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Abstract. We present a complete analysis of the dispersion relations for
longitudinal and transverse waves in a rarefied polyatomic gas based on
Rational Extended Thermodynamics (RET), which describes the evo-
lution of a non-polytropic gas in nonequilibrium. Observability of the
second mode of the longitudinal wave and the transverse wave is dis-
cussed although these waves are usually not payed much attention. The
cases of CO2 gas and para-H2 gas are specifically analyzed as typical
examples.
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1 - Introduction

Rational Extended Thermodynamics (RET) is a theory that aims to de-
scribe highly nonequilibrium phenomena in viscous and heat-conducting gases
in terms of a hyperbolic system of field equations. It was originally motivated by
the moment equations associated with the distribution function in the Boltz-
mann equation for rarefied monatomic gases. In order to obtain the closed
system of field equations, universal principles such as the entropy principle, the

Received: April 7, 2023; accepted in revised form: August 7, 2023.



46 takashi arima, tommaso ruggeri and masaru sugiyama [2]

Galilean invariance, and the convexity of entropy density are systematically
utilized. At the molecular level, the closure procedure corresponds to the use
of the Maximum Entropy Principle. RET of rarefied monatomic gases is now a
well-established theory, and many works are summarized in the book by Müller
and Ruggeri [7].

After the publication of the book [7], Arima, Taniguchi, Ruggeri, and
Sugiyama [2] established a RET theory of rarefied polyatomic gases, where
two hierarchies of field equations were introduced. The recent studies of RET
for both classical and relativistic polyatomic gases are reviewed in the books
by Ruggeri and Sugiyama [9,10].

Theoretical predictions derived from RET concerning various nonequilib-
rium phenomena in a gas such as shock wave, and light scattering have been
successfully confirmed by experimental data. For more details, see [9] and
references therein.

A typical method to test a theory of nonequilibrium thermodynamics is to
study plane harmonic waves. By linearizing the system in a neighborhood of
an equilibrium state, a homogeneous system is obtained and it provides the so-
called dispersion relations that permit to evaluate of the phase velocity and the
absorption coefficient in terms of frequency. In this way, it is possible to com-
pare the theoretical prediction of the dispersion relation with the experimental
data.

The study of the dispersion relation of longitudinal sound wave [1], in par-
ticular, has remarkably clarified the applicability range of RET. In the limit of
short relaxation time, we obtain the Navier-Stokes-Fourier (NSF) theory from
the RET theory [7,11]. In this sense, the applicability range of RET is wider
than that of NSF.

The aim of the present paper is to derive the dispersion relations of longitu-
dinal and transverse waves propagating in three-dimensional space. The latter
wave was excluded in the previous study [1] in which we considered only one-
space dimension. We also analyze the second mode of the longitudinal wave.
Although it is usually said that the second mode of the longitudinal wave and
the transverse wave are not observed in experiments, we show that the dissipa-
tion effects, which result from the relaxation of the fields, provide a possibility
of observing these waves.

The organization of the paper is as follows: In Section 2, we provide a brief
introduction of the RET theory with 14 fields (RET14) of rarefied polyatomic
gases. RET14 takes into account the viscous stress and heat flux as indepen-
dent fields in addition to the usual hydrodynamic fields. With the linearized
field equations of RET14, in Section 3, we derive the dispersion relation of lon-
gitudinal and transversal waves. In Section 4, we elucidate the dependence of
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the phase velocity and attenuation per wavelength by using the data on carbon
dioxide and hydrogen gases as examples.

2 - RET theory with 14 fields

In this section, we summarize briefly RET14 of rarefied polyatomic gases.

2.1 - Thermal and caloric equations of state

The thermal and caloric equations of the state of a rarefied polyatomic gas
are given by

p =
kB
m

ρT and ε ≡ ε(T ),

where p, ρ, T and ε are pressure, mass density, absolute temperature, and
specific internal energy, respectively. kB and m are the Boltzmann constant
and the mass of a molecule. Note that gases are, in general, non-polytropic,
that is, the specific heat at constant volume,

cv =
dε

dT
,

has not a constant value but depends on the temperature.

2.2 - Linearized basic equations of RET14

We assume that a nonequilibrium state of a gas is prescribed by the 14
independent field variables u ≡ (ρ, vi, T,Π, σ〈ij〉, qi), where vi, Π(= −σii/3),
σ〈ij〉1, and qi are, respectively, velocity, dynamic (nonequilibrium) pressure,
symmetric traceless part of the viscous stress σij , and heat flux [2].

Since we are now focusing on a wave with small amplitude, we linearize
the closed system of field equations of RET14 around an equilibrium state:
u0 ≡ (ρ0, 0, T0, 0, 0, 0). Then the linearized system for the perturbed field

1Here and hereafter, the angular blackets in subscript indicate the symmetric traceless part
of the tensor, i.e., in the three-dimensional case, a〈ij〉 = 1

2
(aij + aji)− 1

3
δijall.
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ū = u− u0 is given by (we omit the bar from now on)

∂ρ

∂t
+ ρ0

∂vk
∂xk

= 0,

ρ0
∂vi
∂t

+
kB
m

T0
∂ρ

∂xi
+

kB
m

ρ0
∂T

∂xi
+

∂Π

∂xi
−

∂σ〈ij〉
∂xj

= 0,

kB
m

ρ0ĉv
∂T

∂t
+

kB
m

ρ0T0
∂vk
∂xk

+
∂qk
∂xk

= 0,

∂Π

∂t
+

2ĉv − 3

3ĉv

kB
m

ρ0T0
∂vk
∂xk

+
2ĉv − 3

3ĉv(1 + ĉv)

∂qk
∂xk

= − 1

τΠ
Π,

∂σ〈ij〉
∂t

− 2
kB
m

ρ0T0

∂v〈i
∂xj〉

− 2

1 + ĉv

∂q〈i
∂xj〉

= − 1

τσ
σ〈ij〉,

∂qi
∂t

+ (1 + ĉv)

(
kB
m

)2

ρ0T0
∂T

∂xi
+

kB
m

T0
∂Π

∂xi
− kB

m
T0

∂σ〈ik〉
∂xk

= − 1

τq
qi,

(2.1)

where ĉv is the dimensionless specific heat at the reference equilibrium state:

ĉv =
cv

kB/m

∣∣∣∣
T=T0

.

The system (2.1) is in the form of a linear hyperbolic system of the type:

(2.2)
∂u

∂t
+Ai

0

∂u

∂xi
= B0u.

The relaxation times τΠ, τσ, and τq in Eq. (2.1), which are functions of ρ and
T , are also evaluated at the reference equilibrium state.

By conducting the Maxwellian iteration [2,4,7,11], which is the expansion
of a dissipative flux with respect to the relaxation time, we obtain the relations
between the relaxation times and the bulk viscosity ν, shear viscosity μ, and
heat conductivity κ as follows:

ν =
2ĉv − 3

3ĉv

kB
m

ρ0T0τΠ, μ =
kB
m

ρ0T0τσ, κ = (1 + ĉv)

(
kB
m

)2

ρ0T0τq.

3 - Dispersion relations

In this section, we derive the dispersion relations and then obtain the high-
frequency limit of the phase velocity and the attenuation factor.
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3.1 - Dispersion relation, phase velocity, and attenuation factor

We now study a plane harmonic wave propagating in a direction n ≡ (ni)
in three-dimensional space with the frequency ω and the complex wave number
k = 
(k) + i�(k) such that

u = δu ei(ωt−knixi),(3.1)

where δu is a constant amplitude vector. Substituting (3.1) into (2.2) we obtain
the following algebraic linear system:

(−ωI + kA0n − iB0) δ u = 0, (A0n = Ai
0ni).(3.2)

Explicit form of the algebraic system (3.2) can be obtained by applying the
following formal substitution rule to the system (2.2):

∂

∂t
→ −ωδ,

∂

∂xi
→ kniδ, B0u → iB0δu.

Then we have

− ωδρ+ kρ0δvn = 0,

− ωδvi +
k

ρ0

{
ni

(
kB
m

T0δρ+
kB
m

ρ0δT + δΠ

)
− δσni

}
= 0,

− ωδT +
k

ĉv

(
T0δvn +

1
kB
m ρ0

δqn

)
= 0,

− ωδΠ+ k
2ĉv − 3

3ĉv

(
kB
m

ρ0T0δvn +
1

1 + ĉv
δqn

)
= − i

τΠ
δΠ,

(3.3)

− ωδσ〈ij〉 − k

{
kB
m

ρ0T0

(
njδvi + niδvj −

2

3
δvnδij

)
+

+
1

1 + ĉv

(
njδqi + niδqj −

2

3
δqnδij

)}
= − i

τσ
δσ〈ij〉,

− ωδqi + k

{
(1 + ĉv)

(
kB
m

)2

ρ0T0niδT +
kB
m

T0 (niδΠ− δσni)

}
= − i

τq
δqi,

where
δvn = δvini, δqn = δqini, δσni = δσ〈ij〉nj .

From this system, we obtain the dispersion relations which provide the relation
k = k(ω).
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The dispersion relations (3.3) can be decomposed into two independent
homogeneous systems representing the longitudinal and traverse waves, respec-
tively. For this aim, we first multiply (3.3)2,6 by ni and (3.3)5 by ninj , we
obtain the homogeneous algebraic system:(

−ωI(L) + kA
(L)
0n − iB

(L)
0

)
δu(L) = 0

with I(L) being 6× 6 identity matrix, and

A
(L)
0n =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ρ0 0 0 0 0

kB
m

T0

ρ0
0

kB
m

1

ρ0
− 1

ρ0
0

0
T0

ĉv
0 0 0

1

kB
m

ĉvρ0

0 2ĉv−3
3ĉv

kB
m ρ0T0 0 0 0 2ĉv−3

3ĉv(1+ĉv)

0 −4

3

kB
m

ρ0T0 0 0 0 − 4

3(1 + ĉv)

0 0 (1+ĉv)
(

kB
m

)2
ρ0T0

kB
m

T0 −
kB
m

T0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B
(L)
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 − 1

τΠ
0 0

0 0 0 0 − 1

τσ
0

0 0 0 0 0 − 1

τq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

δu(L) ≡ (δρ, δvn, δT, δΠ, δσnn, δqn)
T ,

where

δσnn = δσ〈ij〉ninj .



[7] dispersion relations of longitudinal and transverse waves 51

Then we have the dispersion relation for longitudinal waves:

det
(
−ωI(L) + kA

(L)
0n − iB

(L)
0

)
= 0.(3.4)

If the determinant in (3.4) is not zero, then

δu(L) ≡ (δρ, δvn, δT, δΠ, δσnn, δqn)
T = 0,

and (3.3) reduces to

− ωδvi −
k

ρ0
δσni = 0,

− ωδσni − k

(
kB
m

ρ0T0δvi +
1

1 + ĉv
δqi

)
= − i

τσ
δσni,

− ωδqi − k
kB
m

T0δσni = − i

τq
δqi,

or, in a compact form,(
−ωI(T ) + kA

(T )
0n − iB

(T )
0

)
δu(T ) = 0,

where I(T ) is 3× 3 identity matrix and

A
(T )
0n =

⎛⎜⎜⎜⎜⎜⎝
0 − 1

ρ0
0

−kB
m

ρ0T0 0 − 1

1 + ĉv

0 −kB
m

T0 0

⎞⎟⎟⎟⎟⎟⎠ , B
(T )
0 =

⎛⎜⎜⎜⎝
0 0 0

0 − 1

τσ
0

0 0 − 1

τq

⎞⎟⎟⎟⎠ ,

δu(T ) ≡ (δvi, δσni, δqi)
T .

This is the dispersion relation for the transverse waves:

det
(
−ωI(T ) + kA

(T )
0n − iB

(T )
0

)
= 0.(3.5)

The phase velocity vph and the attenuation factor α are defined as

vph(ω) =
ω


(k) , α(ω) = −�(k).

In addition, it is useful to introduce the attenuation per wavelength αλ:

αλ(ω) = αλ =
2πvphα

ω
= −2π

�(k)

(k) ,
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where λ is the wavelength.
In agreement with the general result [8], the phase velocity and the atten-

uation factor in the high-frequency limit are given by

v
(∞)
ph ≡ lim

ω→∞ vph(ω) = U0,(3.6)

α(∞)U0 ≡ lim
ω→∞α(ω)U0 = −l0 ·B0 · d0,(3.7)

where U0 is an eigenvalue of A0n (characteristic velocity), and l0 and d0 are
the corresponding left and right eigenvectors.

3.2 - Longitudinal waves

By introducing the dimensionless parameters defined by

Ω = τσω, τ̂q =
τq
τσ

(
= (1 + ĉv)

−1 mκ

kBμ

)
, τ̂Π =

τΠ
τσ

(
=

3ĉv
2ĉv − 3

ν

μ

)
,

the dispersion relation (3.4) is shown explicitly as

ĉv(c0z)
4

3Ω2 (1 + ĉv)
2 τ̂Π

{
−3(1 + ĉv)− iΩ (3 + 7ĉv + 5ĉv τ̂Π) + 9Ω2ĉv τ̂Π

}
+

(c0z)
2

3Ω3(1 + ĉv)2τ̂q τ̂Π

{
−3i (1 + ĉv)

2

+Ω(1 + ĉv) [3 + 7ĉv + 5ĉv τ̂Π + 6 (1 + ĉv) τ̂q]

+ iΩ2
[
2
(
3 + 10ĉv + 5ĉ2v

)
τ̂q + 9ĉv (1 + ĉv) τ̂Π + ĉv (13 + 8ĉv) τ̂q τ̂Π](3.8)

− 3Ω3ĉv (7 + 4ĉv) τ̂Πτ̂q

}
+

(Ω− i)(τ̂ΠΩ− i)(τ̂qΩ− i)

Ω3τ̂Πτ̂q
= 0

with z = k/ω and c0 being the sound velocity in an equilibrium state defined
by

c0 =

√
ĉv + 1

ĉv
cs,

where

cs =

√
kB
m

T0.
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Therefore, for given ĉv, τ̂q, and τ̂Π, the quantity c0z(= c0k/ω) is calculated
from Eq. (3.8) as the function of Ω.

From (3.6) and (3.7), we have the high-frequency limit of the phase velocity
and the attenuation factor as follows:

v
(L),(∞)
ph =±

√
4ĉv + 7 + F

2(1 + ĉv)
cs,

α(L),(∞) =±
√

2(1 + ĉv)3
{
F (4 + ĉv)− 22− 11ĉv + 2ĉ2v

}
9ĉvτσcs

√
7 + 4ĉv + F (7 + 4ĉv − F )2 F{

4ĉv +
3ĉv (8 + 2ĉv − F )

τ̂q
+

−3 + 2ĉv
τ̂Π

}
,

where

F = ±
√
37 + 32ĉv + 4ĉ2v.

When F takes a positive value, the absolute value of the phase velocity in
the high-frequency limit is greater than that when F takes a negative value.
Therefore the positive (negative) value of F corresponds to the first (second)
mode of the wave.

We notice that v
(L),(∞)
ph /cs(= U0/cs) depends only on ĉv. Its dependence

is shown in Fig. 1 both for the first and second modes. In particular, in

a monatomic gas with ĉv = 3/2, v
(L),(∞)
ph of the first and second modes are,

respectively, 2.13051cs and 0.812975cs. In the limit where ĉv → ∞, v
(L),(∞)
ph

of the first and second modes approach
√
3cs and cs, respectively. On the

other hand, α(L),(∞) depends not only on ĉv but also on the relaxation times.

In a monatomic gas, α
(L),(∞)
λ of the first and second modes are, respectively,

(0.0951852+0.0931368/τ̂q)/(τσcs) and (0.0238989+0.370948/τ̂q)/(τσcs). In the
limit of large specific heat, α(L),(∞) approaches 1+2τ̂Π

9
√
3τ̂Πτσcs

and 1
2τ̂qτσcs

, respec-

tively.

3.3 - Transverse waves

From (3.5), we obtain

(csz)
2

(
ĉv + 2

ĉv + 1
− i

τ̂qΩ

)
− (Ω− i)(τ̂qΩ− i)

τ̂qΩ2
= 0.
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Fig. 1. Dependence of v
(∞)
ph /cs(= U0/cs) on the specific heat for the first longitudinal

mode (solid line), the second longitudinal mode (dashed line), and the transverse mode
(dotted line).

From (3.6) and (3.7), we have the high-frequency limit of the phase velocity
and the attenuation factor as follows:

v
(T ),(∞)
ph = ±

√
ĉv + 2

ĉv + 1
cs,

α(T ),(∞) = ±
√
ĉv + 1 {1 + (ĉv + 2)τ̂q}
2(ĉv + 2)3/2τ̂qτσcs

.

Similar to the case of longitudinal waves, the dependence of v
(T ),(∞)
ph /cs

on the specific heat is shown in Fig. 1 (T-mode curve). v
(T ),(∞)
ph is

√
7/5cs

in a monatomic gas and approaches cs in the limit of ĉv → ∞ which is the
same as that of the second mode. On the other hand, α(T ),(∞) is (0.422577 +
0.120736/τ̂q)/(τσcs) in a monatomic gas and approaches 1

2τσcs
in the limit of

ĉv → ∞.

R ema r k . The phase velocities in the limit of high frequency coincide with
the characteristic eigenvalues of the system (2.2) (see [8]), and, according to the
fact that the system is symmetric hyperbolic at least in the neighborhood of
equilibrium, all the eigenvalues are real. While, in the case far from equilibrium
as is usual with RET, the hyperbolicity remains valid only in a domain of
nonequilibrium variables called hyperbolicity region (see for more details [9]).
For the present model of non-polytropic gas, this region was determined recently
in [3].
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4 - Examples: CO2 gas and para-H2 gas

As typical examples, we study the waves in CO2 and para-H2 gases. The
temperature dependence of the specific heat is determined on the basis of sta-
tistical mechanics [5,6] as shown in Fig.2. The temperature ranges in the figure
are characterized as follows: the molecular vibrational modes are excited for
CO2 gas and the molecular rotational mode is excited for para-H2 gas. The
temperature dependence of U0/cs for both gases is also shown in Fig.2.
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/c s
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Fig. 2. Temperature dependence of the specific heat (up) and U0/cs (down) for CO2

gas (left) and para-H2 gas (right). In the figure of U0/cs, the solid, dashed, and dotted
lines correspond, respectively, to the first longitudinal mode, the second longitudinal
mode, and the transverse mode.

Fig.3 shows the frequency dependence of the phase velocity and the attenu-



56 takashi arima, tommaso ruggeri and masaru sugiyama [12]
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Fig. 3. Dependence of the normalized phase velocity vph/c0 (up) and attenuation
per wavelength αλ (down) on the dimensionless frequency Ω for CO2 gas at T0 = 293K
(left) and para-H2 gas at T0 = 90.2K (right) predicted by RET14 (red) and NSF (black).
The solid, dashed, and dotted lines correspond, respectively, to the first longitudinal
mode, the second longitudinal mode, and the transversal mode.

ation per wavelength predicted by the RET14 theory and the NSF theory. For
CO2 gas, we have adopted the reference equilibrium state at T0 = 295K and
p0 = 69mm Hg. Then, we have ĉv = 3.45 and the relaxation times estimated as
τΠ = 2.2×10−5 [s], τσ = 1.6×10−9 [s], and τq = 2.2×10−9 [s] [12]. For para-H2

gas, we have taken the reference equilibrium state at T0 = 90.2K. In this case,
we have ĉv = 1.99 and the relaxation times estimated as τΠp0 = 1.85× 10−3 [s·
Pa], τσp0 = 3.97× 10−6 [s· Pa], and τqp0 = 5.16× 10−6 [s· Pa] [1]. We remark
that, in these gases, the relaxation time of the dynamic pressure is several or-
ders of magnitude larger than the other relaxation times. We find that despite
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the different molecular excitation processes in CO2 and para-H2 gases, the fre-
quency dependence of vph and αλ is similar to each other and the difference
of the values between the two gases is determined by the specific heat and the
ratio of the relaxation times.

In the prediction of the first longitudinal mode by RET for both gases,
due to the dissipation process of the dynamic pressure with large value of τΠ,
we find a steep change of vph and a peak of αλ around Ω ∼ τ̂−1

Π . Around
Ω ∼ τ̂−1

q ∼ 100, we find another steep change of vph and peak of αλ. On the
other hand, we notice that the prediction by NSF is completely different. We
already discussed the different predictions by the theories in detail in [1] and
shown that the prediction of RET is consistent with experimental data.

Regarding the second longitudinal mode, RET14 predicts that, different
from the first mode, near equilibrium, vph ∼ 0 and αλ ∼ 2π. As the frequency
increases (Ω � 10−2), these values vary monotonically. While the predictions
by RET and NSF theories agree with each other in the small frequency region,
they diverge at high frequencies. The transverse mode predicted by RET and
NSF exhibits similar behavior. We remark that, different from the case of NSF
where αλ is independent of Ω and is equal to 2π, RET predicts the non-constant
behavior of αλ.

We comment on the potential observability of the second longitudinal mode
and the transversal mode through their frequency-dependence of αλ. At low
frequencies, αλ is large, which indicates the wave is absorbed over a short
distance. Conversely, for high frequencies (Ω � 100), values of αλ of these two
modes approach the value of the first longitudinal mode. This suggests that
these modes may be observable by high-frequency experiments. Only RET
enables such theoretical predictions, as the predictions of αλ by NSF exceed 2π
for any frequency.

5 - Conclusion

In this paper, we have studied the dispersion relations for the first and sec-
ond modes of the longitudinal wave and the transverse wave using the model of
RET with 14 fields for a polyatomic non-polytropic gas. Contrary to the usual
assertion that both the second mode of the longitudinal wave and the trans-
verse wave are not observed in experiments, we have pointed out the possibility
of observing these waves in the high-frequency region.

We finally remark that, in the present approach, we have adopted the RET
with 14 fields. However, to capture the dispersion relation in a very high-
frequency region more accurately, as in the monoatomic gas [7], we require a
model with more fields [13].



58 takashi arima, tommaso ruggeri and masaru sugiyama [14]

Ac k n ow l e d gm e n t s. This paper is dedicated to the memory of our col-
league and unforgettable friend Giampiero Spiga. The work has been partially
supported by JSPS KAKENHI Grant Numbers 22K03912 (T.A.). The work
has also been carried out in the framework of the activities of the Italian Na-
tional Group of Mathematical Physics of the Italian National Institute of High
Mathematics GNFM/INdAM (T.R.).

References

[1] T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama, Dispersion rela-
tion for sound in rarefied polyatomic gases based on extended thermodynamics,
Continuum Mech. Thermodyn. 25 (2013), 727–737.

[2] T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama, Extended thermo-
dynamics of dense gases, Continuum Mech. Thermodyn. 24 (2012), 271–292.

[3] F. Brini and T. Ruggeri, Hyperbolicity Region of a Rational Extended Ther-
modynamics Model with 14 Moments for a Non-polytropic Gas, In: C. Parés, M.
J. Castro, T. Morales de Luna, M. L. Muñoz-Ruiz, eds, “Hyperbolic Problems:
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