Riv. Mat. Univ. Parma, Vol. 14, No. 1, 2023

Prashanta Garain [a] and Alexander Ukhlov [b]

Mixed anisotropic and nonlocal Dirichlet \((p,q)\)-eigenvalue problem

Pages: 217-232
Received: 18 May 2023
Accepted in revised form: 27 July 2023
Mathematics Subject Classification: 35M12, 35J92, 35R11, 35P30, 35A01.
Keywords: Mixed local and nonlocal \(p\)-Laplacian, Anisotropic \(p\)-Laplace operator, Dirichlet eigenvalue problem, existence, regularity.
Authors address:
[a]: Indian Institute of Science Education and Research Berhampur, Department of Mathematical Sciences, Berhampur, Odisha, India
[b]: Ben-Gurion University of the Negev, Department of Mathematics, Beer Sheva, Israel

Full Text (PDF)

Abstract: In this article, we consider an anisotropic and a combination of anisotropic and nonlocal Dirichlet \((p,q)\)-eigenvalue problems.
We establish existence and regularity of eigenfunctions in a bounded domain \(\Omega\subset\mathbb{R}^N\) under the assumption that \(1 < p < \infty\) and \(1 < q < p^{*}\) where \(p^{*}=\frac{N p}{N-p}\) if \(1 < p < N\) and \(p^{*}=\infty\) if \(p\geq N\).

References
[1]
L. Barbu, Eigenvalues for anisotropic \(p\)-Laplacian under a Steklov-like boundary condition, Stud. Univ. Babeş-Bolyai Math. 66 (2021), no. 1, 85-94. MR4325615
[2]
M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Special issue dedicated to Lawrence E. Payne, Z. Angew. Math. Phys. 54 (2003), no. 5, 771-783. MR2019179
[3]
M. Belloni and B. Kawohl, The pseudo-\(p\)-Laplace eigenvalue problem and viscosity solutions as \(p\to\infty\), ESAIM Control Optim. Calc. Var. 10 (2004), no. 1, 28-52. MR2084254
[4]
S. Biagi, S. Dipierro, E. Valdinoci and Eugenio Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations 47 (2022), no. 3, 585-629. MR4387204
[5]
L. Brasco and E. Parini, The second eigenvalue of the fractional \(p\)-Laplacian, Adv. Calc. Var. 9 (2016), no. 4, 323-355. MR3552458
[6]
S. Buccheri, J. V. da Silva and L. H. de Miranda, A system of local/nonlocal \(p\)-Laplacians: the eigenvalue problem and its asymptotic limit as \(p\to\infty\), Asymptot. Anal. 128 (2022), no. 2, 149-181. MR4400914
[7]
P. G. Ciarlet, Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013. MR3136903
[8]
J. V. da Silva and A. M. Salort, A limiting problem for local/non-local \(p\)-Laplacians with concave-convex nonlinearities, Z. Angew. Math. Phys. 71 (2020), no. 6, Paper No. 191, 27 pp. MR4169523
[9]
L. Del Pezzo, J. Rossi, N. Saintier and A. Salort, An optimal mass transport approach for limits of eigenvalue problems for the fractional \(p\)-Laplacian, Adv. Nonlinear Anal. 4 (2015), no. 3, 235-249. MR3377386
[10]
L. M. Del Pezzo, R. Ferreira and J. D. Rossi, Eigenvalues for a combination between local and nonlocal \(p\)-Laplacians, Fract. Calc. Appl. Anal. 22 (2019), no. 5, 1414-1436. MR4044581
[11]
F. Della Pietra, N. Gavitone and G. Piscitelli, On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators, Bull. Sci. Math. 155 (2019), 10-32. MR3944134
[12]
G. di Blasio and P. D. Lamberti, Eigenvalues of the Finsler \(p\)-Laplacian on varying domains, Mathematika 66 (2020), no. 3, 765-776. MR4134244
[13]
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. MR2944369
[14]
S. Dipierro, E. Proietti Lippi and E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal. 128 (2022), no. 4, 571-594. MR4438596
[15]
P. Drábek, The uniqueness for a superlinear eigenvalue problem, Appl. Math. Lett. 12 (1999), no. 4, 47-50. MR1750596
[16]
P. Drábek, A. Kufner and F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, De Gruyter Ser. Nonlinear Anal. Appl., 5, Walter de Gruyter & Co., Berlin, 1997. MR1460729
[17]
L. Erbe and M. Tang, Uniqueness theorems for positive radial solutions of quasilinear elliptic equations in a ball, J. Differential Equations 138 (1997), no. 2, 351-379. MR1462272
[18]
G. Ercole, Solving an abstract nonlinear eigenvalue problem by the inverse iteration method, Bull. Braz. Math. Soc. (N.S.) 49 (2018), no. 3, 577-591. MR3862797
[19]
G. Franzina and P. D. Lamberti, Existence and uniqueness for a \(p\)-Laplacian nonlinear eigenvalue problem, Electron. J. Differential Equations (2010), No. 26, 10 pp. MR2602859
[20]
G. Franzina and G. Palatucci, Fractional \(p\)-eigenvalues, Riv. Math. Univ. Parma (N.S.) 5 (2014), no. 2, 373-386. MR3307955
[21]
M. Fărcăşeanu, Eigenvalues for Finsler \(p\)-Laplacian with zero Dirichlet boundary condition, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 24 (2016), no. 1, 231-242. MR3481533
[22]
P. Garain, W. Kim and J. Kinnunen, On the regularity theory for mixed anisotropic and nonlocal \(p\)-Laplace equations and its applications to singular problems, arXiv:2303.14362, preprint, 2023. DOI
[23]
P. Garain and J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear parabolic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., to appear, DOI: 10.2422/2036-2145.202110\_006.
[24]
P. Garain and A. Ukhlov, Mixed local and nonlocal Dirichlet \((p,q)\)-eigenvalue problem, J. Math. Sci. (N.Y.) 270 (2023), no. 6, 782-792. MR4578286
[25]
J. P. García Azorero and I. Peral Alonso, Existence and nonuniqueness for the \(p\)-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), no. 12, 1389-1430. MR0912211
[26]
D. Goel and K. Sreenadh, On the second eigenvalue of combination between local and nonlocal \(p\)-Laplacian, Proc. Amer. Math. Soc. 147 (2019), no. 10, 4315-4327. MR4002544
[27]
J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York, 1993. MR1207810
[28]
T. Idogawa and M. Ôtani, The first eigenvalues of some abstract elliptic operators, Funkcial. Ekvac. 38 (1995), no. 1, 1-9. MR1341732
[29]
J. Jaroš, Picone's identity for a Finsler \(p\)-Laplacian and comparison of nonlinear elliptic equations, Math. Bohem. 139 (2014), no. 3, 535-552. MR3269372
[30]
B. Kawohl and P. Lindqvist, Positive eigenfunctions for the \(p\)-Laplace operator revisited, Analysis (Munich) 26 (2006), no. 4, 545-550. MR2329592
[31]
B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discrete Contin. Dynam. Systems 6 (2000), no. 3, 683-690 (Erratum: ibid 17 (2007), no. 3, 690). MR1757396   MR2276433
[32]
A. Lê, Eigenvalue problems for the \(p\)-Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057-1099. MR2196811
[33]
E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 795-826. MR3148135
[34]
P. Lindqvist, On the equation \({\rm div}\,(|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}u=0\), Proc. Amer. Math. Soc. 109 (1990), no. 1, 157-164. MR1007505
[35]
J. Malý and W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Math. Surveys Monogr., 51, American Mathematical Society, Providence, RI, 1997. MR1461542
[36]
M. Mihăilescu and G. Moroşanu, On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents, Glasg. Math. J. 52 (2010), no. 3, 517-527. MR2679911
[37]
A. I. Nazarov, The one-dimensional character of an extremum point of the Friedrichs inequality in spherical and plane layers, Function theory and applications, J. Math. Sci. (New York) 102 (2000), no. 5, 4473-4486. MR1807067
[38]
M. Ôtani, On certain second order ordinary differential equations associated with Sobolev-Poincaré-type inequalities, Nonlinear Anal. 8 (1984), no. 11, 1255-1270. MR0764911
[39]
M. Ôtani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal. 76 (1988), no. 1, 140-159. MR0923049
[40]
S. Biagi, S. Dipierro, E. Valdinoci and E. Vecchi, A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators, Math. Eng. 5 (2023), no. 1, Paper No. 014, 25 pp. MR4391102


Home Riv.Mat.Univ.Parma