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On the macroscopic/kinetic closure of balance laws

Abstract. This paper presents a review of the results which illustrate
the interplay of macroscopic (continuum) approach and kinetic theory
of gases in solving the closure problem. Continuum approach to the
closure problem is based upon entropy principle, and it is limited since
phenomenological coefficients cannot be explicitly determined. On the
other hand, kinetic theory provides closed systems of equations as ap-
proximate solutions to the Boltzmann equation, but it is mainly limited
to rarefied gases. Combined closure procedure, reviewed in this paper,
proposes a systematic matching procedure in which advantages of both
approaches are taken into account. It is illustrated by the classical ex-
amples of Navier-Stokes-Fourier system and 13 moments model, but also
with novel applications to the multi-temperature mixture of Euler fluids.
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1 - Introduction

Balance laws are the systems of partial differential equations which repre-
sent the physical laws. They are valid for all media, but they do not constitute
a closed system of equations—unknown field quantities outnumber the avail-
able equations. Consequently, certain number of quantities, usually fluxes and
source terms, should be expressed in terms of field variables (and their deriva-
tives) by means of constitutive relations. In such a way the system of balance
laws becomes closed.
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Typical example are the balance (conservation) laws of mass, momentum
and energy in continuum thermomechanics [17]. In this case, the stress tensor
and the heat flux, which are the non-convective fluxes of momentum and in-
ternal energy, respectively, are expressed in terms of velocity and temperature
gradients in classical Navier-Stokes-Fourier model. These linear constitutive
relations are compatible with an entropy inequality [12,17], but also comprise
the material properties, viscosity and thermal conductivity, which cannot be
explicitly determined within the framework of continuum approach. To esti-
mate them one has either to use the experimental evidence or, if appropriate,
to take the results of more refined theories which describe the material at a
smaller scale. An example of the latter approach are the estimates provided by
the kinetic theory of gases that are valid for rarefied gases [21].

The closure problem becomes more delicate in the case of non-equilibrium
processes described by the higher order models. A particular example of interest
for this study is rational extended thermodynamics (RET)—a continuum the-
ory that provides a systematic procedure for derivation of governing equations
in the form of balance laws [30,39,40]. It extends the list of field variables by
the fluxes (and their fluxes) and builds up the model which efficiently captures
the non-equilibrium behavior. At the same time, it preserves dissipative char-
acter of the model through its compatibility with entropy inequality. It turned
out that RET balance laws are fully compatible with Grad’s moment equations
in the kinetic theory of gases [11], although they are derived and closed in a
completely different manner. Namely, Grad’s equations are transfer equations
for the moments of approximate velocity distribution function. Nevertheless,
a full correspondence between these models may be established, and so-called
phenomenological coefficients in RET may be determined by means of kinetic
moment equations, albeit in the linear approximation of the source terms. It
has to be noted that phenomenological coefficients in the models restricted
to 13/14 moments can be related to classical transport coefficients—viscosity
and thermal conductivity—by means of appropriate asymptotic procedure, the
so-called Maxwellian iteration [18,21,39].

The closure problem in macroscopic (continuum) approach faces serious
limitations when it takes into account higher order moments, or other vari-
ables which describe the non-equilibrium state of the medium. An example for
that is a multi-temperature (MT) model of mixtures developed within RET, in
which the balance laws contain the source terms with phenomenological coef-
ficients/matrices [37]. Neither can they be determined within the macroscopic
approach, nor one can rely upon experimental evidence because it is scarce.

Intention of this paper is to present the review of results that can be re-
garded as a toolbox for macroscopic/kinetic closure of balance laws. The core
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idea is to match the macroscopic equations for continuous media with rele-
vant approximate solution of the Boltzmann equation(s). Although the idea
possesses a flavor of generality, it still does not have a general structure and
it will be presented through the sequence of examples. This will start with a
classical matching of the Navier-Stokes-Fourier model of fluid dynamics with
the Chapman-Enskog expansion in the kinetic theory. Further, the matching
of 13 moments model of RET and the corresponding Grad’s moment equations
will demonstrate the nucleus of the closure problem in higher order models.
Finally, recently obtained results [27,34] about macroscopic/kinetic closure in
mixtures will be presented.

2 - Classical results: the Navier-Stokes-Fourier model

In continuum theory, the classical governing equations consist of the con-
servation laws of mass, momentum and energy:

∂

∂t
ρ+

∂

∂xj
(ρvj) = 0,

∂

∂t
(ρvi) +

∂

∂xj
(ρvivj − tij) = 0,

∂

∂t

(
1

2
ρv2 + ρε

)
+

∂

∂xj

{(
1

2
ρv2 + ρε

)
vj − tijvi + qj

}
= 0,

(2.1)

where ρ(t,x), vi(t,x) and ε(t,x) are the fields of mass density, velocity and
specific internal energy, all regarded as functions of time t ∈ R and space
variable x ∈ R3, and tij and qi are components of the stress tensor and the heat
flux, respectively. Equations (2.1) are given in Cartesian form and summation
convention is assumed throughout the paper.

Stress tensor is usually expressed as a sum of the spherical tensor propor-
tional to thermodynamic pressure p and viscous stress σij :

(2.2) tij = −p δij + σij .

Thermodynamic pressure p and specific internal energy ε determined as func-
tions of mass density ρ and temperature T through thermal and caloric equa-
tions of state:

(2.3) p = p(ρ, T ), ε = ε(ρ, T ).

If equations of state (2.3) are given beforehand, then appropriate constitutive
relations for the viscous stress tensor σij and the heat flux qi are needed for
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the closure of equations (2.1). In the sequel attention will be restricted to the
rarefied monatomic gases, which implies that the trace of the viscous stress
tensor vanishes, σkk = 0. Denoting by σ〈ij〉 the traceless part of the viscous
stress tensor, we have:

σ〈ij〉 := σij −
1

3
σkk δij = σij .

To derive the Navier-Stokes-Fourier model of continuum we shall rely on
thermodynamic constitutive theory which requires that governing equations
should be compatible with the entropy balance law:

(2.4)
∂

∂t
(ρs) +

∂

∂xj

(
ρsvj +

qj
T

)
= Σ,

where s is the specific entropy and Σ is the entropy production rate. More
precisely, constitutive functions should be chosen in such a form that entropy
production is non-negative, Σ ≥ 0, for any thermodynamic process. Starting
from the assumption of local thermodynamic equilibrium [12], i.e. transforming
the Gibbs relation and using the governing equations (2.1), one obtains the
following form of the entropy production:

(2.5) Σ = − qj
T 2

∂T

∂xj
+ σ〈ij〉D〈ij〉 ≥ 0, Dij :=

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,

where D〈ij〉 ≡ ∂v〈i/∂xj〉 is the traceless part of the symmetrized velocity gradi-
ent tensor Dij . The simplest form of constitutive functions which is compatible
with inequality (2.5) is the linear one:

(2.6) σ〈ij〉 = 2μ
∂v〈i
∂xj〉

, qj = −κ
∂T

∂xj
,

where phenomenological coefficients μ and κ must satisfy the following inequal-
ities:

(2.7) μ ≥ 0, κ ≥ 0.

They have a physical meaning of shear viscosity and thermal conductivity,
respectively.

With inequalities (2.7) we reach the limit of the continuum approach. Phe-
nomenological coefficients μ and κ cannot be determined more precisely within
its framework. To obtain their particular values, one has to refer to experi-
mental data, or to rely on some more refined theoretical approach which may
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provide sufficiently accurate approximation. In the case of rarefied gases, ki-
netic theory fits in the latter framework and we shall pursue in that direction
in the sequel.

Kinetic description of a rarefied gas relies on the velocity distribution func-
tion f(t,x, ξ) which determines the number of particles in the elementary phase
space volume (dx, dξ) around the point (x, ξ), where ξ ∈ R3 is the particle ve-
locity. Its evolution is determined by the Boltzmann equation:

(2.8)
∂f

∂t
+ ξi

∂f

∂xi
= Q(f, f)(ξ),

where Q(f, f) is the collision operator. Since particle velocity ξ is the only mi-
croscopic variable, Boltzmann equation (2.8) describes behavior of monatomic
gases. Equilibrium state of the gas fE is the one which satisfies the condition:

(2.9) Q(fE , fE) = 0.

It is determined by the Maxwellian distribution:

(2.10) fE =
ρ

m

(
m

2πkBT

)3/2

exp

{
− |ξ − v|2
2(kB/m)T

}
,

where mass density ρ, velocity vi and temperature T are defined as moments
of the distribution function:

ρ =

∫
R3

mf dξ, ρvi =

∫
R3

mξif dξ,

3

2
ρ
kB
m

T =

∫
R3

1

2
m|C|2f dξ ≡ ρε,

(2.11)

where Ci = ξi − vi is the peculiar velocity. Definitions (2.11) are universal—
they are valid for any distribution function f , not only fE . Also, field variables
ρ, vi and T may be the functions of (t,x). In that case, fE is called the local
equilibrium distribution (local Maxwellian), and it will be denoted as fM in the
sequel. It satisfies the equilibrium condition (2.9), Q(fM , fM ) = 0, but it does
not satisfy the Boltzmann equation (2.8) for arbitrary field variables.

Due to existence of the collision invariants, functions ψ(ξ) for which the
weak form of the collision operator vanishes,

∫
R3 ψ(ξ)Q(f, f)dξ = 0, conser-

vation laws (2.1) may be obtained from the Boltzmann equation as transfer
equations of moments:

(2.12)
∂

∂t

∫
R3

ψf dξ +
∂

∂xi

∫
R3

ξiψf dξ = 0.
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One may define the pressure tensor pij = −tij (the negative stress tensor) and
the heat flux qi as follows:

(2.13) pij =

∫
R3

mCiCjf dC, qi =

∫
R3

1

2
m|C|2Cif dC.

However, like in the macroscopic case, the system is not closed. The strategy
which leads to closure is based upon using the approximate velocity distribution
function. This must take into account that pressure tensor and heat flux are
non-equilibrium quantities—when evaluated in local equilibrium, for f = fM ,
they reduce to:

(2.14) pij =

∫
R3

mCiCjfM dC = p δij , qi =

∫
R3

1

2
m|C|2CifM dC = 0,

where p is the thermodynamic pressure.

Approximate form of the velocity distribution function is found by the cele-
brated Chapman-Enskog method [9,21]. It is essentially an asymptotic method
applied to a scaled Boltzmann equation:

(2.15)
∂f ε

∂t
+ ξi

∂f ε

∂xi
=

1

ε
Q(f ε, f ε),

where the small parameter ε = Kn is the Knudsen number—the ratio of the
molecular mean free path and the macroscopic reference length. When ε � 1,
we are in the so-called hydrodynamic limit, and we seek for an asymptotic
solution in the form:

(2.16) f ε = f (0) + εf (1) + ε2f (2) + · · · =
∞∑
k=0

εkf (k).

Peculiarity of the Chapman-Enskog method is that, apart from the Boltzmann
equation and velocity distribution function, it also expands the macroscopic
equations (2.1). As an outcome, zeroth approximation coincides with the local
Maxwellian, f (0) = fM , whereas first approximation reads:

(2.17) f (1) = fM

{
−A

T
Ci

∂T

∂xi
− m

kBT
BCiCj

∂v〈i
∂xj〉

}
.

This approximate solution implies appropriate approximation of non-convective
fluxes:

p〈ij〉 ≈ p
(0)
〈ij〉 + εp

(1)
〈ij〉, qi ≈ q

(0)
i + εq

(1)
i ,
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where p
(0)
〈ij〉 = p δij and q

(0)
i = 0 recover the local equilibrium values (2.14).

It is remarkable that first approximation recovers the Navier-Stokes-Fourier
constitutive relations (2.6):

(2.18) p
(1)
〈ij〉 = −2μ

∂v〈i
∂xj〉

, q
(1)
i = −κ

∂T

∂xi
.

Nevertheless, phenomenological coefficients are now computed from the colli-
sion model:

μ =
5

16

1

Ω(2,2)

√
mkBT

π
, κ =

75

64

kB
m

1

Ω(2,2)

√
mkBT

π

where Ω(2,2) is an integral which depends on the collision cross section. In such
a way, shear viscosity μ and thermal conductivity κ are explicitly determined
once the collision model (cross section) is chosen.

The results presented here are classical and may be easily found in the
literature. Nevertheless, they inherit some features that will be important in
further analysis:

(i) macroscopic (continuum) model is closed through compatibility with an
entropy inequality;

(ii) solution of the kinetic model (Boltzmann equation) is sought in approxi-
mate form;

(iii) phenomenological coefficients are determined by matching of macroscopic
and kinetic closures.

This pattern will be reproduced in the analysis in two forthcoming Sections.

3 - Extended thermodynamics and Grad’s 13 moments model

Classical Navier-Stokes-Fourier model inherits a paradox of the infinite
speed of pulse propagation [30]. This is a consequence of parabolic character
of the governing system of partial differential equations. Removal of this para-
dox appeared independently in two different frameworks—rational extended
thermodynamics and kinetic theory of gases—through the system of moment
equations.

Common feature of the moment equations in either approach is that they
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form a hierarchy of balance laws [7]:

∂

∂t
F +

∂

∂xk
Fk = 0,

∂

∂t
Fi1 +

∂

∂xk
Fi1k = 0,

∂

∂t
Fi1i2 +

∂

∂xk
Fi1i2k = Pi1i2 ,

...

∂

∂t
Fi1···in +

∂

∂xk
Fi1···ink = Pi1···in ,

...

(3.1)

In (3.1) Fi1···in denotes the tensor of order n; F , Fi1 , Fi1i2 ,. . . denote the densi-
ties, while Fk, Fi1k, Fi1i2k,. . . are the corresponding fluxes; Pi1i2 ,. . . denote the
source (production) terms; indices i1, . . . , in, k ∈ {1, 2, 3}. The moment system
(3.1) has nested structure—fluxes of order m become densities of order m+ 1.
Finally, the system of moment equations could be infinite.

Since the infinite system of balance laws like (3.1) is intractable, it is usually
truncated at certain tensorial order, say n, which generates the closure prob-
lem. It is assumed, both in extended thermodynamics and kinetic theory, that
unknown fluxes and source terms should be expressed as functions of densities,
but not of their derivatives. If this is fulfilled, the finite system of moment
equations will become a quasi-linear hyperbolic system of balance laws, at least
in some region of the state space. In such a way, the speed of propagation of
the pulses will be finite in that region. Main difference between macroscopic
and kinetic approach lies in the closure method.

In macroscopic approach, developed in the framework of rational extended
thermodynamics, closure procedure relies on two fundamental principles [30]:
(i) invariance of the governing equations with respect to Galilean transfor-
mations, and (ii) entropy principle, i.e. compatibility with entropy balance
law. The former restricts the velocity dependence of fluxes and production
terms [36]. The latter is achieved through application of the method of multi-
pliers [23]. Apart from ensuring compatibility with entropy balance laws, mul-
tipliers play the role of the so-called main field—a privileged set of field variables
for which the system balance laws transform into symmetric form [7,38].

In extended thermodynamics, a hyperbolic system of 13 moments equations
for a monatomic, viscous, heat-conducting gas consists of conservation laws of
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mass, momentum and energy:

∂ρ

∂t
+

∂

∂xj
(ρvj) = 0,

∂

∂t
(ρvi) +

∂

∂xj

(
ρvjvi + p δij − σ〈ij〉

)
= 0,

∂

∂t

(
1

2
ρv2 + ρε

)
+

∂

∂xj

{(
1

2
ρv2 + ρε+ p

)
vj − σ〈ij〉vi + qj

}
= 0,

(3.2)

and balance laws for momentum and energy flux:

∂

∂t

{
ρ

(
vivj −

1

3
v2δij

)
− σ〈ij〉

}
+

∂

∂xk
F〈ij〉k = PM

〈ij〉,

∂

∂t

{(
1

2
ρv2 +

5

2
p

)
vi + qi − σijvj

}
+

∂

∂xk
Fppik = PM

ppi.

(3.3)

Galilean invariance [36] yields the following relation between the source terms:

(3.4) PM
〈ij〉 = P̂M

〈ij〉, PM
ppi = P̂M

〈ij〉vj + P̂M
ppi,

where the hats denote velocity independent terms. On the other hand, the
entropy balance law reads:

(3.5)
∂

∂t
(ρs) +

∂

∂xj
(ρsvj + ψj) = Σ,

and the non-convective entropy flux ψj is regarded as constitutive quantity [28].
Compatibility of the balance laws (3.2)-(3.3) with entropy balance law (3.5),
ensured by the application of Liu’s method of multipliers [7,23,38], yields the
following structure of the entropy production:

(3.6) Σ =
1

2pT
σ〈ij〉P̂M

〈ij〉 −
ρ

5p2T
qiP̂

M
ppi ≥ 0.

The simplest way to satisfy the entropy inequality (3.6) for any thermodynamic
process is to choose the macroscopic source terms as follows:

(3.7) P̂M
〈ij〉 =

1

τσ
σ〈ij〉, P̂M

ppi = − 1

τq
qi,

where:

(3.8) τσ(ρ, T ) > 0, τq(ρ, T ) > 0,
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are the relaxation times and they play the role of phenomenological coefficients.
Like in the case of Navier-Stokes-Fourier model where continuum approach led
to (2.7), we cannot get deeper insight into the functional form of relaxation
times (3.8). Therefore, we shall turn to the kinetic approach.

Equations in the hierarchy of moment equations (3.1) can be written in
general form:

(3.9)
∂

∂t
Fi1···in +

∂

∂xk
Fi1···ink = PK

i1···in

where PK = 0, PK
i = 0 and PK

ii = 0 due to collision invariants. Densities, fluxes
and source terms in (3.9) are defined as moments of the velocity distribution
function in the following way:

Fi1···in =

∫
R3

mξi1 · · · ξinf dξ,

Fi1···ink =

∫
R3

mξkξi1 · · · ξinf dξ,

PK
i1···in =

∫
R3

mξi1 · · · ξinQ(f, f) dξ.

(3.10)

The moment method proposed by Grad is based upon approximation of the
velocity distribution function using Hermite polynomials. The same approxi-
mation, with even more intricate relation to RET, may be obtained through
application of the maximum entropy principle [8, 14, 19, 22]. In the end, 13
moments approximation of the velocity distribution function reads [21]:

(3.11) f13 = fM

{
1 +

2

ρ

( m

2kT

)2 [
p〈ij〉CiCj +

4

5
qiCi

(
m

2kT
|C|2 − 5

2

)]}
,

where fM is the local Maxwellian. Moment equations derived using (3.11) are
equivalent to moment equations of RET—conservation laws have the same form
as (3.2), with σ〈ij〉 replaced with −p〈ij〉, and balance laws for the momentum
and the energy flux read:

∂

∂t
(ρvivj + pij) +

∂

∂xk
{ρvivjvk + vipjk + vjpki + vkpij + pijk} = PK

ij ,

∂

∂t

{(
1

2
ρ|v|2 + ρε

)
vi + pijvj + qi

}
+

∂

∂xj

{(
1

2
ρ|v|2 + ρε

)
vivj

+vivkpjk + vjvkpik +
1

2
ρ|v|2pij + qivj + qjvi + pijkvk + qij

}
= QK

i .

(3.12)
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Non-convective fluxes are defined as:

pijk =

∫
R3

mCiCjCkf dC, qij =

∫
R3

1

2
m|C|2CiCjf dC

It is a matter of simple computation and use of the relation 2ρε = 3p to prove
the equivalence of (3.12) and (3.3).

Kinetic source terms may be computed in nonlinear form [21] using (3.11).
However, they are more frequently used in the form which is linear with respect
to non-equilibrium field variables, pressure tensor and heat flux:

PK
ij =

∫
R3

mξiξjQ(f13, f13) dξ = −1

τ
p〈ij〉,

QK
i =

1

2

∫
R3

m|ξ|2ξiQ(f13, f13) dξ = −1

τ
p〈ij〉vj −

2

3τ
qi,

(3.13)

with relaxation time explicitly determined [21]:

(3.14) τ =
5m

16ρ

( m

πkT

)1/2 1

Ω(2,2)
.

Simple comparison of (3.7) and (3.13) leads to the following relation:

(3.15) τσ = τ, τq =
3

2
τ.

In such a way the 13 moments system is completely closed. As a final comment
note that in derivation of the source terms (3.13) and relaxation time (3.14) no
particular assumption about the collision cross section was used, keeping the
results as general as possible like in Section 2.

Closure of the moment system (3.2)-(3.3), i.e. computation of the phe-
nomenological coefficients τσ and τq, is facilitated by the approximate solution
(3.11) of the Boltzmann equation. At first sight it may seem that everything
is done within the kinetic framework, and that macroscopic approach is redun-
dant. This impression is a bit misleading. The macroscopic source terms (3.7)
were determined from (3.6) as the simplest way to satisfy the entropy inequal-
ity for all thermodynamic processes. The kinetic source terms were computed
from a weak form of the collision operator, for approximate velocity distribution
function, and obtained in the form (3.13) after linearization. This difference,
and the procedure used to match the results of two approaches, will pave the
way for further applications of the combined macroscopic/kinetic closure.
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4 - Mixture of Euler rarefied gases

Mixtures are substances consisted of more than one identifiable constituent.
Our attention will be restricted to the mixture of rarefied gases. When the
mixture undergoes a non-equilibrium process, extended set of field variables is
needed to properly describe the state of the system. In that case both RET
and kinetic theory provide appropriate tools for such description, each in its
own way.

Within the framework of RET a multi-temperature model is developed to
capture non-equilibrium behavior of the mixture [37]. It is rooted in the rational
thermodynamics of mixtures [30,39,40,43] and multi-velocity mixture model
already established in RET [29]. If the mixture consists of n constituents, the
main premise is that the state of the mixture is determined by (ρα,vα, Tα)

n
α=1—

mass densities, velocities and temperatures of the species. Governing equations
consist of mass, momentum and energy balances of the species [37]:

∂ρα
∂t

+ div(ραvα) = τMα ,

∂

∂t
(ραvα) + div(ραvα ⊗ vα − tα) = mM

α ,

∂

∂t

(
1

2
ραv

2
α + ραεα

)
+ div

{(
1

2
ραv

2
α + ραεα

)
vα − tαvα + qα

}
= eMα ,

(4.1)

where τMα , mM
α and eMα are the source terms which describe the interaction

among the species. They must obey the axiom of conservation [43]:

(4.2)

n∑
α=1

τMα = 0,

n∑
α=1

mM
α = 0,

n∑
α=1

eMα = 0,

since the conservation laws for the mixture must be recovered. In the sequel
it will be assumed that all the constituents are Euler rarefied gases in which
viscous stresses and heat conduction are negligible:

(4.3) tα = −pαI, qα = 0,

and that partial pressures pα and partial specific energies εα obey thermal and
caloric equations of state of ideal gases:

(4.4) pα = ρα
kB
mα

Tα, εα =
kB

mα(γα − 1)
Tα.



[13] on the macroscopic/kinetic closure of balance laws 235

It will also be assumed that there are no chemical reactions among the species,
which amounts to τMα = 0, α = 1, . . . , n. For clarity of further analysis defini-
tions of mixture density ρ and velocity v will be recalled:

(4.5) ρ =

n∑
α=1

ρα, ρv =

n∑
α=1

ραvα.

Using (4.5)2 the diffusion velocities uα are defined as follows:

(4.6) uα := vα − v.

The essence of a closure problem for the multi-temperature model (4.1) is
to determine the structure of source terms mα and eα. To that end one must
first impose the restriction which implies Galilean invariance of the governing
equations [36,37]:

(4.7) mM
b = m̂M

b , eMb = êMb + m̂M
b · v, b = 1, . . . , n− 1,

where m̂b and êb are velocity independent parts of the source terms. Fur-
thermore, application of the entropy principle with the aid of Liu’s method of
multipliers [7,23,38] leads to the following form of entropy production [37]:

(4.8) Σ = −
n−1∑
b=1

(
ub

Tb
− un

Tn

)
· m̂M

b −
n−1∑
b=1

(
− 1

Tb
+

1

Tn

)
êMb ≥ 0.

Entropy inequality (4.8) may be satisfied for any thermodynamic process if the
source terms have the form [37,41]:

(4.9) m̂M
b = −

n−1∑
c=1

ψbc(w)

(
uc

Tc
− un

Tn

)
, êMb = −

n−1∑
c=1

θbc(w)

(
− 1

Tc
+

1

Tn

)
.

In (4.9) ψbc(w) and θbc(w) are positive semi-definite matrix functions of ob-
jective quantities w = (ρα,uα, Tα)

n
α=1. They have a role of phenomenological

coefficients.
At this stage we are facing the most delicate part of the closure problem.

In Navier-Stokes-Fourier model and in 13 moments model matching of macro-
scopic and kinetic phenomenological coefficients was a matter of choice. They
can be determined from the experimental evidence as well. However, in the case
of multi-temperature mixture experimental data do not exist, or may be found
for very specific processes only. Therefore, there is no other way to estimate phe-
nomenological coefficients than to match them with kinetic multi-temperature
model.



236 srboljub simić [14]

The kinetic model of mixtures that will be presented is the one for poly-
atomic gases to which much attention was devoted recently [13]. In that model,
the state of each species is described by its own velocity distribution function
fα(t,x, ξ, I), where I ∈ R+ is the lumped parameter bringing the information
about all internal degrees of freedom of the molecule. The dynamics is described
by the system of Boltzmann equations:

(4.10)
∂fα
∂t

+ ξi
∂fα
∂xi

=

n∑
β=1

Qαβ(fα, fβ)(ξ, I),

in which Qαβ(fα, fβ) are the collision operators of non-reactive collisions. Den-
sities are defined as moments of the velocity distribution functions in the fol-
lowing way:

ρα =

∫
R3×R+

mαfα ϕα(I)dI dξ,

ραvα =

∫
R3×R+

mαξfα ϕα(I)dI dξ,

1

2
ραv

2
α + ραεα =

∫
R3×R+

(
1

2
mα|ξ|2 + I

)
fα ϕα(I)dI dξ,

(4.11)

where ϕα(I) dI is the measure of internal degrees of freedom. Similarly, the
source terms are determined as:

mK
α =

∑
β �=α

∫
R3×R+

mαξQαβ(fα, fβ)ϕα(I)dI dξ,

eKα =
∑
β �=α

∫
R3×R+

(
1

2
mα|ξ|2 + I

)
Qαβ(fα, fβ)ϕα(I)dI dξ.

(4.12)

To recover the system of balance laws (4.1) for the multi-temperature mixture
of Euler gases one has to approximate the velocity distribution functions fα
with local Maxwellians with different species velocities vα and different species
temperatures Tα [4]:

(4.13) fαM =
ρα

mαζα(Tα)

(
mα

2πkBTα

)3/2

e
− 1

kBTα
(mα

2
|ξ−vα|2+I)

.

Nevertheless, the source terms mK
α and eKα have a functional form much more

complicated than (4.9)—they are expressed in terms of Kummer confluent hy-
pergeometric functions 1F̃1(a, b, z) [34]. To illustrate, the source terms in the
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momentum balance laws read:

(4.14) mα = −
∑
β �=α

Ωαβmαβ ,

where

Ωαβ = K∗Kαβ
nαnβk

−(dα+dβ)
B

Γ[dα + 1]Γ[dβ + 1]

8πμαβ

sαβ + 5
Γ

[
sαβ + 3

2

]
,

and

mαβ = (uα − uβ)T
−dα
α T

−dβ
β

×
(
2kBTα

mα
+

2kBTβ

mβ

)sαβ/2

e
−
(

2kBTα
mα

+
2kBTβ
mβ

)−1

|uα−uβ |2

× 1F̃1

(
sαβ + 5

2
,
5

2
,

(
2kBTα

mα
+

2kBTβ

mβ

)−1

|uα − uβ |2
)
,

with nα being the number densities, μαβ the reduced masses, dα parameters
related to the ratios of specific heats; sαβ is the parameter from the cross
section. Constituent-related constant Kαβ has the form

Kαβ =
m2

0

ρ20
(kBT0)

dα+dβ

(
kB
μαβ

T0

)− sαβ
2

,

where subscript 0 indicates the values of average quantities (mass, density and
temperature) in a reference state, while K∗ is a common factor securing the
proper dimension (see [27,34] for details).

It is inevitable that matching of the source terms in RET and kinetic
model is not straightforward. The way out of the problem lies in the fact
that both models describe the same physical object and that their predictions
should match at least in some region of the state space of macroscopic vari-
ables/moments. It is reasonable to expect that matching region lies in some
neighborhood of the mixture local equilibrium, i.e. close to the state in which
all species have the same velocity v and the same temperature T . To that end
the following strategy is proposed [27]:

(1) Linearize the RET source terms (4.9) in the neighborhood of mixture
local equilibrium w0 = (ρα,0, T )

n
α=1, where w = (ρα,uα, Tα)

n
α=1:

m̂M
b ≈ −

n−1∑
c=1

ψbc(w
0)

(
uc − un

T

)
,

êMb ≈ −
n−1∑
c=1

θbc(w
0)

(
Tc − Tn

T 2

)
.

(4.15)
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(2) Linearize the kinetic source terms (4.12) in the neighborhood of the same
state w0. The resulting functional form will be the same as (4.15), al-
beit with explicitly computed phenomenological coefficients ψK

bc (w
0) and

θKbc(w
0).

(3) Plug the kinetic phenomenological coefficients, computed in step (2), back
into macroscopic source terms (4.9) to obtain:

m̂M
b = −

n−1∑
c=1

ψK
bc (w

0)

(
uc

Tc
− un

Tn

)
,

êMb = −
n−1∑
c=1

θKbc(w
0)

(
− 1

Tc
+

1

Tn

)
.

(4.16)

This is the final form of the source terms obtained by means of macro-
scopic/kinetic closure.

Explicit form of the kinetic phenomenological coefficients is [27]:

(4.17)

ψbc(w
0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 2

3
T μbcK

ψ
bc, b �= c,

2

3
T

n∑
�=1
��=b

μb�K
ψ
b�, b = c,

θbc(w
0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− kBT

2Kθ
bc, b �= c,

kBT
2

n∑
�=1
��=b

Kθ
b�, b = c,

where

Kψ
αβ = K∗Kαβ κ

ψ
αβ

ρα
mα

ρβ
mβ

μ
− sαβ

2
αβ (kBT )

−(dα+dβ)+
sαβ
2 , Kθ

αβ = κθαβK
ψ
αβ ,

and

κψαβ =
2

sαβ
2

+4Γ
[
sαβ+3

2

]
sαβ + 5

√
π

Γ [dα + 1] Γ [dβ + 1]
,

κθαβ =
2 (sαβ + 5)

sαβ + 7

(
1

sαβ + 3
+

μαβ

mα +mβ

)
.

A reasonable question may be posed again, like in the previous Section:
Why do we need macroscopic RET model when complete closure comes from
the kinetic approach? The reason for combined macroscopic/kinetic closure is
twofold. First, kinetic phenomenological coefficients, ψK

bc (w
0) and θKbc(w

0), are



[17] on the macroscopic/kinetic closure of balance laws 239

good first approximation of the macroscopic ones, ψbc(w) and θbc(w), respec-
tively. Second, macroscopic RET source terms are nonlinear, whereas kinetic
source terms with phenomenological coefficients are linearized. Nonlinearity of
the source terms still may provide better insight into non-equilibrium processes
than the linear ones.

Finally, there is a question of advantage of the macroscopic model with
respect to the kinetic (mesoscopic) one. Macroscopic models presented in this
study were closed by means of matching with some of the approximate solution
of the Boltzmann equation. Although there are breakthroughs in numerical
procedures for the Boltzmann equation [10,20,31,32], numerical solution of the
system of partial differential equations still can be regarded as more accessible
than its kinetic counterpart.

5 - Conclusions and outlook

This paper presents a short review of the recent results focused on modelling
non-equilibrium processes in rarefied gases and their mixtures. The emphasis
was on similarity of macroscopic and kinetic models under certain reasonable
physical assumptions, and consistent matching of dissipative mechanisms which
yields combined macroscopic/kinetic closure. First, it was recalled the classical
result which relates Navier-Stokes-Fourier continuum model to a hydrodynamic
limit of the Boltzmann equation and asymptotic solution obtained by means
of Chapman-Enskog method. Second, it was presented the relation between
13 moments model derived within rational extended thermodynamics, and the
corresponding Grad’s model—kinetic model yields explicit form of relaxation
times of the source terms in linearized form. Finally, recent results on macro-
scopic/kinetic closure in the mixture of Euler fluids were presented. They re-
vealed the method of matching the source terms which is generally applicable.
Although it is based upon linearization around local equilibrium, kinetic phe-
nomenological coefficients are used in the nonlinear macroscopic source terms,
thus enhancing the validity of the kinetic model.

Further steps in application of the macroscopic/kinetic closure are already
made. In a recent study [1] a general procedure for extension of rational ther-
modynamics of mixtures to higher order moments is developed. It was applied
in details to the mixture of gases with dynamic pressure [35], and the macro-
scopic/kinetic closure procedure was applied to determine the phenomenolog-
ical coefficients. It was also shown that in such a mixture cross-effects must
be taken into account. Also, in [27] closed system of equations for ternary
mixture was tested in the shock structure problem. Convincing qualitative
results of the test problems reassured that macroscopic/kinetic closure yields
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physically reliable model. In fact, the shock structure problem is a bench-
mark problem for testing the capability of the model of non-equilibrium pro-
cesses [2,5,6,24,25,26,33,42]. Therefore, it is natural to apply the proposed
closure procedure to mixtures with higher order moments and test the validity
of the model through the shock structure problem.

Promising results obtained in the higher order models strengthen the belief
that macroscopic/kinetic closure procedure can be established as a framework
for systematic development of macroscopic non-equilibrium models. Let us
support this statement with more arguments. Even though kinetic approach
describes the system at a finer scale, its behavior is observed through macro-
scopic variables, which are the moments of the distribution function. On the
other hand, macroscopic models inherit the information about physical mech-
anisms that relate macroscopic observables. Developing a macroscopic model
compatible with entropy inequality, and then computing the phenomenological
coefficients from the approximate form of source terms seems to be a feasible
strategy. Moreover, this strategy may not be limited to rarefied gases. Recent
results on kinetic modelling of dense gases and phase transition [3,15,16] in
conjunction with appropriate macroscopic model open the possibility to apply
the macroscopic/kinetic closure procedure to other models of fluids.

Ac k n ow l e d gm e n t s. This paper is written in memory of Professor
Giampiero Spiga, a real gentleman of mathematics who virtuously shared his
passion for kinetic theory and diligently raised younger generations of scientists.
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