(z) = 0 for all z ≥ 0, and χε(z) → zβ+

with 1 < β < 2 as ε → 0+.

We deduce from (4) that fβ
+ is a nonnegative subsolution of (1), i.e.

(∂t + v · ∇x)f
β ≤ divv(A∇vf

β) on Q[32 ] .

2.5.2 - Step 2: using the gain in integrability

Using Lemma 2.3 shows that

(∫
Q[1]

f+(t, x, v)
βpdtdxdv

) 2
p

≤ C[d, 32 ,Λ]
2
(
1 + 1

( 3
2
−1)3

)2 ∫
Q[ 3

2
]
f+(t, x, v)

2βdtdxdv ,

where p = (12d + 6)/(6d + 1) > 2. In particular, we can apply to fβ
+ the

procedure described in Step 1 and iterate.

2.5.3 - Step 3: designing the iterations

Define βn := (p/2)n for all integer n ≥ 0, together with

1 = r0 > r1 > r2 > . . . > rn > rn+1 > . . . s.t. rn−1 − rn =
1

σn2
,

so that

rn = r0 − 1
σ

n∑
k=0

1

k2
→ 1− π2

6ζ > 1
2

if ζ > π2

12 . For instance, one can choose ζ = π2. Set Qn := Q[rn], and

An :=

(∫
Qn

f+(t, x, v)
2βndtdxdv

)1/2βn

, n ≥ 0 .
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We deduce from Step 2 applied to f2βn
+ the inequality

An+1 ≤ C[d, 32 ,Λ]
1/βn(1 + ζ3(n+ 1)6)1/βnAn , n ≥ 0 .

Hence

An+1 ≤ A0C[d, 32 ,Λ]
∑

0≤j≤n
1
βj

n∏
j=0

(1 + ζ3(j + 1)6)1/βj , n ≥ 0 .

2.5.4 - Step 4: Passing to the limit as n → ∞

Observe that ∑
j≥0

1

βj
=
∑
j≥0

(
2

p

)j

=
p

p− 2
< ∞ ,

while

ln

n∏
j=0

(1 + ζ3(j + 1)6)1/βj =

n∑
j=0

(
2

p

)j

ln(1 + ζ3(j + 1)6)

≤ζ3
n∑

j≥0

(j + 1)6
(
2

p

)j

∈ [ζ3,+∞) .

Hence the infinite product ∏
j≥0

(1 + ζ3(j + 1)6)1/βj

is absolutely convergent, and

‖f+‖L∞(Q[ 1
2
]) ≤ lim

n≥0
An ≤ A0C[d, 32 ,Λ]

p
p−2

∏
j≥0

(1 + ζ3(j + 1)6)1/βj .

This concludes the proof of Theorem 2.1 by Moser’s iterations.

3 - From L∞ to C0,σ

In this section, we shall prove Theorem 1.2. The proof is based on the
following ingredients

(a) the action of a special one-parameter group of scaling transforms on the
Fokker-Planck equation,
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(b) an “intermediate values” theorem showing that a Fokker-Planck solution
needs “enough room” to jump from 0 to 1, and

(c) a “reduction of oscillations” argument resulting from (b).

Zooming in on any point (t0, x0, v0) ∈ I ×Ω results in a modulus of Hölder
continuity near (t0, x0, v0). Since (t0, x0, v0) is arbitrary, the desired result
follows.

3.1 - Zooming and the Fokker-Planck equation

Consider the zooming transformation defined as follows

Tε[t0, x0, v0]F (s, y, ξ) := F (t0 + ε2s, x0 + ε3y + ε2sv0, v0 + εξ)

for each ε > 0, each x0, v0 ∈ Rd, and each t0 ∈ R.
One easily checks that the zooming transformation acts on the Fokker-

Planck equation in the following manner:

(16)

(∂s + ξ · ∇y)Tε[t0, x0, v0]F (s, y, ξ)

= ε2(∂t + (v0 + εξ) · ∇x)F (t0 + ε2s, x0 + ε3y + ε2sv0, v0 + εξ)

= ε2 divv(A∇vF (t0 + ε2s, x0 + ε3y + ε2sv0, v0 + εξ))

+ ε2G(t0 + ε2s, x0 + ε3y + ε2sv0, v0 + εξ)

= divξ(Tε[t0, x0, v0]A(s, y, ξ)∇ξTε[t0, x0, v0]F (s, y, ξ))

+ ε2Tε[t0, x0, v0]G(s, y, ξ) .

The Hölder continuity of the solution of the Fokker-Planck equation is ob-
tained by combining the zooming procedure above with the next two (funda-
mental) lemmas.

3.2 - The De Giorgi Intermediate Values Lemma

L emma 3.1. Let Λ > 1, η > 0 and ω ∈ (0, 1 − 2−d). Then there exist
θ ∈ (0, 12) and α > 0 satisfying the following property.

For all A ∈ S[Q̂∪Q[1],Λ], and for all f, g such that f ∈ FP [A, g, Q̂∪Q[1]],
satisfying

f, |g| ≤ 1 a.e. on Q̂ ∪Q[1] and |{f ≤ 0} ∩ Q̂| ≥ 1
2 |Q̂|

where Q̂ := (−3
2 , 1]×B(0, 1)×B(0, 1), the following conclusion holds:
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(a) |{f ≥ 1− θ} ∩Q[ω4 ]| < η, or

(b) |{0 < f < 1− θ} ∩ (Q̂ ∪Q[1])| ≥ α .

In the original, elliptic setting, the analogous property is a consequence of
the De Giorgi isoperimetric inequality (Lemma II in [6]): let w ∈ H1(B(0, 1))
(where B(0, 1) is the open unit ball of Rd), and set

A := {w = 0}∩B(0, 12) , C := {w = 1}∩B(0, 12) , D := {0 < w < 1}∩B(0, 12) .

Then
|A| · |C|1−1/d ≤ |D|1/2‖∇w‖L2(D) .

In particular, a H1 function in Rd cannot “jump” from 0 to 1, but “needs some
room” to vary from 0 to 1. How much “room” is needed is made precise by the
inequality above.

The proof of Lemma 3.1 given below is quite different from the elliptic case
recalled above; for want of an isoperimetric inequality adapted to our setting,
we shall instead argue by contradiction, by means of a compactness argument.
For a quantitative proof of this result, see [16].

P r o o f o f L emma 3.1. If this conclusion were wrong, there would exist
sequences An ∈ S[Q̂ ∪Q[1],Λ] and fn, gn s.t. fn ∈ FP [An, gn, Q̂ ∪Q[1]] for all
integer n ≥ 0, with⎧⎪⎪⎨⎪⎪⎩

fn ≤ 1 , |gn| ≤ 1 , |{fn ≤ 0} ∩ Q̂| > 1
2 |Q̂| ,

|{0 < fn < 1− 2−n} ∩ (Q̂ ∪Q[1])| < 2−n ,

|{fn ≥ 1− 2−n} ∩Q[ω4 ]| > η .

This would imply in particular that, possibly after extracting a subsequence of
fn and An, it holds

f+
n → 1P (t, x) in Lp(Q̂ ∪Q[1])

for 1 ≤ p < ∞, and that

An∇vf
+
n ⇀h in L2

loc(Q̂ ∪Q[1])

as n → ∞, with

(∂t + v · ∇x)1P (t, x) ≤ divv h+ 1 in D′(Q̂ ∪Q[1]) .

(That the limiting distribution function is a.e. equal to an indicator function
comes from the fourth assumption on fn. That the set where this indicator
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function is positive is of the form P × Rd
v up to a Lebesgue negligible set, in

other words that this indicator function is a.e. equal to a function independent
of v comes from the L2 bound on ∇vfn implied by the local energy estimate
(6). At this point, we have used the same argument as De Giorgi’s, i.e. the
fact that an indicator function which belongs to the Sobolev space H1 must be
a.e. constant.)

Pick v0 ∈ B(0, 13) and let ζε be a radial mollifier at the origin. Multiplying
both sides of the inequality above by ζε(v − v0) and averaging in v leads to

(∂t + v · ∇x)1P (t, x) ≤ 1 + ‖∇ζε‖L2‖h(t, x, ·)‖L2(B(0,1)) ∈ L2((−3
2 , 0]×B(0, 1)) .

Since the function s �→ 1P (t0 + s, x0 + sv0) has only jump discontinuities for
a.e. (t0, x0) ∈ (−3

2 , 0)×B(0, 1), the inequality above implies that

(∂t + v0 · ∇x)1P (t, x) ≤ 0 in D′((−3
2 , 0)×B(0, 1)) .

Thus, the condition |{fn ≤ 0} ∩ Q̂| > 1
2 |Q̂| implies that |P c ∩ Q̂| > 1

2 |Q̂| > 0,
and hence, by propagation (see Figure 2) it holds |(P ×B(0, 1)) ∩Q[ω4 ]| = 0.

On the other hand, the condition |{fn ≥ 1− 2−n} ∩Q[ω4 ]| > η satisfied for

each integer n ≥ 0 and the fact that fn → 1P (t, x) in Lp(Q̂∪Q[1]) implies that
|(P ×B(0, 1)) ∩Q[ω4 ]| ≥ η > 0, which leads to a contradiction. �

3.3 - Reduction of Oscillations

First we recall the notion of oscillation of a real-valued function defined on
a set.

D e f i n i t i o n 3.2. Let X be a set, and let f : X → R. The oscillation of
f on X is

oscX f := sup
x∈X

f(x)− inf
x∈X

f(x) .

For (weak) solutions of the Fokker-Planck equation, zooming in on a phase
space point leads to a reduction of oscillations. This is the core of the proof of
Hölder regularity for such solutions.

L emma 3.3. Let Λ > 1 and A ∈ S[Q̂ ∪Q[1],Λ]. For all ω ∈ (0, 1− 2−d),
there exist β, μ ∈ (0, 1) satisfying the following property. For all f, g such that
f ∈ FP [A, g, Q̂ ∪Q[1]] and

|f | ≤ 1 while |g| ≤ β a.e. on Q̂ ∪Q[1] ,

it holds
osc

Q[ω
3

54
]
f ≤ 2μ .
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^ x

t

speed<1

meets Pc Q[1]

Q

Fig. 2. Any point in the left shaded region traveling with speed < 1 can reach the
right shaded region. Since P c meets the left shaded region and 1P is nonincreasing
along characteristics, the right shaded region meets P in a set of measure 0. Because
the maximum speed in this phase space domain is 1, it is absolutely essential that the
domains Q̂ and Q[ω4 ] be away from one another of a distance 1− ω

4 in the time variable
(see Remark 4 in [16] on p. 1161). Since the maximal spatial distance of a trajectory
joining the two shaded regions is at most 1 − ω + ω

4 < 1 − ω
4 , this distance can be

traveled by a point moving at speed 1 in time less than 1− ω
4 .

S k e t c h o f t h e p r o o f. Given ω ∈ (0, 1− 2−d), set

η :=
(
ω
3

)4d+2
κ[d,Λ, ω

2

9 ,∞],

where κ is the constant in Theorem 2.1. With these data, Lemma 3.1 provides
us with two positive constants θ ∈ (0, 12) and α > 0. Pick then 0 < β � 1 small
enough so that

ln
1

β
≥
( 1

2 |Q̂|+|Q[1]|
α + 2

)
ln

1

θ
.

Assume that |{f ≤ 0} ∩ Q̂| ≥ 1
2 |Q̂|, and define

fk := 1
θ (fk−1 − 1) + 1 , f0 := f .

Thus

1− fk =
1

θ
(1− fk−1) = . . . =

1

θk
(1− f0) ≥ 0 .

In particular
1− fk ≥ (1− fk−1)

since 1/θ > 1 (in fact 1/θ > 2), so that

. . . ≤ fk ≤ fk−1 ≤ . . . ≤ f0 = f ≤ 1 .
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Besides
fk ∈ FP [A, θ−kg, Q̂ ∪Q[1]]

since the Fokker-Planck operator

f �→ (∂t + v · ∇x)f − divv(A∇vf)

is linear. Now observe that

{f ≤ 0} ⊂ {f1 ≤ 0} ⊂ . . . ⊂ {fk−1 ≤ 0} ⊂ {fk ≤ 0} ⊂ . . .

so that
1
2 |Q̂| ≤ |Q̂ ∩ {f ≤ 0}| ≤ . . . ≤ |Q̂ ∩ {fk ≤ 0}| .

Besides
{fk ≤ 0} = {fk−1 ≤ 0} ∪ {0 < fk−1 ≤ 1− θ} .

Consider then

mk := |{fk ≤ 0} ∩ (Q̂ ∪Q[1])| for all k ≥ 0 ;

this sequence satisfies

mk = m0 +

k∑
j=1

|{0 < fk−1 ≤ 1− θ} ∩ (Q̂ ∪Q[1])| , and m0 >
1
2 |Q̂| .

Define then

k̂ =

[
1
2 |Q̂|+ |Q[1]|

α

]
+ 1 ≤

[
ln(1/β)

ln(1/θ)

]
.

It is impossible that

|{0 < fk−1 ≤ 1− θ} ∩ (Q̂ ∪Q[1])| ≥ α for j = 1, . . . , k̂ ,

since this would imply that

1
2 |Q̂|+ k̂α ≤ m0 + k̂α ≤ mk̂ ≤ |Q̂|+ |Q[1]| .

Then
m0 >

1
2 |Q̂| =⇒ k̂α ≤ 1

2 |Q̂|+ |Q[1]| ,

which is incompatible with our choice of k̂. This rules out case (b) in Lemma 3.1.
Notice that our choice of β implies that

θ−k̂β ≤ 1 , so that θ−k|g| ≤ 1 on Q̂ ∪Q[1] for k = 0, . . . , k̂ .
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Hence conclusion (a) of Lemma 3.1 must hold for some k̃ ∈ {0, . . . , k̂ − 1}, i.e.

|{fk̃ ≥ 1− θ} ∩Q[ω/2]| < η .

Therefore ∫
Q[ω/2]

(fk̃+1)
2
+dtdxdv =

∫
Q[ω/2]

(fk̃+1)
2
+1fk̃≥1−θdtdxdv

≤
∫
Q[ω/2]

1fk̃≥1−θdtdxdv < η .

(The penultimate inequality follows from the fact that

1 ≥ fk̃+1 = 1 + 1
θ (fk̃ − 1) ≥ 0

if and only if fk̃ ≥ 1− θ.)
Now

η >

∫
Q[ω/2]

(fk̃+1)
2
+dtdxdv

=
(
ω
3

)4d+2
∫
(− 9

2ω
,0]×B(0, 27

2ω2 )×B(0, 3
2
)
(Tω/3[0, 0, 0]fk̃+1(s, y, ξ))

2
+dsdydξ

≥
(
ω
3

)4d+2
∫
Q[ 3

2
]
(Tω/3[0, 0, 0]fk̃+1(s, y, ξ))

2
+dsdydξ

implies that Tω/3[0, 0, 0]fk̃+1 satisfies the conditions of De Giorgi’s first lemma
(Theorem 2.1), so that

Tω/3[0, 0, 0]fk̃+1 ≤
1
2 a.e. on Q[12 ] ,

which implies in turn that

fk̃+1 ≤
1
2 < 1− θ a.e. on Q[ω

3

54 ] .

Since 1− f = θk̃+1(1− fk̃+1), we conclude that

f < 1− θk̃+2 a.e. on Q[ω
3

54 ] .

Hence
osc

Q[
ω3

54 ]
f ≤ 1− θk̃+2 − (−1) = 2− θk̃+2 ≤ 2μ

with
μ =: 1− θk̂+2 ≥ 1− 1

2θ
k̃+2 ,
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since 0 ≤ k̃ < k̂ and θ ∈ (0, 12).
This concludes the proof of the reduction of oscillations lemma. �
Notice that

0 < θ < 1
2 =⇒ 1

2 < 1− (12)
3 ≤ 1− θk̂+2 = μ < 1

so that 2μ < 2. Since one assumes that |f | ≤ 1 on Q̂ ∪ Q[1], then oscQ̂∪Q[1] f
could be as large as 2, so that Lemma 3.3 corresponds indeed to a reduction of
the maximum oscillation of f from 2 to 2μ < 2 when reducing the domain of
definition of f from Q̂ ∪Q[1] to Q[ω

3

54 ].

3.4 - Hölder Continuity

Observe that

(17) oscQ[ε3r] f ≤ oscQ[r] Tε[0, 0, 0]f = oscQ̃ε[r]
f ≤ oscQ[εr] f ,

for all ε ∈ (0, 1), where

Q̃ε[r] := (−ε2r, 0]×B(0, ε3r)×B(0, εr) ⊂ Q[εr] .

If f and g satisfy the assumptions of Lemma 3.3, i.e. if f ∈ FP [A, g, Q̂∪Q[1])
with |f | ≤ 1 while |g| ≤ β a.e. on Q̂ ∪Q[1], it holds

osc
Q[ω

3

54
]
f ≤ 2μ .

Setting ε = ω3/81 and r = 3/2, we deduce from the second inequality in (17)
that

oscQ̂∪Q[1]

1

μ
Tω3/81f ≤ oscQ[ 3

2
]

1

μ
Tω3/81f ≤ osc

Q[ω
3

54
]

1

μ
f ≤ 2 .

Because of (16)

1

μ
Tω3/81[0, 0, 0]f ∈ FP

[
Tω3/81[0, 0, 0]A,

ω3

81μ
Tω3/81[0, 0, 0]g,Q[32 ]

]
and ∥∥∥∥ ω3

81μ
Tω3/81[0, 0, 0]g

∥∥∥∥
L∞(Q[3/2])

≤ ω3

81μ
‖g‖L∞(Q[ω3/54]) ≤ β ,

since ω3 ≤ 1 < 81/2 ≤ 81μ and ‖g‖L∞(Q[ω3/54]) ≤ ‖g‖L∞(Q̂∪Q[1]) ≤ β, while

Tω3/81[0, 0, 0]A ∈ S[Q[32 ],Λ]. Therefore

oscQ[ ω
54

]
1

μ
Tω3/81[0, 0, 0]f ≤ 2μ
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by Lemma 3.3 (where the function f is replaced with

f − 1
2

(
sup

Q̂∪Q[1]

f + inf
Q̂∪Q[1]

f

)
if needed). Iterating this argument n− 1 times shows that

oscQ[ ω
54

]
1

μn−1
T n−1
ω3/81

[0, 0, 0]f ≤ 2μ ,

so that, by the first inequality in (17),

osc
Q[ 3

2
ω9n−8

813n−2 ]
f ≤ oscQ[ ω

54
] T n−1

ω3/81
[0, 0, 0]f ≤ 2μn .

Thus

−3
2

ω9n−8

813n−2 < s ≤ 0 and |y|, |ξ| ≤ 3
2

ω9n−8

813n−2 =⇒ |f(s, y, ξ)− f(0, 0, 0)| ≤ 2μn ,

so that

0 ≤ −s, |y|, |ξ| ≤ ω
54 =⇒ |f(s, y, ξ)− f(0, 0, 0)| ≤ Cmax(|s|, |y|, |ξ|)σ

with
σ := lnμ/3 ln(ω3/34) and C := 2

(
2 · 37/ω6

)σ
.

This holds for f ∈ FP [A, g, Q̂∪Q[1]] satisfying both ‖f‖L∞(Q̂∪Q[1]) ≤ 1 and

‖g‖L∞(Q̂∪Q[1]) ≤ β. Therefore, one can remove the restrictions on the sizes of

f and g by changing C into C(1 + ‖f‖L∞(Q̂∪Q[1]))(1 +
1
β‖g‖L∞(Q̂∪Q[1])).

Finally, let f ∈ FP [A, g, I ×Ω] with f, g ∈ L∞(I ×Ω), and let (t0, x0, v0) ∈
I × Ω. Pick ε > 0 small enough so that

Tε[t0, x0, v0]Q[32 ] ⊂ I × Ω .

Thus F = Tε[t0, x0, v0]f is a solution of (1) with diffusion matrix Tε[t0, x0, v0]A
and source ε2Tε[t0, x0, v0]g. Arguing as above with F and setting

s = t− t0 , ξ = v − v0 , y = x− x0 − sv0 ,

we conclude that

|f(t, x, v)− f(t0, x0, v0)| ≤ C((1 + |v0|)|t− t0|+ |x− x0|+ |v − v0|)σ

provided that

0 < t0 − t <
ε3ω3

54(1 + |v0|)
and max(|x− x0|, |v − v0|) <

ε3ω3

54(1 + |v0|)
,

which is the desired continuity estimate.
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4 - Conclusion

This note proposes a reading guide for the somewhat more technical refer-
ences [10, 31]. An alternate point of view on the same result for (1) can be
found in [26,29,30].

A natural sequel to the discussion presented above is the Harnack inequality
for (1): see Theorem 1.6 in [10]. Other approaches to the Harnack inequality
can be found in [2,15,16].

Let us conclude with a physically realistic kinetic model to which the math-
ematical tools described in this note can be applied.

Consider the Landau equation (for charged particles with velocity distribu-
tion function f ≡ f(t, x, v) ≥ 0 a.e. interacting via a Coulomb potential):

(18) (∂t+v·∇x)f(t, x, v) = divv

∫
R3

a(v−w)(∇v−∇w)(f(t, x, v)f(t, x, w))dw ,

where a(z) := ∇2|z|. Set

ρf (t, x) :=

∫
R3

f(t, x, v)dv .

The Landau equation can be put in the form

(∂t + v · ∇x)f = divv((f �v a)∇vf)− divv(f(f �v ∇a))

where �v designates the convolution in the v variable. Except for the first order
differential operator f �→ divv(f(f �v∇a)), this is an example of Fokker-Planck
equation analogous to (1), except that the diffusion matrix f �v a depends on
the solution f itself.

T h e o r em 4.1. Assume that

f ∈ L∞(Q[1]) ∩ L2((−1, 0)×B(0, 1)x;H
1(B(0, 1)v))

while

(∂t + v · ∇x)f ∈ L2((−1, 0)×B(0, 1)x;H
−1(B(0, 1)v)) ,

and that f is a distributional solution of (18), such that

M := ess-sup
(−1,0)×B(0,1)

(
ρf (t, x)+

1

ρf (t, x)
+

∫
R3

f(t, x, v)(12 |v|
2+ln f(t, x, v))dv

)
<∞.

Then f ∈ Cα(Q[12 ]), where α ≡ α[M ] ∈ (0, 1).
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(This is Theorem 1.1 in [10]). At the time of this writing, the conditions
required on the distribution function f in this theorem are not known to be
verified. Put in other words, the “natural” bounds on a weak solution f of
(18) lead to much worse Lebesgue or Sobolev exponents. In fact, even in the
space homogeneous case, whether there is global existence of a classical solution
or finite time blow-up of solutions to the Cauchy problem for (18) remains
an outstanding open problem in the mathematical analysis of kinetic models.
Only very partial information is known on this problem: see for instance [9,11]
and the references therein. After the present paper was accepted, Guillen and
Silvestre have claimed a proof of regularity for space-homogeneous solutions of
the Landau equation: see [32]. (Note and reference added in proof.)

Ac k n ow l e d gm e n t s. I am very grateful to Luis Caffarelli, who gave me
a first introduction to De Giorgi’s method, and to my colleagues Cyril Imbert,
Clément Mouhot and Alexis Vasseur for a truly enjoyable collaboration on this
subject.
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