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The only solitary wave that matters: the sech2-type

Abstract. In this note we show that on introducing an appropriate
point transformation, any solitary wave solution of a 1+1 partial dif-
ferential equation (PDE) in a single unknown is equivalent to the sech2

soliton of the Korteweg-de Vries (KdV) equation.

Keywords. Solitary waves, exact solutions, qualitative analysis à la
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1 - Introduction

Solitary waves are a special and very important class of solutions of some
partial differential equations (PDEs). From a physical point of view, they are
originated by the cancellation of the nonlinearities due to dispersive and/or
dissipative effects. From a mathematical perspective, they are non trivial solu-
tions in a fixed coordinate frame that we may choose in view of the invariance
of the PDE with respect to translations of the independent variables.

One of the most celebrated solitary waves is the soliton of the KdV equation

(1.1) ut + uux + uxxx = 0.

As it is well known, this equation includes nonlinear terms due to transport phe-
nomena and dispersion. To find a solitary wave solution of (1.1), we introduce
the ansatz

(1.2) u(x, t) = f(ξ), ξ = x− ct,
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with c being a positive parameter and f such that

(1.3) lim
ξ→±∞

dnf

dξn
= 0 for all n ∈ N0,

into (1.1) and reduce it to the ordinary differential equation (ODE)

(1.4) −cf ′ + ff ′ + f ′′′ = 0,

where the prime denotes differentiation with respect to ξ. Integrating once
(1.4) and taking into account the conditions at infinity (1.3) lead to the ODE

(1.5) f ′′ = cf − f2

2
.

Next, by multiplying both sides of (1.5) by f ′, integrating and, again, taking
into account (1.3) we obtain the energy integral

(1.6) f ′2 = f2

(
c− f

3

)
.

Finally, limiting our search to bright solitary waves, i.e. to solutions in the form
(1.2) with f positive, from (1.6) we deduce that the amplitude of the solitary
wave is equal to 3c and

(1.7) f ′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−f

√
c− f

3
if ξ ≥ 0,

f

√
c− f

3
if ξ < 0.

Integrating (1.7) yields the well-known soliton solution

(1.8) f(ξ) = 3c sech2
[√

c

2
(ξ − ξ0)

]
.

The integration constant ξ0 in (1.8) gives the location at which the wave form
attains its maximum and does not affect the shape of the solitary wave. Such
an integration constant is then unessential and, for simplicity, it can be set
equal to zero.

The method illustrated above to determine the bright solitary wave (1.8) of
the KdV equation can be used also for many other PDEs of interest in physics
and mechanics such as the generalised KdV, Gardner, Boussinesq and improved
Boussinesq equations as well as some classes of second order semi-linear wave
equations. In all these cases, on introducing the ansatz (1.2) and the conditions
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at infinity (1.3), and by following similar arguments as for the KdV equation
one arrives at the the second order autonomous equation

(1.9) f ′′ = F (f),

which admits the first integral

(1.10) f ′2 = V (f),

where V is twice the antiderivative of F that vanishes at f = 0. An analysis à
la Weierstrass of (1.10) reveals that a bright solitary wave is admissible if and
only if the potential V admits a positive zero (say f�) with multiplicity less
than two, f = 0 is a zero with multiplicity greater than or equal to two, and is
strictly positive in ]0, f�[. In other words, V is in the form

(1.11) V (f) = V(f)fm(f� − f)p

with m ≥ 2, 0 < p < 2 and V(f) > 0 for all f ∈]0, f�[. For illustration, the
potential in the energy integral (1.6) of the KdV equation is in the form (1.11)
with m = 2, p = 1, f� = 3c and V(f) = 1/3. Equation (1.10) can be integrated
by quadrature. Only in particular cases (such as for the KdV equation) (1.10)
can be integrated analytically.

Due its simplicity, equation (1.6) can be regarded as an archetype for deter-
mining bright solitary wave solutions. It is then natural to investigate whether
a bright solitary wave of a general PDE which, after introducing the traveling
wave ansatz (1.2), reduces to (1.9) with V as in (1.11) can be obtained via a
point transformation of the soliton (1.8) of the KdV equation. This represent
the main goal of the present manuscript.

It is well known that the KdV equation may be obtained in the weakly non-
linear asymptotic limit from a very large class of nonlinear evolution equations,
and, in view of this, it is considered a universal nonlinear evolution PDE [2].
Here, by focusing on only a special class of solutions, the bright solitary waves,
we extend exactly (and not asymptotically) such a universality to other types
of nonlinear evolution PDEs.

This short note is dedicated to the memory of a profound and insightful
scholar who was also a great gentleman and, above all, a sincere and gentle
friend: Giampiero Spiga.

2 - An equivalence transformation

The energy integral (1.6) plays a fundamental role in determining the soliton
of the KdV equation. In order to determine the class of energy integrals that
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admit bright solitary wave solutions and can be determined via an equivalence
transformation from (1.6), we introduce the change of variables

(2.1) ξ = φ(s, g), f = ψ(s, g), with φsψg − φgψs �= 0.

In the new variables s and g = g(s) defined by (2.1), equation (1.6) takes the
form [

ψ2
g − ψ2

(
c− ψ

3

)
φ2
g

](
dg

ds

)2

+ 2

[
ψsψg − ψ2

(
c− ψ

3

)
φsφg

]
dg

ds
(2.2)

+

[
ψ2
s − ψ2

(
c− ψ

3

)
φ2
s

]
= 0,

which represents an energy integral providing that

(2.3a) ψsψg − ψ2

(
c− ψ

3

)
φsφg = 0

and

(2.3b) V (g) = −
ψ2
s(s, g)− ψ2(s, g)

[
c− ψ(s, g)

3

]
φ2
s(s, g)

ψ2
g(s, g)− ψ2(s, g)

[
c− ψ(s, g)

3

]
φ2
g(s, g)

.

A special solution of the nonlinear equations (2.3) is given by

(2.4) ξ = φ(s, g) = s, f = ψ(s, g) = Ψ(g),

with Ψg �= 0, in which case (2.2) reduces to

(2.5) g′2 =
Ψ2(g)

Ψ2
g(g)

[
c− Ψ(g)

3

]
= V (g).

In view of the discussion in the previous section, equation (2.5) admits
bright solitary wave solutions if and only if Ψ is a monotonically increasing
function such that

(2.6) lim
g→0+

Ψ(g) = 0.

Indeed, if this is the case, the potential V on the right-hand side of (2.5) admits
a simple zero at g = g� = Ψ−1(3c), a zero with multiplicity greater than or
equal to two at g = 0, and is strictly positive in the interval ]0, g�[. In other
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words, the potential is in the form (1.11), with m ≥ 2 and p = 1, which implies
that the necessary and sufficient conditions for the existence of a bright solitary
wave solution are satisfied.

We may then conclude that, given an arbitrary function Ψ that satisfies
(2.6) and is such that Ψg > 0, one can map the energy integral (1.6) of the
KdV equation into the first integral (2.5) which admits a bright solitary wave
solution. In particular, since Ψ is fixed, the potential V that allows the existence
of this particular traveling wave is determined by Ψ and its first derivative
according to the expression in the right-hand side of (2.5).

Vice versa, given a potential V (g) = V(g)g2(g� − g), with V(g) > 0 for all
g ∈]0, g�[, one can determine the map f = Ψ(g) which defines the equivalence
transformation (2.4). More precisely, by requiring that Ψ(g�) = 3c we find that
the equivalence transformation is given by

(2.7) f = Ψ(g) = 3c sech2

[√
c

2

∫ g�

g

dυ√
V (υ)

]
.

From the inverse Ψ−1 of this transformation and the soliton (1.8) of the KdV
equation, the bright solitary waves deducible from (2.5) is found to be

(2.8) g(ξ) = Ψ−1

(
3c sech2

(√
c

2
ξ

))
.

3 - Some examples

In this section we report some examples of equivalence transformations
thanks to which one can easily determine the bright solitary waves of some
nonlinear evolution equations of particular interest in mechanics.

3.1 - The generalised Korteweg-de Vries equation

The generalised Kortewev-de Vries equation is given by [8]

(3.1) ut + ukux + uxxx = 0,

with k being a positive parameter. In looking for bright solitary waves of (3.1),
one arrives at the energy integral

(3.2) g′2 = g2
[
c− 2gk

(k + 1)(k + 2)

]
,
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which, in view of (2.7), can be deduced from the energy integral (1.6) of the
classical KdV equation by means of the transformation

(3.3) f = Ψ(g) = 3c sech2

[
1

k
arccosh

√
c(k + 1)(k + 2)

2gk

]
.

Next, by inverting (3.3) one obtains the bright solitary wave solution of the
generalised KdV equation

(3.4) g(ξ) =

[
c(k + 1)(k + 2)

2
sech2

(
k
√
c

2
ξ

)]1
k
.

3.2 - Shear strain waves in nonlinear dispersive solids

The dimensionless equation governing the nonlinear waves in an incompress-
ible hyperelastic dispersive material reads [3]

(3.5) utt = [(α2
T + α2

nlu
2)u]xx + ν2uttxx

where αT , αnl and ν are positive constants. It is easy to prove that the energy
integral associated with (3.5) is given by

(3.6) g′2 =
g2

ν2c2

(
c2 − α2

T − α2
nl

2
g2
)
,

which, on using (2.7), can be deduced from (1.6) by means of the transformation

(3.7) f = 3c sech2

⎡⎣ νc
√
c

2
√

c2 − α2
T

cosh

⎛⎝
√

2(c2 − α2
T )

αnl
g

⎞⎠⎤⎦ .

From the inverse of this transformation and the soliton of the KdV equation
the bright solitary wave solution of (3.6) is found to be

(3.8) g(ξ) =

√
2(c2 − α2

T )

αnl
sech

⎛⎝
√
c2 − α2

T

νc
ξ

⎞⎠ .

3.3 - Semilinear Klein-Gordon equations

The propagation of transverse waves in an incompressible hyperelastic solid
supported by an elastic foundation is given by the semi-linear Klein-Gordon
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equation [6]

(3.9) utt − c2Tuxx + γ(u2)u = 0,

where cT is a positive constant and γ is the restored force corresponding to the
substrate potential Γ(u2)/2. The energy integral associated with (3.9) is given
by

(3.10) g′2 =
Γ(g2)

c2T − c2
.

In what follows we assume that c < cT , and the potential Ψ is polynomial in g
and of the form

(3.11) Γ(g) = a0g
2 + a1g

3 + a2g
4,

where a0, a1 and a2 are constants. We now consider two cases of particular
interest.

3.3.1 - Algebraic solitary wave

If a0 = 0, a1 > 0 and a2 < 0 in (3.11), then, with the aid of (2.7), one
deduces that (3.10) can be obtained from (1.6) via the transformation

(3.12) f = 3c sech2

⎡⎣
√

c(c2T − c2)

a1

√
a1
g

+ a2

⎤⎦ ,

which, once inverted and combined with (1.8), yields the algebraic bright soli-
tary wave solution

(3.13) f(ξ) =
a1

a21ξ
2

4(c2T − c2)
− a2

.

3.3.2 - Flat-top solitary waves

If a0 > 0, a1 < 0, a2 > 0 and a21 < 4a0a2 in (3.11), from the analysis in the
previous section we deduce that (3.10) can be obtained from (1.6) by means of
the transformation

(3.14) f = 3c sech2

⎡⎣1

2

√
c(c2T − c2)

a0
arccosh

(
2a0 + a1g

g
√
a21 − 4a0a2

)⎤⎦ ,
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0

Fig. 1. Flat-top solitary wave of the semi-linear Klein-Gordon equation (3.9) as a
transformation of the soliton pf the KdV equation under the map Ψ−1, with Ψ as in
the right-hand side of (3.15).

whose inverse, once combined with (1.8), gives the bright solitary wave

(3.15) f(ξ) =
2a0

|a1|+
√
a21 − 4a0a2 cosh

(√
a0

c2T − c2
ξ

) .

It is worth pointing out that if a21−4a0a2 � 1, then the solitary wave (3.15)
becomes almost flat at its top (see Figure 1). This is due to the fact that the
bright solitary wave (3.15) dissolves into a kink when a21 = 4a0a2 [6,7].
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4 - Concluding Remarks

In this short note we highlight the centrality and universality of the soliton
of the KdV equation. In particular, we prove that any bright solitary wave
solution of a large class of models can be related to the celebrated sech2 soli-
ton. This sort of universal property is interesting and not at all surprising as
the KdV equation itself is, in some sense, universal. In mechanics there are
many situations in which systems of PDEs or ODEs represent a sort of hyphen
between various theories. Just think of the small oscillations around a stable
equilibrium configuration of any discrete mechanical system. This problem is
always investigated by means of a system of harmonic oscillators which, except
for the values of the entries of the mass and stiffness matrices, are identical.

The equivalence transformation that we have used to show the centrality
of the soliton solution of the KdV equation is not the usual one as the appro-
priate change of variables to be introduced has to satisfy additional conditions
necessary to preserve the characteristics of the solitary wave solutions.

The results in this note can be generalised in several directions. For instance,
by using the geometrical methods developed in [5], one might find more general
solutions of (2.3) and determine other transformations of mathematical and
physical interest.

Other aspects worth to be investigated are the generalisation of our method
to other classes of nonlinear evolution PDEs and/or to other classes of solutions
such as kinks and cnoidal waves. The analytical approach developed here may
be used to investigate the universality of these wave solutions starting from the
identification of archetypal equations.

Finally, a possible generalisation of the present work could involve more
general transformations such as the Sundman transformation [4].
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