Riv. Mat. Univ. Parma, Vol. 14, No. 1, 2023

Mustapha Ait Hammou [a]

\(p(x)\)-biharmonic problem with Navier boundary conditions

Pages: 33-44
Received: 2 October 2021
Accepted in revised form: 1 June 2022
Mathematics Subject Classification: 35G30, 46E35, 47H11.
Keywords: Navier boundary conditions, variable exponent spaces, Topological degree.
Authors address:
[a]: Laboratory LAMA, Department of Mathematics, Faculty of sciences Dhar el Mahraz, Sidi Mohammed ben Abdellah university, Fez, Morocco.

Full Text (PDF)

Abstract: In this article, we study the following \(p(x)\)-biharmonic problem with Navier boundary conditions \[ \left\{\begin{array}{llcc} -\Delta_{p(x)}^2u=\lambda |u|^{p(x)-2}u+f(x,u), &x\in\Omega,&\\[6px] u=\Delta u=0, &x\in\partial\Omega,& \end{array}\right. \] where \(f\) is a Carathéodory function satisfying only a growth condition. Using the Berkovits degree theory, we establish the existence of at least one weak solution of this problem.

References
[1]
M. Ait Hammou and E. Azroul, Construction of a topological degree theory in generalized Sobolev spaces, Recent advances in intuitionistic fuzzy logic systems, Stud. Fuzziness Soft Comput., 372, Springer, Cham, 2019, 1-18. MR3888588
[2]
M. Ait Hammou and E. Azroul, Existence of weak solutions for a nonlinear parabolic equation by topological degree, Adv. Theory Nonlinear Anal. Appl. 4 (2020), no. 4, 292-298. DOI
[3]
M. Ait Hammou and E. Azroul, Existence result for a nonlinear elliptic problem by topological degree in Sobolev spaces with variable exponent, Moroccan J. of Pure and Appl. Anal. 7 (2020), no. 1, 50-65. DOI
[4]
M. Ait Hammou and B. Lahmi, Weak solutions for a quasilinear elliptic equation involving the \(p(x)-\)Laplacian, Rend. Semin. Mat. Univ. Politec. Torino 79 (2021), no. 1, 33-42. MR4257613
[5]
J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differential Equations 234 (2007), no. 1, 289-310. MR2298973
[6]
L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011. MR2790542
[7]
A. El Amrouss, F. Moradi and M. Moussaoui, Existence of solutions for fourth-order PDEs with variable exponents, Electron. J. Differential Equations 2009 (2009), no. 153, 13 pp. MR2565895
[8]
X.-L. Fan and Q.-H. Zhang, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843-1852. MR1954585
[9]
X. Fan and D. Zhao, On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\), J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. MR1866056
[10]
A. Ferrero and G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities, Nonlinear Anal. 70 (2009), no. 8, 2889-2902. MR2509377
[11]
T. C. Halsey, Electrorheological fluids, Science 258 (1992), no. 5083, 761-766. DOI
[12]
O. Kováčik and J. Rákosník, On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\), Czechoslovak Math. Jour. 41(116) (1991), no. 4, 592-618. MR1134951
[13]
T. G. Myers, Thin films with high surface tension, SIAM Rev. 40 (1998), no. 3, 441-462. MR1642807
[14]
M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Math., 1748, Springer-Verlag, Berlin, 2000. MR1810360
[15]
B.-S. Wang, G.-L. Hou and B. Ge, Existence and uniqueness of solutions for the \(p(x)-\)Laplacian equation with convection term, Mathematics, 8 (2020), no. 10, paper n. 1768. DOI
[16]
W. Wang and E. Canessa, Biharmonic pattern selection, Phys. Rev. E 47 (1993), no. 2, 1243-1248. DOI
[17]
E. Zeidler, Nonlinear functional analysis and its applications. II/B: Nonlinear monotone operators, Springer-Verlag, New York, 1990. MR1033498


Home Riv.Mat.Univ.Parma