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Abstract. We discuss a functional kinetic theory approach to perform
ensemble simulations on quantum computers. It is argued that the ap-
proach requires several hundreds of logical noiseless qubits, hence com-
manding major technological breakthroughs in noise correction and mit-
igation practices.
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1 - Introduction

The extreme complexity of most problems in modern science and society
raises a very steep challenge to our best theoretical and computational meth-
ods. As an example, even the most powerful supercomputers, reaching up to
exascale operations (one billion billions floating point operations per second)
pale in front of the task of predicting the weather on a planetary scale based
on the direct simulation of the equations of fluid motion [17]. Besides, the
aforementioned problems are typically subject to various sources of uncertain-
ity on initial data and other parameters affecting the solution. As a result, each
single case-study requires several realizations in order to accumulate sufficient
statistical information (Ensemble Simulations), further magnifying the quest of
computational power.

Given that electronic computers are facing very stringent energy constraints,
alternative simulation strategies are constanly sought for. Among these, enor-
mous efforts have been devoted in the last decade towards the development of
quantum computers, namely hardware devices capable of exploiting the weird-
est features of quantum mechanics, particularly the ability of quantum systems
to occupy a multitude of states at the same time (quantum entanglement). The
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immediate perk is that a quantum system can in principle perform a multitude
of parallel quantum computations, as opposed to classical computers which can
only operate on binary states (bits). Lately, not a day goes by without hearing
the last quantum computing breakthrough, but, leaving aside the huge com-
mercial hype, the fact remains that turning the immense potential of quantum
computing into a concrete tool for scientific purposes remains a very challenging
goal [3]. The reasons are many, but, in a nutshell, the bottomline is that en-
tanglement is very fragile and tends to crumble pretty quickly under the effects
of environmental noise, which is extremely hard to avoid at any reasonable
temperature, a problem know as “decoherence” and “noise”. Notwithstand-
ing these major barriers, it is worth exploring what quantum computers can
possibly contribute to the prospect of Ensemble Simulations.

2 - Ensemble simulations

Ensemble simulations have gained popularity in the recent years, thanks to
the availability of large supercomputers. The main idea is accumulate statistics
over the many sources of uncertainities associated, for instance to weather fore-
cast, by running series of simulations with different initial conditions and/or
parametric realizations [11,17].

Let us illustrate the idea in some more detail.

We consider a set of nonlinear partial differential equations and discretize
them on a grid with, say, G grid points. Let u(t) the set of unknowns after
discretization, for instance the velocity field of a three-dimensional fluid; they
obey a set of O(G) first-order ODE’s in (generalized) Langevin form:

(1)
du

dt
= f(u; η)

with initial condition u(0) = u0 and where the noise η stands for the various
sources of uncertainty. Ensemble simulations respond to the idea of generat-
ing a statistics of solutions upon changing initial conditions and/or perturbing
the system parameters. Formally, this amounts to generating a probability
distribution function (PDF) for the solutions u = u(t;x0), defined by:

(2) p(u, t)dμ(u) =
dt

T

where dt is the time spent by the set of trajectories, spanning the time
interval [0 ≤ t ≤ T ], in a volume of phase-space dμ(u).
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Generating the trajectories is extremely demanding, since by construction
each single simulation is going to stress the most advanced computer resources
to their limit [1,11].

Quantum computing could help realizing an exponential speedup on each of
these simulations. Besides all standard concerns affecting quantum computing,
two additional issues stand on the way of this route: quantum mechanics is
linear and energy-conserving, while the physics of fluids is neither [15].

Several ways around these problems are currently under exploration, based
on various strategies [2,4,5,7,10,12]. All of these, however, focus on the solu-
tion of the actual equations of motion, without addressing ensemble statistics.

In this brief note, we sketch a potential strategy which offers two major
assets at the outset. First, it captures all the sought statistical information on
the system dynamics by construction (statistical dynamics). Second, it does not
resort to any linearization of the dynamic equations, but starts directly from
an inherently linear representation of the corresponding probability distribution
function (PDF).

The passage from dynamics to statistical dynamics is a standard topic in
statistical physics, where it is known as Liouville formulation of classical N-body
mechanics.

The Liouville formalism is very elegant and conducive to very valuable ap-
proximations, mostly at the level of one-body effective kinetic equations, the
most outstanding examples in point being the Boltzmann and Fooker-Planck
equations.

Unfortunately, at least on classical computers, it is completely unviable
since the N-body distribution function lives in a N -dimensional space, with
N of the order of the number of grid points of the dynamic simulation, hence
easily in the order of billions or more for current supercomputer simulations.

This looks like a medicine worse than the disease, and it is therefore of
interest to explore what quantum computing could possibly contribute to ease
the issue [6,16].

3 - Functional Liouville formulation

By virtue of the Liouville theorem (Fig. 1), the N-point PDF associated
with the (nonlinear) Langevin equations obeys a linear Liouville Fokker-Planck
kinetic equation (LFPE) of the form

(3) ∂tpN + ∂u[f(u)pN −D∂upN ] = 0
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Liouville equation

t0

t

Fig. 1. Geometrical interpretation of the Liouville equation. The cloud of points
representing various realizations of the system at t = 0 evolves each along its own
trajectory dictated by the dynamic equation u̇ = f(u), with initial conditions u(0) =
u0. As time unfolds, The cloud changes its shape but not its volume, and consequently
the probability distribution p(u, t) is invariant along the trajectory dp/dt = 0 leading
to the Liouville equation.

where D is the diffusion coefficient associated with the noise in the (linear)
Langevin equation (1).

Since the Liouville equation is linear by construction, it can operate under
the same framework as quantum mechanics and it particular, it should benefit
of quantum linear algebra solvers [8].

In particular, it is possible to map the Liouville equation onto a corre-
sponding quantum many-body Schroedinger equation in imaginary time. The
standard substitution p(u, t) = g(u)ψ(u, t) is known to transform the above
LFPE into a Schroedinger equation (SCE) in imaginary time, with the follow-
ing Hamiltonian

(4) Ĥ = D∂uu + V [g]

where V [g] = −D∂uug/g, where the guiding function g fulfills the constraint
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∂ug = f(u)g/2D. The problem is now hermitian, hence fully within the realm
of quantum computing. Yet, solving a SCE in billions of dimensions remains
out of reach even for quantum computers, as it would require billions of qubits
even in the most ideal scenario. However, some mitigating arguments can be
brought up.

3.1 - Marginalization

These arguments relate to marginalization of the PDF, namely the fact
that the N -point PDF pN (x, t) or the equivalent N-body wavefunction ΨN (x, t)
contain far more information than actually needed. Coming back to the case
of the fluid flow, there is no need to know the simultaneous joint PDF of each
fluid velocity at each given lattice site.

The count goes as follows. The N-body PDF associated to a discrete grid
with G = N lattice sites, each hosting F fields discretized over a set of n discrete
values, takes up (GF )n discrete values. The number of qubits to represent the
fully N-body discrete PDF is then

(5) q = GFlog2n

which is clearly unfeasible even for any foreseeable ideal quantum computer,
given that G is in the order of multi-billions for present-day supercomputer
simulations.

Fortunately, marginalization presents a milder picture.

If each field on a discrete grid with G lattices sites is connected to z << G
neighbours, the lowest order irreducible marginal is of order M = zF and the
qubit count now reduces to

(6) q = zF log2n.

This is still very demanding but still enormously simpler than (5) since zF is
of the order of tens.

4 - Practical examples

For the sake of concreteness let us spell out the Liouville formulation for the
case of the Burgers equation, describing a one-dimensional pressureless fluid,
as well as the three-dimensional Navier-Stokes equations.



84 sauro succi [6]

4.1 - Example 1: the Burgers equation

The Burgers equation describing one-dimensional pressureless fluids, reads
as follows

(7) ∂tu+ u∂xu = ν∂xxu

where ν is the kinematic viscosity.
A simple centered-finite difference scheme gives:

(8) u̇j = −uj(uj+1−uj−1)+ν(uj+1−2uj+uj−1) ≡
1∑

k=−1

Bj,k(uj)uj+k ≡ fj(u)

where the space and time step are made unit for simplicity and Bjk, j = 1, N ,
k = −1, 0, 1 is the (nonlinear) “Burgers” matrix.

The N-point Burgers-LFPE takes the following form:

(9) ∂tpN +
N∑
j=1

∂uj [
1∑

k=−1

Bj,kuj+k]pN

where pN ≡ p[u1 . . . uN , t] is the N-body PDF associated to a spatial grid of
G = N gridpoints.

Next, let us consider a generic observable A(u1 . . . uN ), whose average value
is given by

(10) < A > (t) =
1

Z

+∞∫
−∞

p(u)A(u)du

where Z =
∫ +∞
−∞ p(u)du is the partition function and u is a shortand for

u1 . . . uN .
If the dependence on each of the N = G independent variables uj is irre-

ducible, the average necessitates the full N-body PDF pN (u1 . . . uN ). But this
is rarely the case in classical physics. For instance if K is the total kinetic
energy of the fluid, K = 1

2

∑
j u

2
j , its average only depends on the one-point

distribution

(11) 2 < K > (t) =

N∑
j=1

∫
u2jpN (u)du =

N∑
i=1

∫
u2i p1(ui)dui

where p1(ui) results from integrating out all variables u1 to uN , but ui. Like-
wise, if all we need is the value of the average velocity field at the space slice
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xi, the 1-point PDF will equally suffice

(12) < ui > (t) =

∫
uip1(ui)dui.

By the same token, two-point observables require two-point PDFs and so on at
all higher orders.

Since u̇j depends on the triplet [uj−1, uj , uj+1] lowest order irreducible
margibal is the three-point PDF p3, which is defined by integrating out all
independent variables but three, uj−1, uj , uj+1, namely:

(13) p3[uj−1, uj , uj+1] =

+∞∫
∞

p[u1 . . . uN ]du1 . . . duj−2duj+2 . . . duN .

The corresponding three-point kinetic equation takes the form:

(14) ∂tp3 + ∂uj−1 [

1∑
k=−1

Bj−1,kUj−1+k]p3 + ∂uj [

1∑
k=−1

Bj,kUj+k]p3

+ ∂uj+1 [

1∑
k=−1

Bj+1,kUj+1+k]p3 = 0

where by periodicity j − 2 = j + 1 and j + 2 = j − 1.

In the above we have defined:

(15) Uj =

∫
ujp(u)du1 . . . duj−2duj+1duN

which is a generally unknown function of uj−1, uj , uj+1. Hence a suitable ex-
pression for Uj versus uj needs to be worked out, which is the usual closure
problem. A possible example of such closure can be found in [16].

With reference to the expression (6), we have z = 3 and F = 1, hence the
corresponding qubit count gives

(16) q = 3 log2n.

Current quantum computers can offer up to q ∼ 500 nominal qubits, implying
that one can reach up to n ∼ 2500/3, far beyond any practical resolution need.
For a reasonable resolution, say n ∼ 1000 ∼ 210, we obtain q ∼ 30, which
appears viable once noise and decoherence are tamed.
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4.2 - Example 2: the Navier-Stokes equations

The Navier-Stokes governing the motion of compressible, dissipative fluids
read as follows

∂tρ+ ∂a(ρua) = 0(17)

∂t(ρua + ∂b(ρuaub + Pδab − σab) = 0(18)

where ρ is the density, ua, (a = x, y, z) the flow velocity, P = P (ρ) the fluid
pressure and σab the dissipative tensor.

With reference to the expression (6), we now have F = 4 (density and
three velocity components) and z = 7 (each grid site connected to six nearest
neighbors), hence the corresponding qubit count gives

(19) q = 28 log2n.

With n = 103, we have q = 280, much steeper than Burgers, but still
within the nominal capabilities of current quantum hardware [18]. Different
representations or different formulations altogether, such as as lattice Boltz-
mann [13, 14], may lead to more favourable scalings, a topic of interest for
further research.

The above considerations make abstraction of the many issues generally
associated with quantum computing, particularly noise and decoherence. In the
following, we briefly comment on a further issue which is peculiar to quantum
simulations in real time: time marching.

5 - Quantum time-marching

On electronic computers time-marching proceeds quite seamlessy: update
the present state to the future one and copy the future in the new-present,
to start the next timestep. A pseudo-code for fist-order Euler forward time
marching reads as follows:

Initialize u

For as many steps as needed:

unew = u+f(u)*dt

u = unew

End for

On a quantum computer such innocent-looking loop is basically unviable, the
culprit being the no-cloning theorem (NCT), stating that you cannot make
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Quantum Measurement
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Fig. 2. The 2-qubit quantum systems consists of 22 = 4 quantum states, |00 >,|10 >,
|11 >, |11 >, each coming with its corresponding probability pij ,i = 0, 1, j = 0, 1 (color
code). In the example in point, by keeping 12 replicas of the quantum state (left), one
measures 5 occurrences of |00 >, 4 of |11 >, 2 of |01 > and 1 of |10 > (right). The
corresponding probabilities 5/12, 4/12, 2/12, 1/12, approximate the values pij within
statistical accuracy.

a copy of a quantum state without destroying it. The no-cloning theorem is
clearly rooted into the infamous “wavefunction collapse” paradox, whereby the
very act of measuring a qubit turns it into a classical one, yielding zero or one
as an answer, “tertium non datur”. Hence the only way to perform the time-
stepping without losing the “old” state is to keep at least 2q replicas, q being
the number of qubits encoding the quantum state. In fact, since there are 2q

states to be statistically reconstructed, the count exceeds 2q (See Fig. 2) This
basically spoils the purpose of the ordeal, and represents a very serious problem
for the quantum solution of dynamical problems, including iterative methods.

To date, the most popular strategy to cope with this problem is to turn
the dynamical equations into a corresponding eigenvalue problem, a standard
procedure in quantum mechanics. Essentially this leads to hybrid algoritms
whereby quantum computers are used to construct variational solutions based
on a set of classical parameters λ. Since the parameters are classical, they
can be changed at will to generate new variational quantum states without
destroying the old ones, thus turning around the NCT. The optimal parameters
are then found by minimizing a suitable cost function (energy for the case of
quantum mechanics) using classical computers. This procedure is standard in
quantum computing for quantum many-body problems and they may probably
be extended to the case of fluids. Their application to the Liouville equation is
just beginning to be explored [9].
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6 - Summary

Summarizing, we have assessed the viability of the functional Liouville for-
mulation for ensemble simulations on quantum computers. The present analysis
refers to a blue-sky scenario whereby a quantum algorithm capable of logarith-
mic scaling with the number of dynamic degrees of freedom is available and
up-and-running on ideal quantum computers, with no appreciable decoherence
and noise problems. The former condition is contingent, among others, to the
solution of the quantum time-marching problem. In actual practice, quan-
tum computing ensemble simulations of the Navier-Stokes equations demand
hundreds of noiseless logical qubits. Given that current quantum computing
typically works only up to a few tens of logical qubits, the target appears many
years away in the future. This is no invitation to surrender, but just a realistic
appraisal to be contrasted with the current (mostly commercial) hype around
quantum computing (for a highly informed assessment, see [3]).
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[1] A. P. Bhati, S. Wan, D. Alfè, A. R. Clyde, M. Bode, L. Tan,
M. Titov, A. Merzky, et al, Pandemic drugs at pandemic speed: infrastruc-
ture for accelerating COVID-19 drug discovery with hybrid machine learning-



[11] kinetic theory, ensemble simulations and quantum computing 89

and physics-based simulations on high-performance computers, Interface focus
11 (2021), no. 6, 20210018.

[2] L. Budinski, Quantum algorithm for the Navier–Stokes equations by using the
streamfunction–vorticity formulation and the lattice Boltzmann method Vari-
ational quantum algorithms for nonlinear problems, International Journal of
Quantum Information 20 2022, no. 2 , 2150039.

[3] S. Das Sarma, Quantum computing has a hype problem, MIT Tech-
nology Review, March 28, 2022, https://www.technologyreview.com/

2022/03/28/1048355/quantum-computing-has-a-hype-problem/.

[4] J. P. Liu, H. O. Kolden, H. K. Krovi, et al, Efficient quantum algo-
rithm for dissipative nonlinear differential equations, PNAS, 118 (2021), no. 35,
e2026805118.

[5] F. Gaitan, Finding flows of a Navier-Stokes fluid through quantum computing,
Npj Quantum Information 6 (2020), 61.

[6] D. Giannakis, A. Ourmazd, P. Pfeffer, J. Schumacher and J. Slaw-
inska, Embedding classical dynamics in a quantum computer, Phys. Rev. A
105 (2022), no. 5, 052404.

[7] W. Itani and S. Succi, Analysis of Carleman Linearization of Lattice Boltz-
mann, Fluids 7 (2022), no.1, 24.

[8] A.W. Harrow, A. Hassidim and S. Lloyd, Quantum algorithm for linear
systems of equations, Phys. Rev. Lett. 103 (2009), no. 15, 150502.

[9] M. Lubasch, J. Joo, P. Moinier, M. Kiffner and D. Jaksch, Variational
quantum algorithms for nonlinear problems, Physical Review A 101 (2021),
no. 1, 010301(R).

[10] A. Mezzacapo, M. Sanz, L. Lamata, I. L. Egusquiza, S. Succi and
E. Solano, Quantum simulator for transport phenomena in fluid flows, Sci-
entific reports 5 (2015), no. 1, 13153.

[11] A. Navarra, J. Tribbia and S. Klus, Estimation of Koopman Transfer Op-
erators for the Equatorial Pacific SST, The Journal of Atmospheric Sciences
78 (2021), no. 4, 1227–1244.

[12] R. Steijl, Quantum algorithms for fluid simulations, in: F. Bulnes,
V. N. Stavrou, O. Morozov and A. V. Bourdine, eds., “Advances in Quan-
tum Communication and Information”, IntechOpen, 2020.

[13] S. Succi, The Lattice Boltzmann Equation for fluid dynamics and beyond,
Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2001.

[14] S. Succi, The Lattice Boltzmann Equation for Complex States of Flowing Mat-
ter, Oxford University Press, Oxford, 2018.

[15] S. Succi, W. Itani, K. Sreenivasan and R. Steijl, Quantum computing
for fluids: Where do we stand?, Europhysics Letters 144 (2023), no. 1, 10001.



90 sauro succi [12]

[16] S. Succi, W. Itani, C. Sanavio, K. R. Sreenivasan and R. Steijl, En-
semble fluid simulations on quantum computers, Computers and Fluids 270
(2024), 106148.

[17] F. Tennie and T. N. Palmer, Quantum Computers for Weather and Climate
Prediction: The Good, the Bad and the Noisy, Bullettin of the American Me-
teorological Society 104 (2023), E488.

[18] IBM, Technology for the quantum future, https://www.ibm.com/quantum/

technology

Sauro Succi
Fondazione Istituto Italiano di Tecnologia
Center for Life Nano-Neuroscience at la Sapienza
Viale Regina Elena 291
00161 Roma, Italy
e-mail: sauro.succi@gmail.com




