
Riv. Mat. Univ. Parma, Vol. 15 (2024), 185-212

João Oliveira, Ana Jacinta Soares

and Romina Travaglini

Kinetic models leading to pattern formation

in the response of the immune system

Abstract. We consider a multicellular system with spatial structure
described by the kinetic theory for active particles such that the micro-
scopic state includes dependence on position and velocity, besides the
biological activity of the considered populations. The changes in veloc-
ity are described by appropriate integral turning operators that include
some effects like a velocity-jump process and a volume-filling effect for
one population, and a random motion of particles leading to diffusion for
another population. The model describes the migration of T-cells driven
by cytokines and the possible lesion of particular tissues or organs re-
sulting from inflammation in the response of the immune system within
an autoimmune disease. We then derive the hydrodynamic limit of the
kinetic system in a diffusive regime and obtain a diffusion-chemotaxis
macroscopic model. The stability analysis of the macroscopic system
without diffusion is developed, the Turing instability of the complete
system and appearance of spatial patterns are investigated. Some nu-
merical simulations are also performed in view of illustrating our theo-
retical results.
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1 - Inroduction

The immune system plays a crucial role in protecting the body against
infectious agents or anomalous cells, and by contributing to tissue repair and
regeneration. Dysregulation of the immune system can lead to a variety of
immunological diseases, including, among others, autoimmune disorders and
immunodeficiency conditions. In particular, autoimmune diseases are a complex
group of syndromes that arise due to an abnormal immune response against the
body’s own tissues. They are among the most severe and debilitating medical
dysfunctions, the most diffused ones being inflammatory bowl disease, type 1
diabetes and multiple sclerosis. Health factors leading to the appearance of
this surge are still under investigation, since the exact biological mechanisms
underlying autoimmune responses are extremely complicated. See, for example,
[32,36] and references cited therein.

In general terms, the core of autoimmune response is a process of activation
and regulation based on interactions among cells. In view of building a mathe-
matical model able to reproduce such a scenario, the kinetic theory approach is
a particularly suitable choice, since it allows us to investigate cellular dynamics
at a microscopic level and the global behaviour of the cellular populations at the
macroscopic level. First kinetic approaches to the immune system interactions
are the ones presented in [6] and developed in following works, describing tu-
mor growth through interactions between tumor cells and the immune system.
The kinetic modeling starts from a system of integro-differential equations rep-
resenting interactions among cells and may lead, through proper integration,
to a macroscopic description of biologically relevant quantities.

The application of kinetic models mimicking cellular interactions in au-
toimmune diseases has not yet been developed as in the case of tumour growth.
However, there exist some contributions at this level, as those presented in
the papers [13,14,30]. In particular, papers [14] and [30] provide the frame-
work for the work developed in these proceedings. The model proposed in [30]
describes rather satisfactorily an acute episode of autoimmunity, and popu-
lations of self-antigen presenting cells (SAPCs), self-reactive T cells (SRTCs)
and immunosuppressive cells (ISCs) are endowed with a microscopic functional
state (or activity variable) defining a specific biological function of each cellu-
lar population. The kinetic description of each population at the cellular level
is performed by means of a distribution function depending on time and ac-
tivity. Furthermore, the model that has been developed in [14] also includes
the natural death of the cellular populations as well as a constant input of
SAPCs caused by external environmental factors and unhealthy dietary habits.
The model shows very rich dynamics and, in particular, it can reproduce the
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recurrent patterns peculiar to many autoimmune diseases.

All the above cited papers about the kinetic description of autoimmune
diseases do not consider the dependence on the space variable, since the focus is
on interactions among cells and changes of the activity along time. Nevertheless
a more realistic description of these clinical issues would also require a spatial
component, in order to reproduce the migration of T-cells through the body and
the possible lesion of particular tissues or organs resulting from inflammation.
In fact, it is known from a medical point of view, that migration of Lymphocytes
is driven by chemotaxis. The cytokines play the role of chemical attractors for
T-cells which, in turn, detect the concentration gradient of cytokines and move
towards the source. This phenomenon has been widely studied and reproduced
through experiments [32,36]. Furthermore, chemotaxis is a crucial component
of the immune response, and is a characteristic mechanism of motion for many
other biological entities, like bacteria, sperm cells or cancer metastases.

Motivated by the biological context, the development of a model of partial
differential equations including both diffusion and chemotaxis has always been
of great interest to mathematicians and biologists. Some examples are the
macroscopic models provided by Patlak [27] and then widely extended by Keller
and Segel in order to study the behavior of Dictyostelium discoideum [16,17,
18]. However, starting from a macroscopic description may lead to a loss of
important information about cellular and chemical dynamics, since only global
features are incorporated in the macroscopic equations. For this reason, a
suitable procedure should be able to reproduce both the cellular dynamics at a
microscopic level and the global behaviour of the populations at the macroscopic
level. This can be obtained by starting from the kinetic model and applying
asymptotic methods to reach a diffusive limit. Since this tool is common in
the kinetic theory of various fields, as gas dynamics [7, 8, 19, 20], it has also
been applied to active particles [5], and, in particular, to bulks of cells [2,3].
This procedure allows, in particular, to express the transport and structural
coefficients of the macroscopic equations in terms of cellular dynamics. As
a result, it provides a more well-founded macroscopic system, coupled with a
potential explanation of macroscopic phenomena based on microscopic features.

A further innovative idea is to include a bias coming from an external field
in the kinetic equations, by means of a turning operator based on a velocity-
jump process in order to reproduce the run and tumble movement of cells. This
was introduced in [1] and then extended in various directions [24,25].

Most of the applications in the literature tend to be about the study of
cancer cells [4] and, more particularly, brain tumors [11]. The aim of the
present work is to adapt the procedure described above to the particular case
of autoimmune diseases. Accordingly, we start from the kinetic model proposed
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in [14], consider the new population of cytokines, add a spatial variable in the
description and introduce a suitable turning operator in the kinetic dynamics.
Then we introduce a time scaling and perform an asymptotic analysis to derive
the corresponding macroscopic system.

The content of this work is part of a more extended and complete piece of
research devoted to the passage from the kinetic to macroscopic model, inves-
tigation of Turing instability and pattern formation. The focus of the present
study is on the derivation of the kinetic model and its capability to produce, in
the diffusion limit, non-homogeneous spatial configurations.

After this introduction, the content of the paper is organized as follows.
Section 2 presents the biological setting and the kinetic model, including the
description of the microscopic dynamics, construction of the interaction opera-
tors with the study of their properties, and derivation of the kinetic equations.
Section 3 deals with the derivation of the macroscopic reaction-diffusion sys-
tem from the kinetic model in a diffusive regime, by performing an asymptotic
analysis. Section 4 is devoted to the study of Turing instability of the reaction-
diffusion system and the investigation of pattern formation. This section in-
cludes some numerical simulations illustrating the pattern formation when the
diffusion contributions are added to the non-diffusive system in stable condi-
tions. Section 5 contains our conclusions and a final discussion of the results
obtained in this work.

2 - Biological setting and the kinetic model

Within immunological studies, what is definitely known is that, in healthy
conditions, T-cells reacting against self-antigens are suppressed during the thy-
mic maturation, through a process called negative selection. However, in an
autoimmune condition, this self-tolerance mechanism becomes inefficient and
self-reacting T-cells (SRTCs) can reproduce and enter peripheral lymphoid tis-
sues. When SRTCs come across self-antigen presenting cells (SAPCs), naive
T-cells become activated and may undergo proliferation, driven by cytokines,
into effector memory T-cells. The effects of this stimulation is an uncontrolled
autoimmune cascade, namely T-cells cause inflammation of target tissues and
produce cytokines, that again activate and trigger proliferation of SRTCs.
Since the presence of SRTCs in peripheral tissues may also occur in healthy
subjects [12], the autoimmune response is generally regulated by specific cell
populations of immunosuppressive cells (ISCs) like regulatory T lymphocytes
(Tregs) [10,31] and natural killer cells [28,33], that are able to both inhibit or
cause the death of SAPCs and SRTCs.
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2.1 - Kinetic modelling

Starting from the biological setting explained above, we describe below the
agents involved in the mathematical model, along with their associated distri-
bution functions. The variables which these functions may depend on are time
t ∈ R, space x ∈ Γ, with Γ being a bounded domain in Rn, (n = 1, 2, 3 a
general space dimension), velocity of SRTCs, v ∈ DR = UBn, with U being
the maximal speed of cells and Bn the unit ball in Rn, velocity of cytokines,
w ∈ DC = BBn, with B being the maximal speed of the proteins, and the
activity of cells u ∈ [0, 1], which corresponds to a different task for each cellular
population, as it will be specified in the following.

The species involved in the dynamics are the following.

• A – Self-antigen presenting cells (SAPCs), distribution function fA(t,x, u),
the activity represents the ability to activate SRTCs.

• R – Self-reactive T cells (SRTCs), distribution function fR(t,x,v, u), the
activity represents the production of cytokines.

• S – Immunosuppressive cells (ISCs)), distribution function fS(t,x, u), the
activity represents the ability to suppress SAPCs and SRTCs.

• C – Cytokines, distribution function fC(t,x,w).

We also consider the population H of biological host environment and the
interactions between A, R, and S cells with the cells of the H-population. We
assume that the host population is constant in time and uniform in space.

Moreover, we use the indices j = 1, 2, 3 for the populations A, R and S,
respectively. Since our ultimate scope is to study the time-space behavior of the
cellular populations A, R, S and C, we consider macroscopic densities, defined
as the integral of the distribution functions over the space of other variables,
say activity, velocity or both. Thus, we introduce

A(t,x) =

∫ 1

0
fA(t,x, u) du,

R(t,x) =

∫ 1

0
ρR(t,x, u) du, with ρR(t,x, u) =

∫
DR

fR(t,x,v, u) dv,

S(t,x) =

∫ 1

0
fS(t,x, u) du, C(t,x) =

∫
DC

fC(t,x,w) dw.
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2.2 - Cellular dynamics and interaction operators

We will describe the admissible interactions among cells of different popu-
lations and define the corresponding kinetic operators. We will focus on the
description of the novelties of the present model that do not appear in the orig-
inal model developed in [14]. Each binary interaction between cells may be a
conservative process that simply leads to a change of activity of the cells, or de-
structive or proliferative process that contributes to a change in the number of
cells. Also, other proliferative and destructive dynamics coming from external
sources or natural death are considered. Furthermore, we are also introducing
other processes leading to a change in the velocity for both SRTCs and cy-
tokines. The effects of all these interactive processes are described by means
of suitable integral operators described as explained below. All the interaction
rates will be considered constant, thus we will adopt the notation cij , pij dij for
conservative, proliferative and destructive encounter rates, respectively, while
we shall denote by di the apoptosis and decay processes. We will use indices
i, j = 1, 2, 3, C corresponding to populations A, R, S, C, respectively.

As in [14], the SAPCs are involved in conservative interactions with SRTCs,
in which the activity of each participating cell increases,

(2.1) A+R → A+R,

and with ISCs, in which the activity of each participating cell decreases,

(2.2) A+ S → A+ S.

The corresponding conservative operator for the species A is given by, see [14]
for the details,

GA(f) = 2c12

∫ u

0
(u− u∗)fA(t,x, u∗)du∗

∫
DR

∫ 1

0
fR(t,x,v, u

′)du′ dv

− c12(u− 1)2fA(t,x, u)

∫
DR

∫ 1

0
fR(t,x,v, u

′)du′ dv

+ 2c13

∫ 1

u
(u∗ − u)fA(t,x, u

∗)du∗
∫ 1

0
fS(t,x, u

′)du′

− c13u
2fA(t,x, u)

∫ 1

0
fS(t,x, u

′)du′(2.3)

where we have used the notation f = (fA, fR, fS , fC).
The non-conservative processes involving SAPCs, instead, are given by a

proliferative part represented by a constant input source α depending on exter-
nal factors, proliferative interactions with SRTCs in which the newborn cells
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have the same activity of their mother cells,

(2.4) A+R → A+A+R,

destructive interactions with ISCs,

(2.5) S +A → S +H,

and the natural decay of SAPCs. Putting all non-conservative effects together,
the non-conservative operator can be written as

NA(f) =α+ p12fA(t,x, u)

∫ 1

0
fR(t,x,v, u

′)du′

− d13fA(t,x, u)

∫ 1

0
fS(t,x, u

′)du′ − d1fA(t,x, u).(2.6)

For the SRTCs, we have again conservative interactions with SAPCs of type
(2.1), along with conservative encounters with ISCs,

(2.7) R+ S → R+ S,

in which both the activity of ISCs and SRTCs decreases. The integral operator
taking into account both conservative processes is

GR(f) = 2c21

∫
DR

∫ u

0
(u− u∗)fR(t,x,v, u∗)du∗

∫ 1

0
fA(t,x, u

′)du′ dv

− c21(u− 1)2fR(t,x,v, u)

∫ 1

0
fA(t,x, u

′)du′

+ 2c23

∫ 1

u
(u∗ − u)fR(t,x,v, u

∗)du∗
∫ 1

0
fS(t,x, u

′)du′

− c23u
2fR(t,x,v, u)

∫ 1

0
fS(t,x, u

′)du′.(2.8)

Proliferation of SRTCs comes from interactions with SAPCs

(2.9) A+R → A+R+R,

as before, and newborn cells inherit the activity of mother cells. We recall that
the reproduction of SRTCs is also stimulated by cytokines, but we do not
consider here this effect, leaving its study to a future work. The destructive
processes for SRTCs result from the interaction with ISCs,

(2.10) S +R → S +H,
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and by natural apoptosis. The non-conservative operator for SRTCs is given
by

NR(f) = p21fR(t,x,v, u)

∫ 1

0
fA(t,x, u

′)du′−

d23fR(t,x,v, u)

∫ 1

0
fS(t,x, u

′)du′ − d3fR(t,x,v, u).(2.11)

Now, let us introduce the new kinetic operator representing the change in ve-
locity and orientation of the SRTCs, caused by the chemical attraction of cy-
tokines. Inspired by [25], we split this turning operator into two contributions,
namely

(2.12) LR[fC ](fR)(v) = L0
R(fR)(v) + L1

R[fC ](fR)(v).

Here, the operator L0
R(fR) takes into account the random movement of cells,

(2.13) L0
R(fR)(v) = −λfR(v) +

∫
DR

λT0(v,v
′)fR(v′)dv′,

where the turning kernel T0 represents the probability of the cells in changing
their velocity from v′ to v, and it is taken as a uniform probability over the
space of velocities, i.e.

(2.14) T0 =
1

ω
,

with ω = |DR| being the measure of the velocity space DR, while the parameter
λ > 0 is the turning rate. The operator L1

R[fC ](fR) in (2.12) accounts for the
external biases represented by the chemotactic attraction of cytokines and reads
as

(2.15) L1
R[fC ](fR)(v) =

∫
DR

λT1(v,v
′, C)fR(v

′)dv′.

We take the turning kernel analogous to the one presented in [25], in which
the reciprocal orientation of the cytokines gradient and the incoming direction
determines the new direction of the SRTCs. We also suppose that the SRTCs
are more likely to move at higher speed. Moreover, we include a “volume filling”
effect [26], i.e. we assume that the change in the velocity of a cell depends on
the macroscopic population density. Thus, using the notation v = vv̂, |v̂| = 1,
we have

(2.16) T1(v,v
′, C,R)=γψ(R)

v

U
v̂ · v̂′(v̂′ ·∇C), ψ(R)=

(
1− R

RM

)
10≤R≤RM

,
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with γ > 0 being the microscopic chemotaxis parameter, RM the maximal
density of SRTCs that can be empirically computed from experimental data in
relation to the biological setting considered, and 1 the indicator function.

We emphasize that, in the classical models proposed in [24,25], only the
direction of the cell is assumed to change due to kinetics, whereas in our case,
the speed of the cell can also vary. This choice results in a wider range of
possibilities for the turning kernel, given that the cell is capable of increasing
its speed, as modeled in equation (2.16). Additionally, at macroscopic level, as
it will be shown in the next section, this new feature will lead to the dependence
on maximal speed of chemotactic coefficient. The analytical properties of the
turning kernels will be discussed in Subsection 2.3.

The ISCs are involved in conservative encounters as those described in (2.2)
and (2.7), so the integral operator reads as

GS(f) = 2c31

∫ 1

u
(u∗ − u)fS(t,x, u

∗)du∗
∫ 1

0
fA(t,x, u

′)du′

− c31u
2fS(t,x, u)

∫ 1

0
fA(t,x, u

′)du′

+ 2c32

∫ 1

u
(u∗ − u)fS(t,x, u

∗)du∗
∫
DR

∫ 1

0
fR(t,x,v, u

′)du′ dv

− c32u
2fS(t,x, u)

∫
DR

∫ 1

0
fR(t,x,v, u

′)du′ dv.(2.17)

Moreover, we may have proliferation of ISCs due to the interactions with
SAPCs,

(2.18) A+ S → A+ S + S,

with, again, the newborn cells having the same activity of mother cells. We also
consider the natural death of ISCs, and therefore the non-conservative operator
can be written as

NS(f) = p31fS(t,x, u)

∫ 1

0
fA(t,x, u

′)du′ − d3fS(t,x, u).(2.19)

Finally, cytokines are produced by SRTCs when stimulated by SAPCs,

(2.20) A+R → A+R+ C,

and are subject to natural decay. Therefore, the non-conservative operator may
be written as

(2.21) NC(f)=pC2

∫
DR

∫ 1

0

∫ 1

0
fA(t,x, u)fR(t,x,v, u

′)du du′dv− dCfC(t,x,w).
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Since the motion of cytokines is characterized by the diffusion through tissues,
it would be sufficient to introduce a macroscopic diffusion coefficient DC in the
model equation. However, for the sake of coherence, we show how to rigorously
derive this coefficient from the kinetic description of the microscopic dynamics.
Accordingly, we write the turning operator in the more general form,

(2.22) LC(fC)(w) =

∫
DC

[
T (w,w′)fC(w′)− T (w′,w)fC(w)

]
dw′,

and assume that the kernel depends only on the velocity of the cytokines after
the interaction. Therefore,

T (w,w′) = σM(w),(2.23)

M(w) =

[
γi

(
n

2
,
B2

2

)
nBn(

√
2)n−2

]−1

exp

(
−w2

2

)
,(2.24)

where we choose the kernel giving the probability of a velocity jump from w′

to w. Moreover, B is the maximal speed of the cytokines introduced before,
Bn is the volume of the unit ball, σ > 0 and γi the lower incomplete gamma
function

(2.25) γi(y, x) =

∫ x

0
ty−1e−tdt.

The spectral properties of LC(fC) leading to macroscopic diffusion will be an-
alyzed in Subsection 2.3.

Our choice for the turning kernel is motivated by the models proposed
in [3, 4], where a more general form for the function M(w) is considered, as
long as it meets the required properties for deriving the macroscopic equations.
In our case, we consider a relatively arbitrary Gaussian distribution of cytokines
in the velocity space, as outlined in (2.24).

2.3 - Spectral properties of the operators

In this subsection, we state the analytical properties of the operators LR[fC ]
and LC , that will be used in Section 3 for the derivation of the macroscopic
diffusion system. The spectral properties of the two operators ensure that it is
possible to recover reaction-diffusion equations for the macroscopic densities,
thanks to the results proved in [25] and [3] for operators LR[fC ] and LC ,
respectively. In these papers, such results are presented for a more general
case. Here, we provide the statements for our particular case, addressing the
reader to the cited references for the proofs.
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L emma 2.1. Let LR[fC ] be the turning operator given by (2.12), (2.13),
(2.15), along with the turning kernels T0 and T1 defined in (2.14) and (2.16),
respectively.

(i) The turning kernel T0 is constant and positive, and

(2.26)

∫
DR

T0(v,v
′)dv =

∫
DR

T0(v,v
′)dv′ =

∫
DR

∫
DR

T 2
0 (v,v

′)dvdv′ = 1.

Then, given the equation L0
R(f) = g, there exists a unique solution f ∈

L2 (DR) to this equation, provided that the following solvability condition
holds,

(2.27)

∫
DR

f dv = 0 ⇔
∫
DR

g dv = 0.

The inverse of the operator L0
R corresponds to the multiplication by − 1

λ .

(ii) For any density C of cytokines, T1, acting on the space DR ×DR, is an
L2 function, that is T1(·, ·, C) ∈ L2(DR ×DR), moreover

(2.28)

∫
DR

T1(v,v
′, C)dv = 0.

L emma 2.2. The kernel T defined in (2.23)-(2.24) is such that

(i) M(w) is bounded and strictly positive, and so it is T (w,w′);

(ii)

∫
DC

M(w) dw = 1 and

∫
DC

wM(w)dw = 0.

Therefore, given the equation LC(f) = g, there exists a unique solution f ∈
L2

(
DC ,

dw
M

)
to this equation, provided that the following solvability condition

holds

(2.29)

∫
DC

f dw = 0 ⇔
∫
DC

g dw = 0.

The inverse of the operator LC corresponds to the multiplication by − 1
σ .

The results presented in Lemmas 2.1 and 2.2 will be used in the next section.
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2.4 - Kinetic equations

From the modelling aspects presented in Subsections 2.1 and 2.2, the evo-
lution equations for the distribution functions fA, fS , fR, and fC is given by
the following system of kinetic equations,

∂fA
∂t

= GA(f) +NA(f),(2.30)

∂fR
∂t

+ v · ∇x fR = LR[fC ](fR) + GR(f) +NR(f),(2.31)

∂fS
∂t

= GS(f) +NS(f),(2.32)

∂fC
∂t

+w · ∇x fC = LC(fC) +NC(f),(2.33)

where the operators Li for i = R,C, and Gi for i = A,R, S, and Ni for
i = A,R, S,C are those defined in equations (2.12), (2.22), and (2.3), (2.8)
(2.17), and (2.6), (2.11), (2.19), (2.21), respectively.

3 - From the kinetic regime to macroscopic equations

In this section, starting from the kinetic equations (2.30)-(2.33), we derive
the macroscopic system describing the evolution of the global densities of the
populations involved in the dynamics, namely A, R, S and C. To this aim, we
first perform a time scaling, assuming that the dominant processes are the move-
ment of SRTCs and cytokines, whereas the conservative and non-conservative
dynamics occur at lower time scale.

Choosing a small parameter ε, we write the system of integro-differential
evolution equations for the distribution functions fA, fS , fR, fC as follows

ε
∂fA
∂t

= εGA(f) + εNA(f),(3.1)

ε
∂fR
∂t

+ v · ∇x fR =
1

ε
LR[fC ](fR) + εGR(f) + εNR(f),(3.2)

ε
∂fS
∂t

= εGS(f) + εNS(f),(3.3)

ε
∂fC
∂t

+w · ∇x fC =
1

ε
LC(fC) + εNC(f),(3.4)

where the operators Li for i = R,C, and Gi for i = A,R, S, and Ni for i =
A,R, S,C are those defined in equations (2.12), (2.22), and (2.3), (2.8) (2.17),
and (2.6), (2.11), (2.19), (2.21), respectively, of the previous section.
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We also suppose that, for the evolution of fR, the perturbation given by the
cytokines gradient is of order ε, thus

(3.5) LR[fC ](fR)(v) = L0
R(fR)(v) + εL1

R[fC ](fR)(v),

with L0
R(fR) and L1

R[fC ](fR) being given by (2.13)-(2.15), respectively.

The aforementioned decomposition is motivated by the one discussed in pa-
per [25], where the considered perturbations, caused by external fields, exhibit
varying magnitudes and affect both the turning rate λ and the turning kernel
T of the unperturbed problem, and where the different effects on the parabolic
limit are studied. However, in our analysis, we focus solely on the scenario
regarding an order ε perturbation of the turning kernel.

3.1 - Equations for A and S

In order to derive the time and space evolution equations for the macroscopic
densities A(t,x) and S(t,x), we formally integrate equations (3.1) and (3.3) in
the activity variable u, obtaining

∂A(t,x)

∂t
= α+ p12A(t,x)R(t,x)− d13A(t,x)S(t,x)− d1A(t,x),(3.6)

∂S(t,x)

∂t
= p31S(t,x)A(t,x)− d3S(t,x).(3.7)

3.2 - Equation for R

For the time and space evolution equation of the density R(t,x), we fol-
low the procedure outlined in [25] for the case of an O(ε) perturbation of the
turning kernel, namely T0 + ε T1, with T0 and T1 defined in (2.14) and (2.16),
respectively. We then use the properties of the operator LR

0 stated in Lemma
2.1, along with the property (2.28) of the perturbation kernel T1 of Subsection
2.3.

We continue by writing fR as a Hilbert expansion in ε,

(3.8) fR(t,x,v, u) = f0
R(t,x,v, u) + εf1

R(t,x,v, u) + ε2f2
R(t,x,v, u) +O(ε3),

and then we insert this expansion in equation (3.2). Equating the terms of
same order in ε, we get the following set of equations at the ε0, ε1 and ε2-



198 joão oliveira, ana jacinta soares and romina travaglini [14]

orders, respectively,

L0
R(f

0
R) = 0,(3.9)

v · ∇x f
0
R = L0

R(f
1
R) + L1

R[fC ](f
0
R),(3.10)

∂f0
R

∂t
+v·∇xf

1
R

= L0
R(f

2
R)+L1

R[fC ](f
1
R)+GR(fA, f

0
R, fS)+NR(fA, f

0
R, fS).(3.11)

Without loss of generality, we assume that the total density of the SRTCs is
concentrated in f0

R, and therefore

(3.12)

∫
DR

f0
R(t,x,v, u) dv = ρR(t,x, u),

∫
DR

f i
R(t,x,v, u)dv = 0, i = 1, 2.

Then, from (3.9) we get that f0
R does not depend on v

(3.13) f0
R(t,x,v, u) =

1

ω
ρR(t,x, u).

Consequently, the ε1-order equation (3.10) becomes

(3.14) v · ∇x
ρR
ω

− L1
R[fC ]

(ρR
ω

)
= L0

R(f
1
R).

Thanks to Lemma 2.1 and property (2.28), it is possible to invert equation
(3.14) above, getting an explicit form for f1

R

(3.15) f1
R(t,x,v, u) = − 1

λ
v · ∇x

ρR
ω

+
ρR
ω

∫
DR

T1(v,v
′, C)dv′.

Inserting now the expression of f1
R(t,x,v, u) into the ε2-order equation (3.11),

we obtain

L0
R[fC ](f

2
R) =

1

ω

∂ρR
∂t

+ v · ∇x

(
− 1

λ
v · ∇x

ρR
ω

+
ρR
ω

∫
DR

T1(v,v
′, C)dv′

)

− λ

∫
DR

T1(v,v
′, C)

[
− 1

λ
v′ · ∇x

ρR
ω

+
ρR
ω

∫
DR

T1(v
′,w, C)dw

]
dv′

+ GR(fA, ρR, fS) +NR(fA, ρR, fS).(3.16)

To derive explicitly the term f2
R, we impose the solvability condition (2.27), and

therefore the integral in v of the right-hand side term in the expression (3.16)
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vanishes. This gives the following expression for ρR, in which we still have the
dependence on u,

∂ρR
∂t

−∇x ·
(∫

DR

1

λ
v ⊗ vdv

)
· ∇x

ρR
ω

+∇x ·
[
ρR
ω

∫
DR

∫
DR

vT1(v,v
′, C)dv′dv

]

= [GR(fA, ρR, fS) +NR(fA, ρR, fS)]ω.
(3.17)

The first integral in the above equation (3.17) gives∫
DR

1

λ
v ⊗ v dv =

U2

(n+ 2)λ
ωI,

with I being the identical matrix of order n, whereas the second one can be
written as∫
DR

∫
DR

v T1(v,v
′, C)dv′ dv=γ ψ(R)

∫
DR

v⊗ v̂ ·
(∫

DR

v

U
v̂′ ⊗ v̂′dv′

)
∇xC dv

that, when computed, gives

(3.18)

∫
DR

∫
DR

v T1(v,v
′, C)dv′ dv = γ ψ(R)ω2 U

(n+ 1)2
∇xC.

Defining the coefficient for SRTCs and the chemotaxis macroscopic parameter
as

(3.19) DR =
U2

(n+ 2)λ
and χ = γω

U

(n+ 1)2
,

the partial differential equation (3.17) for ρR reads

∂ρR
∂t

−∇x · [DR ∇x ρR − χψ(R) ρR ∇x C]

= GR(fA, ρR, fS) +NR(fA, ρR, fS),(3.20)

and if we integrate equation (3.20) above also in the variable u, we obtain

∂R(t,x)

∂t
=∇x · [DR ∇x R(t,x)− χψ(R(t,x))R(t,x)∇x C]

+ p21R(t,x)A(t)− d23R(t,x)S(t)− d2R(t,x).(3.21)
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3.3 - Equation for C

The procedure proposed in [3] can be applied to derive the macroscopic
equation for C(t,x). The properties stated in Lemma 2.2 of Subsection 2.3.
will be used in this derivation.

As done for the distribution of SRTCs, we also perform an expansion of fC
with respect to ε,

(3.22) fC(t,x,w) = f0
C(t,x,w) + εf1

C(t,x,w) + ε2f2
C(t,x,w) +O(ε3).

Inserting expansion (3.22) of fC and expansion (3.8) of fR into equation (3.4)
and equating terms of the same order, we get the following equations at the ε0,
ε1 and ε2-orders, respectively,

LC(f
0
C) = 0,(3.23)

w · ∇x f
0
C = LC(f

1
C),(3.24)

∂f0
C

∂t
+w · ∇x f

1
C = NC(fA, ρR, f

0
C) + LC(f

2
C).(3.25)

From the order ε0 equation (3.23), supposing also here that the mass is con-
centrated in the ε0-order term of the expansion, we straightforwardly get

(3.26) f0
C(t,x,w) = M(w)C(t,x).

This allows us to write the ε1-order equation (3.24) as

(3.27) w · ∇xM(w)C = LC(f
1
C),

that provides

(3.28) f1
C(t,x,w) = − 1

σ
w ·M(w)∇xC.

We insert this expression into the ε2-order equation (3.25), which then can be
rewritten as

(3.29) LC(f
2
C)=M(w)

∂C

∂t
+w·∇x

(
− 1

σ
w ·M(w)∇xC

)
−NC [fA, ρR,M(w)C].

According to the spectral properties of LC stated in Lemma 2.2, equation (3.29)
can be solved only if the integral in w of the term on its left-hand side is null.
Then, the solvability condition (2.29) provides

(3.30)
∂C(t,x)

∂t
= DC ΔxC(t,x) + pC2A(t,x)R(t,x)− dCC(t,x),
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where the diffusion matrix for the cytokines is given by

(3.31)
1

σ

∫
DC

w ⊗wM(w) dw =
1

σ

⎡⎣1− 2

n

(
B√
2

)n
exp

(
−B2

2

)
γi

(
n
2 ,

B2

2

)
⎤⎦ I =: DC I,

beingDC the diffusion coefficient. As already mentioned, the dependence ofDC

on the microscopic parameters n and B recognizable in (3.31) is not exploited
later on.

3.4 - Reaction-diffusion system

We first collect the macroscopic equations (3.6), (3.7), (3.21), and (3.30)
derived in the previous subsections, giving the evolution of the global densities
of the populations involved in the dynamics. The macroscopic system is then
given by

∂A(t,x)

∂t
= α+ p12A(t,x)R(t,x)− d13A(t,x)S(t,x)− d1A(t,x),(3.32)

∂S(t,x)

∂t
= p31S(t,x)A(t,x)− d3S(t,x),(3.33)

∂R(t,x)

∂t
= ∇x · [DR ∇x R(t,x)− χψ(R(t,x))R(t,x)∇xC](3.34)

+ p21R(t,x)A(t,x)− d23R(t,x)S(t,x)− d2R(t,x),

∂C(t,x)

∂t
= DC ΔxC(t,x) + pC2A(t,x)R(t,x)− dCC(t,x).(3.35)

Then, we perform the change of variables

(3.36) t̃ = Λt, x̃ =

√
Λ

DR
x,

where the parameter Λ is given by

(3.37) Λ :=
d3p21
p31

+
d23 (d1d3 − p31α)

d13d3
− d2,

with parameters being chosen in such a way that Λ is positive.
Then we define non-dimensional macroscopic densities,

(3.38) Ã =
AΛ

α
, S̃ =

Sd13
Λ

, R̃ =
R

RM
, C̃ =

CΛ2

pC2αRM
,
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and define the new coefficients

β =
RM p12

Λ
, ζ =

d1
Λ
, μ =

p31α

Λ2
, ν =

d3
Λ
, δ =

DC

DR
,

τ =
dC
Λ

, ξ = χ
pC2αRM

DRΛ2
, η =

p21α

Λ2
, φ =

d23
d13

, θ =
d2
Λ
,

and the function
Ψ(y) = (1− y)10≤y≤1.

Referring equations (3.32)-(3.35) to the non-dimensional densities (3.38), we
obtain the following system,

∂A

∂t
=1 + βAR−AS − ζA,(3.39)

∂S

∂t
=μAS − ν S,(3.40)

∂R

∂t
=∇x · (∇xR− ξΨ(R)R∇xC) + η AR− φRS − θ R,(3.41)

∂C

∂t
= δΔxC +AR− τ C,(3.42)

where, for convenience, we have renamed the tilde-labeled densities and pa-
rameters by removing the tilde, and omit the dependence of the macroscopic
densities on time and space.

Equations (3.39)-(3.42) constitute our reaction-diffusion system that will be
analysed in the next section in terms of pattern formation. They describe the
behaviour of the global densities of the populations, exhibiting the diffusion of
both the SRTCs and the Cytokines.

4 - Turing instability

Reaction-diffusion systems may exhibit Turing instability when a spatially
homogeneous steady state exists such that it is stable in absence of diffusion and
may become unstable by adding the diffusive terms, see [34]. This condition
may lead to the formation of spatial patterns that have been widely used in
literature to describe phenomena in biology, [15, 21, 22], in particular in the
study of autoimmune pathologies like multiple sclerosis [23], and phenomena in
chemistry [9,29]. In the case of chemotaxis, a more general discussion may be
found e.g. in [35] along with an analytical proof of global existence of solution.

Thus, in view of studying the Turing instability for system (3.39)-(3.42),
we first characterize its steady states when the diffusion terms are absent, and
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study their stability. Then we investigate conditions that lead to the formation
of patterns for the complete system with diffusion (3.39)-(3.42).

4.1 - Existence and stability of equilibria

The steady states of system (3.39)-(3.42) without the diffusive terms are
given by Ek := (Ak, Sk, Rk, Ck), k = 1, . . . , 4, with

(4.1) E1 =

(
ν

μ
,
−θ μ+ η ν

μφ
,
−θ μ ν + η ν2 − μ2 φ+ ζ μ ν φ

β μ ν φ
,
ν

μτ
R1

)
,

(4.2) E2 =

(
1

ζ
, 0, 0, 0

)
,

(4.3) E3 =

(
ν

μ
,
μ− ζ ν

ν
, 0, 0

)
,

(4.4) E4 =

(
θ

η
, 0,

−η + ζ θ

θ
,

ν

μτ
R4

)
.

We want to focus on equilibria that would be biologically relevant, i.e. the ones
that belong to the set

(4.5) A =
{
A(t,x) ≥ 0, S(t,x) ≥ 0, 0 ≤ R(t,x) ≤ 1, C(t,x) ≥ 0

}
.

For this reason, we consider equilibrium E1, that belongs to A if the following
conditions are satisfied

(4.6) −θ μ+ η ν > 0, β μ ν φ > −θ μ ν + η ν2 − μ2 φ+ ζ μ ν φ > 0.

Written in terms of the microscopic parameters of the model before the adi-
mensionalization, the conditions above become

(4.7) Σ := d3p21 − d2p31 > 0,

(4.8) α < α∗, with α∗ :=
d1d3
p31

+
d13d3(d3p21 − d2p31)

d23p231
.

We observe that the results above are analogous to those obtained in [14], but
in this case we have the additional condition

(4.9) ᾱ < α, ᾱ := α∗ − d3 p12RM

p31
.
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Concerning the asymptotical stability of the equilibrium E1, we first lin-
earize system (3.32)-(3.35) around E1, resulting in

(4.10)
∂W

∂t
= AW, for W =

⎛⎜⎜⎝
A−A1

S − S1

R−R1

C − C1

⎞⎟⎟⎠ ,

where the Jacobian matrix A is given by

(4.11) A =

⎛⎜⎜⎝
0

J 0
0

0 0 1 −τ

⎞⎟⎟⎠ , with J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ

ν
−ν

μ

βν

μ

−θμ+ ην

φ
0 0

η
β φ − 1

β 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since the eigenvalues of the matrix A are −τ and those of the matrix J, it is
immediate that the stability of the equilibrium state E1 is determined by the
eigenvalues of the matrix J, so that we study its characteristic polynomial, say
PJ(λ) = −P (λ), with

P (λ) = λ3 +
μ

ν
λ2 −

(
ην

φμ
+

ν

φμ
(θμ− ην)

)
λ+

ν

μφ
(ην − θμ) .

The coefficients of P (λ) may be written in the form

μ

ν
=

p31α

d3Λ
,

−
(
ην

φμ
+

ν

φμ
(θμ− ην)

)
=

d3d13Σ

p31d23Λ2
− p21(α

∗ − α)

Λ2
,

ν

μ φ
(ην − θμ) =

Σ(α∗ − α)

Λ3
,

where the parameter Λ can be written as

Λ =
d23p31
d13d3

(α∗ − α) ,

thanks to (3.37) and (4.8). Thus, for α < α∗, we recover the stability condition
obtained in [14], that is

(4.12) α > αH ,
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with αH the unique positive zero of function

(4.13) h(α) = d23p21p31α
2 + (d3Σ(d13 + d23)− d23p21p31α

∗)α− d3d23Σα
∗.

We then conclude that linear asymptotic stability of equilibrium E1 is obtained
for

(4.14) max
(
αH , ᾱ

)
< α < α∗.

Therefore, the condition that determines the linear asymptotic stability of the
equilibrium state E1 is

(4.15) max
(
αH , ᾱ

)
< α < α∗.

4.2 - Pattern formation

To investigate Turing instability for system (3.39)-(3.42) , we consider now
the linearized system (4.10) with the diffusion terms added, imposing no-flux
conditions on the boundary ∂Γ of the spatial evolution domain Γ. Therefore,
the system of interest is

(4.16)

⎧⎪⎨⎪⎩
∂W

∂t
= DΔxW + AW on (0,∞)× Γ

n̂ · ∇xW = 0 on (0,∞)× ∂Γ

where n̂ is the external unit normal to ∂Γ, and D is the diffusion matrix,

(4.17) D =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 1 −ξΨ(R1)R1

0 0 0 δ

⎞⎟⎟⎟⎠ .

We have formation of patterns for the system (4.16), whenever the matrix
A − k2D has at least one eigenvalue with positive real part for some value of
k, and this is equivalent to require that det(A− k2D) < 0 for some value of k.
The determinant of A− k2D, as function of k, reads as

(4.18) det(A− k2D) =
ν (−θ μ+ η ν)

μφ

(
k4δ + k2 (δ + τ − ξΨ(R1)R1) + τ

)
.

Defining

(4.19) h(k2) := k4δ + k2 (δ + τ − ξΨ(R1)R1) + τ,
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and holding the existence conditions (4.6), necessary and sufficient conditions
to have det(A− k2D) < 0 are

(4.20) δ + τ − ξΨ(R1)R1 < 0,

(4.21) hmin > 0, hmin = (δ + τ − ξΨ(R1)R1)
2 − 4 δ τ,

which lead to

(4.22) ξ − 2
√
δτ + δ + τ

Ψ(R1)R1
> 0.

Therefore, we have formation of patterns for the system (3.39)-(3.42) whenever
condition (4.22) holds.

4.3 - Parameters discussion

In this subsection, we discuss conditions in the parameter space leading
to Turing instability, in light of the conditions (4.15) and (4.22) previously
obtained. We set our analysis on the kinetic parameters of the model, namely
destructive rates dij , proliferative rates pij , death rates di, constant input of
SAPCs α, turning rate λ, and microscopic chemotactic parameter γ, and put
the focus on α, λ, and γ. Having this in mind, equation (4.22) is rewritten as

(4.23) ξ(α, λ, γ)− 2
√

δ(λ)τ(λ) + δ(λ) + τ(α)

Ψ(R1(α))R1(α)
> 0,

where

(4.24)

R1(α)=
p31(α

∗ − α)

d3 p12RM
, τ(α)=

d13 d3 dC
d23p31(α∗ − α)

,

δ(λ) =
DC(2 + n)λ

U2
, ξ(α, λ, γ) =

αλγ d213 d
2
3 (2 + n)ωpC2RM

d223(1 + n)2p231(α
∗ − α)2

.

As stated in Subsection 3.3, we are going to neglect the dependence of DC on
microscopic quantities n and B carried out in (3.31).

Then for some fixed values of parameters dij , pij , and di, we choose a value
of α compatible with the stability condition (4.15) and then discuss the range
of parameters λ and γ in agreement with pattern formation condition (4.22).
Accordingly, we define the reference function

(4.25) G(λ, γ) := ξ(λ, γ)− 2
√

δ(λ)τ(λ) + δ(λ) + τ

Ψ(R1)R1
,



[23] kinetic models leading to pattern formation 207

with the dependence of ξ, R1, δ, τ on the microscopic parameters given by in
(4.24), and look for parameters λ and γ such that

(4.26) G(λ, γ) > 0.

Following the above described strategy, we develop some numerical simulations
in the next subsection.

4.4 - Numerical results

Here, we perform numerical simulations to reproduce pattern formation in
the 1-dimensional domain Γ = [0, 25], imposing zero-flux at the boundary and
starting from a random perturbation of equilibria. Our main objective is to
show that it is possible to single out certain values for α, λ, γ leading to pattern
formation as a consequence of diffusion of SRTCs and cytokines. The numerical
tests developed are merely illustrative, and therefore, the choice of parameters
was not based on real data. We consider

(4.27)

DC = 90, U = 0.5 pC2 = 100, dC = 0.5, RM = 10,

p12 = 0.1, p21 = 9, p31 = 4,

d13 = 1, d23 = 9 d1 = 9, d2 = 0.14, d3 = 20,

meaning that the autoimmune dynamics is reflected in a rather high death rate
of ISCs, specifically d3 = 20, along with a low death rate of SRTCs, namely
d2 = 0.14. Moreover, we then obtain the critical values

(4.28) ᾱ = 64.92, αH = 65.53, α∗ = 69.92,

and consider α ∈ (αH , α∗). Function G is continuous and, since
∂G

∂γ
> 0 for any

fixed value of λ = λ̄, function G is also positive for γ sufficiently large. Figure
1 shows the plot of G in the λγ-plane, for α = 68.7 and the other parameters
given as in (4.27). We can identify a critical threshold curve in the λγ-plane
where function G becomes positive.

Taking again α = 68.7, we choose λ and γ in the region in which condition
(4.26) for function G being positive is satisfied, visible in Figure 1, more pre-
cisely we choose λ = 3.5 × 10−4 and γ = 5.5. Then we run a finite-difference
method for system (3.39)-(3.42), taking as initial data a random perturbation
of spatially homogeneous equilibrium E1 given in (4.1).

Figure 2, panel (a), shows the time-space plot of SRTCs density, namely
R(t,x), in the spatial domain Γ and a window of time [0, 350], exhibiting the
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Fig. 1. Representation in the λγ-plane of function G defined in (4.25), with micro-
scopic parameters taken as in (4.27), and α = 68.7.

pattern formation generated by the diffusion processes. Panel (b) shows the
spatial non-homogeneous representation of SRTCs density for the final time t =
350 (solid line), compared with the spatial homogeneous equilibrium without
diffusion (dashed line).

Fig. 2. Evolution of SRTCs density R(x, t) with microscopic parameters taken as in
(4.27), and α = 68.7, λ = 3.5× 10−4, γ = 5.5. Panel (a) – time-space plot. Panel (b)
– spatial representation for the final time t = 350, showing the non-homogeneous dis-
tribution (solid line) compared with the homogeneous equilibrium distribution without
diffusion (dashed line).
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5 - Conclusions

In this work, we have proposed a kinetic model to be adopted for the study of
the dynamics of cells involved in autoimmune diseases. Starting from the model
presented in [14], in which the behavior of antigen presenting cells (SAPCs), self
reactive T-cells (SRTCs) and immunosuppressive cells (ISCs) was studied only
with respect to time, we have here included a spatial component. Moreover,
we have also considered the chemotactic motion of T-cells driven by cytokines,
in order to get diffusion-chemotaxis terms in the macroscopic model.

We have written the kinetic equations for the distribution functions of pop-
ulations cited above. The integral terms taking into account the conservative
and non-conservative encounters among cells are analogous to those derived
in [30], along with the constant input of SAPCs and natural decay of cells in-
troduced in [14]. We have, then, considered an additional term in the equation
of SRTCs for the changes in the velocity. More precisely, we took an integral
turning operator inspired by the one proposed in [25], based on a velocity-
jump process, including a volume-filling effect and a dependence on the cell
speed in the turning kernel. In addition, we have built up the kinetic equation
for the cytokines, considering their production coming from encounters between
SAPCs and SRTCs and natural decay. A turning operator has been considered
in this case as well, but it has been chosen in a more general form, like the
ones proposed in [3], considering only a random motion of particles leading to
diffusion.

A time scaling has been performed in order to derive macroscopic equa-
tions. In particular, we supposed that the processes involving the velocity are
the dominant ones, while all the conservative and non-conservative ones are
happening at a lower time scale. This has allowed us to obtain a system of
four macroscopic equations for the densities, in which the diffusion and the
chemotaxis terms appear in the equations for SRTCs and cytokines.

We have outlined the stability analysis of the system without diffusion, set-
ting our discussion on the parameter representing the constant input of SAPCs
and then, after a reduction to a system involving only the diffusive species,
we have performed Turing instability analysis. We have been able to find con-
ditions on the macroscopic parameters involved in diffusive and chemotaxis
constants leading to the appearance of spatial patterns, confirming our findings
through numerical simulations.

The aim of this work has been to enrich the kinetic models describing au-
toimmune diseases present in literature, as the procedure here adopted has
many advantages. Above all, it allows us to obtain a macroscopic model in
which the coefficients depend on the microscopic features of the agents involved
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and provides a more consistent mathematical tool to be applied and adapted
to more specific cases of pathological conditions.
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