Riv. Mat. Univ. Parma, Vol. 15, No. 1, 2024
Luigi Barletti[a]
Quantum corrections to drift-diffusion equations in graphene with smoothed energy-band
Pages: 91-106
Received: 7 June 2023
Accepted in revised form: 12 december 2023
Mathematics Subject Classification: 76Y05, 35Q40, 82D37.
Keywords: Graphene, quantum diffusion, subleading corrections.
Author address:
[a]: Università degli Studi di Firenze, Dipartimento di Matematica e Informatica ''U. Dini'', Viale Morgagni 67/A, Firenze, 50134, Italia
This research was partially supported by GNFM-INdAM (National Group for Mathematical Physics).
Full Text (PDF)
Abstract:
Quantum corrections to the semiclassical drift-diffusion equation are obtained for electrons in graphene with
a regularized energy-band.
The derivation starts from the single-particle, single-band Wigner equation and exploits the quantum maximum entropy principle together
with the classical Chapman-Enskog method.
The functional calculus in phase-phase space is then used to expand the model to second order in the scaled Planck's constant.
The model is shown to be singular in the limit where the regularization parameter goes to zero.
References
- [1]
-
L. Barletti,
Derivation of isothermal quantum fluid equations with Fermi-Dirac and Bose-Einstein statistics,
J. Stat. Phys. 148 (2012), 353-386.
DOI
- [2]
-
L. Barletti,
Semiclassical expansion of functional calculus in phase-space,
(submitted).
- [3]
-
L. Barletti and N. Ben Abdallah,
Quantum transport in crystals: effective-mass theorem and k\(\cdot\)p Hamiltonians,
Comm. Math. Phys. 307 (2011), 567-607.
DOI
- [4]
-
L. Barletti and C. Cintolesi,
Derivation of isothermal quantum fluid equations with Fermi-Dirac and Bose-Einstein statistics,
J. Stat. Phys. 148 (2012), 353-386.
DOI
- [5]
-
L. Barletti, L. Demeio and S. Nicoletti,
Quantum Navier-Stokes equations fore electrons in graphene,
arXiv:2211.07391, preprint, 2022, (submitted).
DOI
- [6]
-
I. Bialynicki-Birula,
Hydrodynamic form of the Weyl equation,
Acta Phys. Polon. B 26 (1995), 1201-1208.
MR
|
Article
- [7]
-
P. Carruthers and F. Zachariasen,
Quantum collision theory with phase-space distributions,
Rev. Mod. Phys. 55 (1983), 245-285.
DOI
- [8]
-
A. Castro Neto, F. Guinea, N. Peres, K. Novoselov and A. Geim,
The electronic properties of graphene,
Rev. Mod. Phys. 81 (2009), 109-162.
DOI
- [9]
-
C. Cercignani,
The Boltzmann Equation and its Applications,
Springer, New York, 1988.
MR
- [10]
-
P. Degond,
Macroscopic limits of the Boltzmann equation: a review,
In: P. Degond, L. Pareschi, and G. Russo, eds.,
"Modeling and Computational methods for kinetic equations'',
Model. Simul. Sci. Eng. Technol.,
Birkhäuser, Boston, 2004, 3-47.
DOI
- [11]
-
P. Degond, F. Méhats and C. Ringhofer,
Quantum energy-transport and drift-diffusion models,
J. Stat. Phys. 118 (2005), 625-667.
DOI
- [12]
-
P. Degond and C. Ringhofer,
Quantum moment hydrodynamics and the entropy principle,
J. Stat. Phys. 112 (2003), 587-628.
DOI
- [13]
-
G. B. Folland,
Harmonic analysis in phase space,
Ann. of Math. Stud., 122,
Princeton University Press, Princeton, 1989.
MR
- [14]
-
E. T. Jaynes,
Information theory and statistical mechanics,
Phys. Rev. 106 (1957), 620-630.
MR
- [15]
-
A. Jüngel,
Transport Equations for Semiconductors,
Springer, Berlin, 2009.
MR
- [16]
-
L. Luca and V. Romano,
Quantum corrected hydrodynamic models for charge transport in graphene,
Ann. Phys. 406 (2019), 30-53.
DOI
- [17]
-
A. Lucas and K. C. Fong,
Hydrodynamics of electrons in graphene,
J. Phys.: Condens. Matter 30 (2018), 053001.
DOI
- [18]
-
F. Méhats and O. Pinaud,
An inverse problem in quantum statistical physics,
J. Stat. Phys. 140 (2010), 565-602.
DOI
- [19]
-
F. Méhats and O. Pinaud,
The quantum Liouville-BGK equation and the moment problem,
J. Differ. Equ. 263 (2017), 3737-3787.
DOI
- [20]
-
B. Narozhny,
Electronic hydrodynamics in graphene,
Ann. Phys. 411 (2019), 167979.
DOI
- [21]
-
D. Querlioz and P. Dollfus,
The Wigner Monte Carlo method for nanoelectronic devices,
ISTE-Wiley, London, 2010.
Zbmath
- [22]
-
V. Romano,
Quantum corrections to the semiclassical hydrodynamical model of semiconductors based on the maximum entropy principle,
J. Math. Phys. 48 (2007), 123504.
DOI
- [23]
-
C. Zachos, D. Fairlie and T. Curtright, eds.,
Quantum mechanics in phase space. An overview with selected papers,
World Sci. Ser. 20th Century Phys., 34,
World Scientific, Hackensack, 2005.
MR
- [24]
-
N. Zamponi and L. Barletti,
Quantum electronic transport in graphene: a kinetic and fluid-dynamic approach,
Math. Methods Appl. Sci. 34 (2011), 807-818.
DOI
Home Riv.Mat.Univ.Parma