Riv. Mat. Univ. Parma, Vol. 11, No. 2, 2020

Ognian Kassabov [a]

Characterizing a surface by invariants

Pages: 251-261
Received: 10 April 2019
Accepted in revised form: 19 November 2019
Mathematics Subject Classification (2010): 53A05.
Keywords: Surfaces, equations of Gauss and Codazzi, canonical principal parameters.
Author address:
[a]: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 8, 1113, Sofia, Bulgaria

Full Text (PDF)

Abstract: Canonical principal parameters are introduced for surfaces in \(\mathbb R^3\) without umbilical points. It is proved that in these parameters, the surface is determined (up to position in space) by a pair of invariants satisfying a partial differential equation equivalent to the Gauss equation. The principal curvatures or the Gauss and the mean curvature may be used as such a pair of invariants.

References
[1]
O. Bonnet, Mémoire sur la théorie des surfaces applicables sur une surface donnée, J. éc. Polytech. 42 (1867), 1-151. Article
[2]
R. Bryant, On surfaces with prescribed shape operator, Results Math. 40 (2001), 88-121. MR1860364
[3]
M. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, New Jersey, 1976. MR0394451
[4]
É. Cartan, Sur les couples de surfaces applicables avec conservation des courbures principales, Bull. Sc. Math. 66 (1942), 55-85. MR0009876
[5]
S. S. Chern, Deformation of surfaces preserving principal curvatures, Differential geometry and complex analysis, Springer, Berlin, 1985, 155-163. MR0780041
[6]
A. G. Colares and K. Kenmotsu, Isometric deformation of surfaces in \(R^3\) preserving the mean curvature function, Pacific J. Math. 136 (1989), 71-80. MR0971934
[7]
L. P. Eisenhart, A treatise on the differential geometry of curves and surfaces, Ginn and Co., New York, 1909. MR0115134
[8]
S. Finikoff and B. Gambier, Surfaces dont les lignes de courbure se correspondent avec égalité des rayons de courbure principaux, Ann. Sci. école Norm. Sup. (3) 50 (1933), 319-370. MR1509334
[9]
G. Ganchev and K. Kanchev, Explicit solving of the system of natural PDE's of minimal surfaces in the four-dimensional Euclidean space, C. R. Acad. Bulgare Sci. 67 (2014), 623-628. MR3242842
[10]
G. Ganchev and V. Mihova, On the invariant theory of Weingarten surfaces in Euclidean space, J. Phys. A 43 (2010), 405210, 27 pp. MR2725559
[11]
O. Kassabov, Transition to canonical principal parameters on minimal surfaces, Comput. Aided Geom. Design 31 (2014), 441-450. MR3268219
[12]
F. Lund and T. Regge, Unified approach to strings and vortices with soliton solutions, Phys. Rev. D 14 (1976), 1524-1535. MR0436816
[13]
A. Sym, Soliton surfaces and their applications (soliton geometry from spectral problems), Geometric aspects of the Einstein equations and integrable systems, Lecture Notes in Phys., 239, Springer, Berlin, 1985, 154-231. MR0828048
[14]
R. A. Tribuzy and I. V. Guadalupe, Minimal immersions of surfaces into \(4\)-dimensional space forms, Rend. Sem. Mat. Univ. Padova 73, (1985), 1-13. MR0799891
[15]
J. Weingarten, Über die Oberflächen, für welche einer der beiden Hauptkrümmungshalbmesser eine Function des anderen ist, J. Reine Angew. Math. 62, (1863), 160-173. MR1579234
[16]
J. A. Wolf, Surfaces of constant mean curvature, Proc. Amer. Math. Soc. 17, (1966), 1103-1111. MR0200879


Home Riv.Mat.Univ.Parma