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Quantum corrections to drift-diffusion equations in graphene

with smoothed energy-band

Abstract. Quantum corrections to the semiclassical drift-diffusion
equation are obtained for electrons in graphene with a regularized
energy-band. The derivation starts from the single-particle, single-band
Wigner equation and exploits the quantum maximum entropy principle
together with the classical Chapman-Enskog method. The functional
calculus in phase-phase space is then used to expand the model to sec-
ond order in the scaled Planck’s constant. The model is shown to be
singular in the limit where the regularization parameter goes to zero.
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1 - Introduction

The many possible applications to microelectronics have led to a consider-
able research activity concerning hydrodynamic and diffusive models for elec-
trons in graphene (see Refs. [17,20] and the references therein). In the vast
majority of cases, these models are “semiclassical”, which means that electrons
are treated as classical particles with a peculiar form of the kinetic energy,
namely

E(p) = ±c|p|,
hence linear in the modulus of the momentum, where c is the so-called Fermi ve-
locity. Finding “quantum corrections” to such models means that the coherent
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nature of electrons, as quantum particles, is taken into account to some degree.
Such quantum corrections are already well known for standard (parabolic en-
ergy bands) particles but are still not well understood for particles with conical
energy bands. The reasons are many. First, in the limit p → 0 the energy looses
the smoothness which is necessary for the semiclassical expansion of the model
(typically involving higher derivatives of the energy); second, the presence of
the negative energy cone requires a description in terms of electrons and holes,
where the concept of hole is typically semiclassical; third, the absence of an
energy gap implies that the transport is always in the Fermi-Dirac regime, for
which the theory necessary to calculate the corrections is not as well developed
as in the Maxwell case.

Quantum hydrodynamic or diffusive equations for graphene have been ob-
tained for pure states [6] and in the opposite regime of “well mixed” states [24].
Without such assumptions, troubles quickly arise, mainly due to the conical sin-
gularity. In Ref. [16], Luca and Romano consider a single-band quantum hy-
drodynamic model where the maximum entropy principle [14] is applied only to
the leading order of the semiclassical expansion of the local equilibrium state.
They show that the model is singular (the transport coefficients diverge) unless
a band-gap parameter (γ, in our notations) is introduced, so that the energy
band takes the smoothed form

E(p) =
√

c2|p|2 + γ2

(it should be noted that the presence of a small band gap can be justified also
from a physical point of view [8,16]). In Ref. [5], a single-band hydrodynamic
model is still considered where the maximum entropy principle is applied up
to the second-order, according to the “quantum maximum entropy principle”
theory by Degond, Ringhofer and Méhats [11,12]. The result is that the quan-
tum corrections to the Euler equations are non-singular, while singularities are
still present in the “viscous” corrections, requiring again the regularization of
the energy band.

In the present work we still consider a regularized single-band and compute
the quantum corrections to the diffusion equations. We start from the Wigner
equation and apply the quantum maximum entropy principle to describe the
relaxation of the system, in a typical time τ , towards a local equilibrium state.
Then, the classical Chapman-Enskog method is used to derive fully quantum
drift-diffusion equations. Such equations are then semiclassical expanded to
second-order in the scaled Planck constant ε, yielding the sought quantum
corrections. It turns out that the corrections are singular in the conical band
limit γ → 0. This was somehow expected, since the diffusion is given by the
first-order (in τ) Chapman-Enskog term, analogously to the above-mentioned
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viscous corrections.
This paper is organized as follows. In Section 2 we introduce the micro-

scopic description, based on the single-particle, single-band quantum Hamilto-
nian and the corresponding Wigner equation. The Wigner equation is endowed
with a “collisional” term describing the relaxation of the system towards a
local-equilibrium Wigner function g. In Section 3, after rewriting the equation
in diffusive scaling, we perform the Chapman-Enskog analysis and obtain a
fully-quantum diffusive equation. In Section 4 the diffusive equation is closed
by means of the quantum maximum entropy principle, which provides a self-
consistent, although very implicit, quantum model. In Section 5, using Moyal
calculus, the equilibrium Wigner function and the related Lagrange multipli-
ers are expanded to order ε2. Finally, in Section 6, the results of the previ-
ous sections are used to obtain a semiclassical drift-diffusion equation and its
second-order quantum corrections.

2 - Microscopic description

We assume that the microscopic dynamics of a single electron is described
by (the quantization of) the following Hamiltonian [8]:

(2.1) h(x,p) = E(p) + V (x)

where x = (x1, x2) and p = (p1, p2) are the two-dimensional space and momen-
tum coordinates of the electron, V (x) is the electrostatic potential and E(p) is
the energy band of the positive-energy electrons:

(2.2) E(p) =
√
c2|p|2 + γ2.

Here, c > 0 is the Fermi velocity and γ > 0 is a regularization parameter, which
can be physically related to higher-order terms of the tight-binding approxima-
tion of the band [8,16]. In the semiclassical theory [20],

(2.3) v(p) = ∇pE =
c2p√

c2|p|2 + γ2

is the group velocity of the electron and

(2.4) πij(p) =
∂2E

∂pi∂pj
=

∂vi
∂pj

=
1

E
(
c2δij − vivj

)
is the inverse effective-mass tensor [3]. The above description is valid for con-
duction electrons, which are the only carriers that will be considered in this
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work. A specular description could be applied to holes in the valence band,
which are positively charged and whose group velocity is −v.

In the Wigner (phase-space) formalism, a mixed (statistical) state of a pop-
ulation of electrons is described by means of the Wigner function

(2.5) w(x,p) =
1

(2πε)2

∫
R2

�
(
x+

ξ

2
,x− ξ

2

)
e−ip·ξ/εdξ,

where ρ(x,y) denotes the density matrix of the system and ε denotes the scaled
Planck’s constant.1 The inverse transformation is

(2.6) ρ(x,y) =

∫
R2

w
(x+ y

2
,p
)
ei(x−y)·p/ε dp

which corresponds to the Weyl quantization Op(w), up to the identification of
the operator Op(w) with its integral kernel ρ [13,23].

In order to write down an evolution equation for the time-dependent Wigner
function w(x,p, t), we recall that the Moyal product is the operator product
translated into phase-space functions by inverse Weyl quantization [13,23]:

(2.7) a#b = Op−1 (Op(a) Op(b)) =

∞∑
k=0

εka#kb,

where

(2.8) a#kb =
1

(2i)k

∑
|α|+|β|=k

(−1)|α|

α!β!

(
∇α

x∇β
pa
)(

∇α
p∇β

xb
)
.

In the last equation we use the standard multi-index notation applied to the
x- and p-gradients (denoted ∇x and ∇p, respectively): in 2D a multi-index α
is a couple (α1, α2) of non-negative integers indicating the order of derivation
with respect to the two variables. Moreover, |α| = α1 + α2 is the total order
of derivation and α! := α1!α2!. The evolution of the Wigner function comes
directly from the von Neumann equation for ρ (Schrödinger equation for mixed
states) and reads as follows [5,16]:

(2.9) ∂tw + Λw +ΘV w = 0,

1We use ε instead of � both for readability and to emphasize the small-parameter character
of the Planck constant in the semclassical expansion (one can think of ε as a suitably scaled
version of �).
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where

(2.10)

Λw =
i

ε
[E , w]# =

∞∑
k=0

ε2kΛ(2k)w, Λ(2k) =
∑

|α|=2k+1

(−1)k

4α!
∇α

pE ∇α
x,

ΘV w =
i

ε
[V,w]# =

∞∑
k=0

ε2kΘ
(2k)
V w, Θ

(2k)
V = −

∑
|α|=2k+1

(−1)k

4α!
∇α

xV ∇α
p

and [a, b]# = a#b − b#a is the Moyal commutator. Note that, for ε → 0, Λ
and ΘV converge to the corresponding classical operators, namely

(2.11) Λ(0) = v · ∇x , Θ
(0)
V = −∇xV ∇p ,

and the Wigner equation (2.9) reduces to the Liouville equation for the Hamil-
tonian (2.1).

In the classical kinetic theory, the macroscopic, fluid-dynamical equations
are derived from Boltzmann equation, which is a one-particle Liouville equation
endowed with the celebrated Boltzmann’s collisional operator [9]. In the fully
quantum theory, however, the equivalent of such operator is nonlocal in both
space and time, and is too involved to be useful in analytical or numerical in-
vestigations (see Ref. [7]). In intermediate regimes, namely regimes that can be
considered as a perturbation of the classical one, a Boltzmann-like semiclassical
collision operator, possibly augmented with a O(ε2) quantum correction, can be
used [16,21,22]. Here, we decided to adopt a fully quantum perspective, while
maintaining a relatively simple description of collisions. So, following Degond-
Ringhofer-Méhats’ theory [11, 12], we prescribe that collisions will drive the
system, in a typical time τ , towards a quantum state of local equilibrium that
maximises a suitable entropy functional. Then, the collisional Wigner equation
takes the form

(2.12) ∂tw + Λw +ΘV w =
1

τ
(g − w),

where g is the Wigner function corresponding to the local equilibrium state and
is chosen so that it maximises the quantum (von Neumann) entropy among all
the Wigner functions that share some given moments [11,12,15]. This is the
quantum version of the classical entropy principle [14]. Since, in this work, we
are interested in the diffusive regime, then we assume that inelastic collisions
with a thermal bath of phonons are the dominant interaction mechanism. Such
collisions conserve the number of electrons but not their momentum nor their
energy and, therefore, we only have to prescribe the conservation of the local
electron density n:

(2.13) 〈g〉(x, t) = 〈w〉(x, t) := n(x, t).
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where 〈·〉 is a shorthand for
∫
· dp. For the moment, we do not need more

details about the local equilibrium g and we will resume its description in the
dedicated Section 4.

We remark that, in general, the typical collision time τ depends on the
momentum but here, for the sake of simplicity, it is assumed to be constant.
Moreover, we can always think that we are working in non-dimensional variables
and parameters, so that τ is to be considered as a scaled collisional time (the
rescaling procedure is standard and we can refer, e.g., to Ref. [15] for it). Note
therefore that Eq. (2.12) contains two non-dimensional parameters: the scaled
Planck constant ε and the scaled collision time τ , which will be considered as
small parameters in the following.

3 - Diffusion limit

Let us now study the diffusion limit of the Wigner equation (2.12). First of
all we need to rewrite the equation in the “diffusive scaling” form. Since we are
already working with non-dimensional variable, we just have to rescale time as
follows:

t → t

τ
,

which means that we are zooming out in time in order to observe the dynamics
over a longer time scale. The Wigner equation takes therefore the form

(3.1) τ2∂tw + τTw = Q(w),

where

(3.2) T = Λ+ΘV and Q(w) = g − w.

We remark that g depends nonlinearly on w through the constraint (2.13),
which guarantees

(3.3) 〈Q(w)〉 = 0.

The diffusion limit of (3.1) is obtained by means of the classical Chapman-
Enskog ansatz [9,10], which consists in the expansion

(3.4) w = w(0) + τw(1) + τ2w(2) + · · · ,

where each w(k) depends on τ (in some complex way) but has a finite limit for
τ → 0 (that we still denote w(k), for the sake of simplicity). Plugging (3.4) into
(3.1) and taking the limit τ → 0 yields

(3.5) w(0) = g.
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At next order, dividing by τ and taking the limit τ → 0, we obtain

(3.6) w(1) = −Tw(0) = −Tg.

Similarly, at second order, we obtain

(3.7) w(2) = −Tw(1) − ∂tw
(0) = TTg − ∂tg.

Now, from our assumptions and from the constraint (2.13) we have that

〈w(0)〉 = 〈g〉 = n and 〈w(k)〉 = 0, k ≥ 1.

Hence, integrating with respect to p ∈ R2 both sides of Eq. (3.7), finally yields
the macroscopic diffusive equation

(3.8) ∂tn = 〈TTg〉

which is the equation we were looking for. Of course, (6.3) is still written in an
implicit form, since the right-hand side depends on ρ through the specific form
of g and through the constraint (2.13). In the next sections we will work on
these aspects.

4 - Quantum drift-diffusion equations

As already mentioned in Sec. 2, the microscopic equilibrium state g is cho-
sen to maximize a quantum entropy functional [11, 12, 15]. In addition, the
equilibrium state must reflect some general properties of collisions, such as the
conservation of particle number, momentum, energy. In the present work, we
are assuming that the main collisional mechanism for our system is represented
by collisions with a phonon bath at given temperature. Such collisions are in-
elastic and do not conserve momentum, so we just impose the conservation of
the number of particles.

The suitable entropy functional for a fermionic diffusion problem is a free-
energy functional (to be minimised) [4], given by

(4.1) F(w) =

∫
R2

∫
R2

{
hw +Op−1[s(Op(w)]

}
dp dx,

where Op is the Weyl quantization, already introduced in Sec. 2, and s is
(minus) the entropy function

s(z) = z log(z) + (1− z) log(1− z).
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We remark that this particular entropy function leads to Fermi-Dirac statistics
(see below), which is necessary to describe a zero-gap material such as graphene.
Note also that we assume here to work in non-dimensional variables such that
no temperature-dependent constants appear in (4.1) (otherwise the constant
kBT0 should be multiplying s, where kB is the Boltzmann constant and T0 is
the temperature of the thermal bath). Then, we choose the local-equililbrium
state g according to the above-described quantum maximum entropy principle,
which, in our specific case, reads as follows: for any given function n(x, t), find
g such that

(4.2) g = argmin {F(w) | 〈w〉 = n} .

It can be proven [11,12,15,18,19] that a Lagrange multiplier A(x, t) exists
such that g is given by

(4.3) g = Op−1

(
1

eOp(h−A) + 1

)
, with 〈g〉 = n.

Equation (4.3) completely identifies the local-equilibrium Wigner function g
that appears in the quantum drift-diffusion equation (3.8). Now,

Tg =
i

ε
[h, g]# =

i

ε
[h−A, g]# +

i

ε
[A, g]# = ΘAg,

where we used the fact that the commutator between h − A and g (which is
function of h−A through functional calculus) is zero. Hence,

TTg = ΛΘAg +ΘV ΘAg

and, from the property

(4.4) 〈ΘV w〉 = 0

(which can be immediately obtained from (2.10)), Eq. (3.8) becomes

(4.5) ∂tn = 〈TTg〉 = 〈ΛΘAg〉.

Equation (4.5) , together with (4.3), yields a self-consistent (albeit very implicit)
quantum drift-diffusion model for the density n. In the next section we shall
perform the semiclassical expansion of g and A, and therefore of the quantum
drift-diffusion model, up to order ε2.
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5 - Semiclassical expansion

5.1 - Expansion of the equilibrium state

We can compute the semiclassical expansion of the maximum entropy state,

g = g(0) + εg(0) + ε2g(2) + · · · ,

as follows. Let

F (z) =
1

ez + 1
,

then, according to (4.3),

g = Op−1 [F (Op(h−A))] .

By using the the holomorphic functional calculus, we can express the operator
F (Op(h−A)) as

(5.1) F (Op(h−A)) =
1

2πi

∫
Γ
F (z)(z −Op(h−A))−1dz,

where Γ is a positively oriented path in the complex plane encompassing the
real line. Applying to both sides the inverse Weyl quantization,

(5.2) g =
1

2πi

∫
Γ
F (z)Op−1

[
(z −Op(h−A))−1

]
dz,

shows that computing the semiclassical expansion of g reduces to computing
the semiclassical expansion Rε = R(0)+ εR(1)+ ε2R(2)+ · · · of the transformed
resolvent

R(z) = Op−1
[
(z −Op(h−A))−1

]
,

so that [2]

(5.3) g(k) =
1

2πi

∫
Γ
F (z)R(k)(z) dz.

The semiclassical expansion of R(z) can be obtained from the identities

(z − h+A)#R(z) = R(z)#(z − h+A) = 1,

that combine to yield

(5.4)
1

2
[(z − h+A)#R(z) +R(z)#(z − h+A)] = 1.
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Since the odd-order Moyal product is anti-commutative (see (2.7)), Eq. (5.4)
immediately gives us that R(k) = 0 for odd k and therefore,

(5.5) R(z) = R(0)(z) + ε2R(2)(z) + ε4R(4)(z) + · · ·

where the even-order terms R(2k) are given by the recursive relation

(5.6)

⎧⎪⎪⎨⎪⎪⎩
R(0)(z) = (z − h+A)−1,

R(2k)(z) =

n∑
j=1

h#2jR
2(k−j)(z), k ≥ 1.

The leading-order equilibrium is therefore given by (5.3) with k = 0

(5.7) g(0) =
1

2πi

∫
Γ

F (z)

z − h+A
dz = F (h−A) =

1

eE−μ + 1
,

which is the classical Fermi-Dirac distribution, where, for shortness, we put

μ = A− V.

The first subleading correction is of order ε2 and is given by (5.3) with k = 2,
where, from (5.6),

R(2)(z) = R(0)(z)
(
(h−A)#2R

(0)(z)
)
.

We are not giving here all the details of calculations, which are lengthy but
straightforward, and we shall limit ourselves to write down the result:
(5.8)

g(2) =
1

8
F ′′(E − μ)

∂2μ

∂xi∂xj
πij +

1

24
F ′′′(E − μ)

(
∂2μ

∂xi∂xj
vivj −

∂μ

∂xi

∂μ

∂xj
πij

)
,

where vi and πij are defined in (2.3) and (2.4), and summation over i = 1, 2 and
j = 1, 2 is understood. A similar result was obtained (with different techniques)
in Ref. [4] for a parabolic energy band.

5.2 - Expansion of the Lagrange multiplier

We now expand the reciprocal dependence between the Lagrange multiplier
A (or, equivalently, μ = A − V ) and the density n, as it results from the
constraint 〈g〉 = n in (4.3). Hence, we write

μ(n) = μ(0) + εμ(1) + ε2μ(2) + · · · .
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From (5.7), at leading order the constraint reads as follows:

(5.9) 〈F (E − μ)〉 = n,

where

〈F (E − μ)〉 =
∫
R2

dp

e
√

c2|p|2+γ2−μ + 1
= 2π

∫ ∞

0

ρ dρ

e
√

c2ρ2+γ2−μ + 1

=
2π

c2

∫ ∞

γ

t dt

et−μ + 1
=

2π

c2
φγ
2(μ).

Here, φγ
s (μ) denotes the incomplete Fermi integral of order s, namely:

(5.10) φγ
s (μ) =

1

Γ(s)

∫ +∞

γ

ts−1 dt

et−μ + 1
.

Since φγ
2(μ) is a strictly increasing function of μ from R to (0,+∞), then, Eq.

(5.9) has a unique solution

(5.11) μ(0)(n) = (φγ
2)

−1
(c2n
2π

)
for any given n > 0.

Since g(1) = 0, and, consequently, μ(1) = 0, the next step is to find the
correspondence between μ and n at second order, according to

(5.12) 〈g(0)〉+ ε2〈g(2)〉 = n.

Integrating (5.8) with respect to p ∈ R2, for evident symmetry reasons, we
obtain

(5.13) 〈g(2)〉 =
〈1
8
F ′′(E − μ)πii

∂2μ

∂x2i
+

1

24
F ′′′(E − μ)

[
v2i

∂2μ

∂x2i
− πii

( ∂μ

∂xi

)2]〉
=

c2

16

〈
F ′′(E − μ)

E2 + γ2

E3
Δμ+

1

3
F ′′′(E − μ)

[E2 − γ2

E2
Δμ− E2 + γ2

E3
|∇μ|2

]〉
,

where we used the fact that, for any function f depending on p only through
its modulus |p| and for fixed i = 1, 2,

〈v2i f〉 =
1

2
〈|v|2f〉 = c2

2

〈E2 − γ2

E2
f
〉
,

〈πiif〉 =
〈c2 − v2i

E f
〉
=

c2

2

〈E2 + γ2

E3
f
〉
.
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A simple calculation with Taylor’s formula (see also Ref. [4]) shows that the
inversion of the second-order relation (5.12) (for the unknown μ) reads as fol-
lows:

(5.14) μ(2)(n) =
c4

32π

1

φγ
1(μ

(0)(n))

[
1

3
|∇μ(0)(n)|2

〈
F ′′′(E − μ(0)(n))

E2 + γ2

E3

〉
−Δμ(0)(n)

〈
F ′′(E − μ(0)(n))

E2 + γ2

E3
+

1

3
F ′′′(E − μ(0)(n))

E2 − γ2

E2

〉]
,

where μ(0)(n) is the solution to the leading-order equation (5.9), given by (5.11),
and the property (φγ

s )′ = φγ
s−1 has been used.

6 - Quantum corrections to drift-diffusion equations

Let us come back to the quantum drift-diffusion equation (4.5). The expan-
sion (2.10) of the operators Λ and Θ and the results of Section 5 can now be
used to write down the approximation of Eq. (4.5) at order ε2, according to

∂tn = 〈Λ(0)Θ
(0)

A(0) g
(0)〉+

∑
i+j+k+l=1

ε2〈Λ(2i)Θ
(2j)

A(2k) g
(2l)〉+O(ε4),

where

A(0) = V + μ(0), A(2) = μ(2)

(here and in the following μ(k) = μ(k)(n) will be understood). From (2.11), at
leading order we obtain

〈Λ(0)Θ
(0)

A(0) g
(0)〉 = − ∂

∂xi

〈
vi
∂(μ(0) + V )

∂xj

∂g(0)

∂pj

〉
=

∂

∂xi

(
∂(μ(0) + V )

∂xj

〈∂v(0)i

∂pj
g(0)

〉)
=

∂

∂xi

[(
dμ(0)

dn

∂n

∂xj
+

∂V

∂xj

)
〈πijg(0)〉

]
.

Similarly, we have

〈Λ(0)Θ
(0)

A(0) g
(2)〉+ 〈Λ(0)Θ

(0)

A(2) g
(0)〉

=
∂

∂xi

[(
dμ(0)

dn

∂n

∂xj
+

∂V

∂xj

)
〈πijg(2)〉+

(
dμ(2)

dn

∂n

∂xj

)
〈πijg(0)〉

]
.
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Moreover, from (2.10),

S := 〈Λ(2)Θ
(0)

A(0) g
(0)〉+ 〈Λ(0)Θ

(2)

A(0) g
(0)〉

=
∑
|α|=3

1

4α!

[
∇α

(
Hα,j

∂

∂xj
(μ(0) + V )

)
+

∂

∂xj

(
Hα,j∇α(μ(0) + V )

)]
,

where (recalling that α = (α1, α2))

Hα,j = 〈F (E − μ(0))∇α
pvj〉 =

〈
F (E − μ(0))

∂4E
∂pα1

1 ∂pα2
2 ∂pj

〉
.

Hence, by symmetry considerations,

(6.1) S =
∂3

∂x2i ∂xj

(
Hij

∂

∂xj
(μ(0) + V )

)
+

∂

∂xj

(
Hij

∂3

∂x2i ∂xj
(μ(0) + V )

)
,

where

(6.2) Hij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

8

〈
F (E − μ(0))

∂4E
∂p21∂p

2
2

〉
, if i �= j

1

24

〈
F (E − μ(0))

∂4E
∂p41

〉
, if i = j.

Hence, the O(ε2) drift-diffusion equation reads as follows

(6.3) ∂tn = div
[(
D(0) + ε2D(2)

)
∇n+

(
M (0) + ε2M (2)

)
∇V

]
+ ε2S,

where,

(6.4)

M (0) = 〈πij g(0)〉 =
〈E2 + γ2

E3
F (E − μ(0))

〉
,

D(0) =
dμ(0)

dn
M (0) =

c2

2πφγ
1(μ

(0))
M (0)

M (2) = 〈πij g(2)〉 (independent on i and j)

D(2) =
dμ(0)

dn
M (2) +

dμ(2)

dn
M (0)

and S is given by (6.1). We can make some remarks about equation (6.3).

1. The leading order diffusion and mobility coefficients, D(0) and M (0), de-
pend on n, while the second-order ones, D(2) and M (2) depend on n and
its derivatives up to second order (see (5.8)).
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2. The term S contains derivatives of n and V up to third-order. This
term does not appear in standard quantum drift-diffusion equations with
parabolic energy bands [11, 15] because, in that case, the third-order
derivatives of v (fourth-order derivatives of E) vanish and, consequently,
Hij = 0.

3. The quantum corrections become singular in the conical-band limit γ → 0.
In fact, when γ = 0, we have that πijg

(2) ∼ |p|−1 and ∇α
pE ∼ |p|1−|α|,

for |p| → 0. Since in R2 a singularity of the form |p|−k is non-integrable
when k ≥ 2, then the coefficients M (2) and Hij become infinite. As
already remarked in the Introduction, this phenomenon is known also for
hydrodynamic-type equations in graphene [5,16].

One might suspect that the singularities are due to our choice to use a single-
band microscopic description, and that they can disappear when considering
the complete two-band Hamiltonian [8]. However, our first calculations (not
reported here) show that this is not the case and singularities still pop up.
These results indicate that the semiclassical expansion of quantum diffusion or
quantum hydrodynamic equations is problematic in the presence of a conical
band intersection. The two-band model, moreover, brings an additional diffi-
culty due to the fact that the Hamiltonian is unbounded from below. Indeed,
the unboundedness of the negative-energy band means that more and more
convenient energy states are always available, which implies that, at thermody-
namic equilibrium, the lower band is ”filled” and the electron density is infinite.
The semiclassical way to overcome this difficulty is to describe negative-energy
electrons in terms of holes in the ”Fermi sea”. However, it is unclear how to fit
the concept of hole in the framework of quantum maximum entropy principle,
at least in the standard form that we used here. A more accurate discussion
on the two-band case is deferred to a future work.

Ac k n ow l e d gm e n t s. The author acknowledges support by INdAM-
GNFM (National Group for Mathematical Physics).
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