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On propagation of exponential moments

for the Landau kinetic equation

Abstract. The paper is devoted to study of asymptotic properties (for
large values of energy) of radially symmetric solutions to the spatially
homogeneous Landau equation for Coulomb forces. The main result of
the paper is the proof of propagation in time of the exponential moment
of the third order and some explicit time-dependent estimates of this
moment. Roughly speaking, this means that the high energy tails of the
form exp[−b(t)vk] with some k ≥ 3 are typical for solutions of the Landau
equation with initial data having compact support. A comparison with
related results for similar kinetic equations is briefly discussed.
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1 - Introduction

We investigate in this paper some asymptotic (for large values of energy)
properties of solutions of the Landau kinetic equation for Coulomb forces. The
words “kinetic” and “for Coulomb forces” are omitted below for brevity. This
equation attracted a lot of attention in recent years, see, in particular, impor-
tant papers [10,11], [6]. A brief review of results and open problems in this
area can be found in our previous paper [1] and in related references from it.

In the present paper we continue the line of [1] and try to extend and
clarify one of results of that paper. We concentrate below on the proof of
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propagation in time of the exponential moment of the third order for radially
symmetric solutions to the Landau equation. In our opinion, this property
is very important because it shows very clearly a big difference between large
energy asymptotic properties of solutions to the Landau equation and solutions
to similar kinetic equations for hard forces.

We remind the known results in that area for the Boltzmann equation. The
exponential moment Ik(λ, t) of order k > 0 reads as

Ik(λ, t) =
1

4π

∫
R3

dvf(v, t) exp(λ|v|k), λ > 0,

where f(v, t) is a non-negative solution of the Boltzmann equation. Here v ∈ R3

and t ≥ 0 are standard notations for velocity and time respectively. Usually we
assume that Ik(λ0, 0) < ∞ for some λ0 > 0 and fixed k > 0. If Ik(λ, t) < ∞
for some t > 0 and sufficiently small 0 < λ < R(t), then we say that the
exponential moment Ik(λ, t) propagates in time. It is clear, that for fixed t > 0
the function R(t) denotes the radius of convergence of the Taylor series in λ for
analytic at λ = 0 function I(λ).

The well-known lower estimate [13] for Boltzmann equation with hard forces
and pseudo-Maxwell molecules states that f(v, t) ≥ a(t) exp[−b(t)|v|2] for any
t > 0 and some non-explicitly known functions a(t) > 0 and b(t) > 0. The
above lower pointwise estimate was also obtained in [7] for the Landau equation
with hard potentials. Hence, the most interesting case for hard potentials is
k = 2. The propagation of I2(λ, t) was proved for the Boltzmann equations in
several publications listed below. Moreover, it was proved in papers [4] (hard
spheres), [9] (hard potentials with cut-off), [5] (Maxwellian molecules with
cut-off), [8] (hard potentials without cut-off) that I2(λ, t) remains bounded
uniformly in time for all t > 0 for sufficiently small values of λ, say, 0 < λ < λ∗,
where the constant λ∗ depends on initial condition f(v, 0).

We shall see below that the properties of the Landau equation are quite
different. In particular, we shall prove that the exponential moment of the third
order I3(λ, t) propagates in time for radial solutions of the Landau equation.
Here and below the words “I3(λ, t) propagates in time” are understood in the
following sense: if I3(λ, 0) < ∞ for some λ > 0, then for any t > 0 there exists
λ1(t) > 0 such that I3[λ1(t), t] < ∞.

The paper is organized as follows. In Section 2 we introduce the radially
symmetric Landau equation, which will be the main subject of our study. Then
we derive the set of equations for power moments of the solution. The expo-
nential moments are introduced in Section 3. Their explicit connection with
power moments is discussed. Some estimates for time-derivatives of power mo-
ments are proved in Section 4 (Lemma 1). Then the main result of the paper,
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the propagation and explicit estimates of the exponential moment of the third
order, is formulated and proved in Theorem 1 from Section 5. The results of
the paper are briefly discussed in Conclusions.

2 - The Landau equation for radial solutions

We consider the spatially homogeneous Landau equation for f(v, t) in stan-
dard notations

∂f

∂t
=

∂

∂vi

∫
R3

dw Tij(u)

(
∂

∂vj
− ∂

∂wj

)
f(v)f(w),

Tij(u) =
|u|2δij − uiuj

|u|3 , u = v − w

(1)

with summation over repeating indices i, j = 1, 2, 3. A constant factor in front
of the collision integral (see e.g. [2], [3]) is omitted without loss of general-
ity. This is an original form of the Landau equation from [12]. This form is
very convenient for the proof of standard conservation laws and H-theorem.
However, for practical purposes we normally transform (1) by integration by
parts to the form of nonlinear diffusion-type equation (or, equivalently, the
Fokker–Planck equation [14])

(2)
∂f

∂t
=

∂

∂vi

[
Dij(v, t)

∂f

∂vj
+ Fi(v, t) f

]
,

where

Dij(v, t) =

∫
R3

dwf(w, t) Tij(v − w),

Fi(v, t) = −∂Dij

∂vj
= −2

∂

∂vi

∫
R3

dwf(w, t)

|v − w| .

(3)

We consider below the radially symmetric form of the Landau equation (1)
obtained by substitution of

(4) f(v, t) = f̃(ṽ, t̃), ṽ = |v|, t̃ = 8πt

into (1). After straightforward calculations we obtain the equation for f̃(ṽ, t̃),
where tildes are omitted

(5)
∂f

∂t
=

1

v2
∂

∂v

[
A(v)

∂f

∂v
+B(v)f

]
, v > 0,
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(6) A(v) =
1

3v

⎡⎣ v∫
0

dww4 f(w) + v3
∞∫
v

dww f(w)

⎤⎦, B(v) =

v∫
0

dww2 f(w).

Here and below the argument t is often omitted. The letters v, w, x, y, . . .
denote scalar non-negative variables (in contrast with Section 1 and Eqs. (1) –
(3)). The Landau equation (5), (6) will be the main object of our study. It can
be also written in the form similar to (1)

∂f

∂t
=

1

v2
∂

∂v

∞∫
0

dww K(v, w)

(
1

v

∂

∂v
− 1

w

∂

∂w

)
f(v)f(w),

K(v, w) =
1

3
min

(
v3, w3

)
.

(7)

We consider in this paper a class of initial data for Eq. (4) that includes,
for example, such functions as

(8) f0(v) = f(v, 0) ≤ C exp(−b|v|3), v ≥ 0,

for some positive numbers C and b. In fact we shall need below a weaker
restriction for f0(v). To explain it we introduce notations for power moments

(9) mn(t) =

∞∫
0

dvf(v, t)v2+n, n = 0, 1, . . .

Then the weaker restrictions read

(10) m3n(0) =

∞∫
0

dvf(v, 0)v2+3n ≤ C

∞∫
0

dve−bv3v2+3n =
C n!

3 bn+1
, n = 0, 1, . . .

Obviously these inequalities follow from Eq. (8) with the same values of C and
b. On the other hand, there are many functions, which satisfy conditions (10)
without satisfying conditions (8).

Let us consider a “nice” solution f(v, t) of the Landau equation (5), (6) on
the time-interval [0, T ] with some T > 0. In particular, we assume that all
moments (9) of the solution are bounded for all 0 ≤ t ≤ T . Then we obtain
from equations (5), (6) the following equations for moments
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dmn(t)

dt
=

∞∫
0

dvvn
∂

∂v
[A(v) fv +B(v)f ]

= vn [A(v) fv +B(v)f ]
∣∣∣∞
0

− n

∞∫
0

dvvn−1 [A(v) fv +B(v)f ]

=
{
vnA(v) fv + vn−1 [vB(v)− nA(v)] f

} ∣∣∣∞
0

+ n

∞∫
0

dvf(v)

[
∂

∂v
vn−1A(v)−B(v)vn−1

]
, n = 0, 1, . . .

(11)

where the argument t of function f(v, t) and its partial derivative fv(v, t) is
omitted.

For simplicity of presentation it is assumed that f(v, t) ≥ 0 and fv(v, t) are
bounded continuous functions of v ≥ 0 for any 0 ≤ t ≤ T . We also assume that
for any n ≥ 0

lim
v→∞ vnmax[f(v, t), |fv(v, t)|] = 0, 0 ≤ t ≤ T.

Under these assumptions Eqs. (11) reduce to

dmn(t)

dt
= n

∞∫
0

dvf(v)

[
∂

∂v
vn−1A(v)−B(v)vn−1

]
, n ≥ 0,

in the notation of Eq. (6). Then we obtain by differentiation

∂

∂v
vn−1A(v) =

n− 2

3

⎡⎣vn−3

v∫
0

dwf(w)w4 + 4vn
∞∫
v

dwf(w)w

⎤⎦ .

Hence,
dmn(t)

dt
= I(1)n (t) + I(2)n (t) + I(3)n (t), n ≥ 0,

where

I(1)n (t) =
n(n− 2)

3

∞∫
0

dvf(v)vn−3

v∫
0

dwf(w)w4,

I(2)n (t) =
n(n+ 1)

3

∞∫
0

dvf(v)vn
∞∫
v

dwf(w)w,
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I(3)n (t) = n

∞∫
0

dvf(v)vn−1

v∫
0

dwf(w)w2.

It is convenient to change the order of integration in the integral I
(2)
n (t). Then

we obtain by exchange of notations for v and w the following formula

I(2)n (t) =
n(n+ 1)

3

∞∫
0

dvf(v)v

v∫
0

dwf(w)wn.

Hence, the equations for moments (9) of f(v, t) have the following form

(12)
dm0

dt
= 0;

dmn

dt
=

∫ ∞

0
dvf(v, t)

∫ v

0
dwf(w, t)Qn(v, w),

where

Qn(v, w) = αnv
n−3w4 + βnvw

n − γnv
n−1w2,

αn =
n(n− 2)

3
, βn =

n(n+ 1)

3
, γn = n; n ≥ 0.

(13)

These equations were used in [1] without details of their derivation. Of course,
they are valid also for any real n ≥ 0. We consider below only such solutions
f(v, t) of the Landau equations (5) that have all moments satisfying Eqs. (12)
at least in their integral form

(14) mn(t) = mn(0) +

t∫
0

dτ

∞∫
0

dvf(v, τ)

v∫
0

dwf(w, τ)Qn(v, w)

in the notation of Eqs. (13).

3 - Exponential moments

If the distribution function f(v, t) is such that

(15) Ik(λ, t) =

∞∫
0

dvf(v, t)v2 exp(λvk) < ∞

for some k > 0 and λ > 0 for any 0 ≤ t ≤ T , then we call the integral Ik(λ, t)
“the exponential moment of order k > 0”. The variable λ can be considered
as a free parameter. For example, the initial data satisfying conditions (8),
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have bounded exponential moment I3(λ, 0) for any 0 < λ < b. For brevity we
consider below the only case k = 3, i.e. exponential moments of the third order.
Our goal is to prove their propagation in time.

There is an obvious connection between power moments m3n(t) and I3(λ, t).
By using the Taylor series for the exponential function in (15) we obtain

(16) I3(λ, t) =
∞∑
n=0

λn

n!
m3n(t), m3n(t) =

∞∫
0

dvf(v, t)v2+3n,

where n = 0, 1, . . . The radius R(t) of convergence of the series in (16) is given
by the well-known formula

R(t) =

{
lim
n→∞ sup

[
m3n(t)

n!

]1/n}−1

,

but we shall not use this formula below. In spite of it we can use direct esti-
mates of the integral I3(λ, t) in the form of series (16) provided that the initial
moments mn(0) satisfy conditions (10). In particular, it follows from (10) that

(17) I3(λ, 0) ≤
C

3b

∞∑
n=0

(
λ

b

)n

=
C

3b

(
1− λ

b

)−1

, |λ| < b.

In order to obtain similar estimates of I3(λ, t) for t > 0 we shall need some
estimates for moments obtained in the next section.

4 - Estimates of moments

Let us consider equations (12) for moments. The first consequence of these
equations is that

m0(t) = m0(0) = const., m2(t) = m2(0) = const.,

i.e. the conservation laws for mass and energy. The set of equations (12) is
obviously unclosed because the right hand side of (12) is not expressed in terms
of moments {mn(t), n = 0, 1, . . . }. However, we can derive from (12) a closed
set of inequalities for moments. It can be done in the following way. The
moments m0 = m0(0), m2 = m2(0) are given by initial data. The first moment
m1(t) can be estimated by standard inequality

m2

m0
≥
(
m1

m0

)2

,
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which means that the average of square is greater or equal to the square of
average value. Hence, we obtain

m1(t) ≤ (m0m2)
1/2 = const.

Therefore it is sufficient to consider Eqs. (12) for n ≥ 3. Note that the polyno-
mial Qn(v, w) in the integral can be written as

Qn(v, w) = vn−1w2 [αn(w/v)
2 + βn(w/v)

n−2 − γn],

v > 0, 0 ≤ w ≤ v, n = 3, 4, . . .

in the notation of Eqs. (13). Since w/v ≤ 1, we obtain

Qn(v, w) ≤ gnv
n−1w2, gn = αn + βn − γn =

2

3
n(n− 2).

Hence, it follows from Eqs. (12) that

dmn(t)

dt
≤ gn

∞∫
0

dvf(v, t)vn−1

v∫
0

dwf(w, t)w2, n ≥ 3.

Finally we change the upper limit to infinity in the inner integral and obtain
the following simple inequality for moments

dmn(t)

dt
≤ gnmn−3(t)m0(t), n ≥ 3.

The result can be formulated as follows.

L emma 1. If the set {mn(t), n = 0, 1, . . . } of integer moments (9) of
non-negative function f(v, t) satisfies equations (12), (13) on some interval
0 ≤ t ≤ T , then

(a)

(18) m0(t) = m0(0), m2(t) = m2(0);

(b)

(19) m1(t) ≤ [m0(0)m2(0)]
1/2;

(c) the moments of orders n = 2, 3, . . . satisfy linear differential inequalities

(20)
dmn(t)

dt
≤ gnm0(0)mn−3(t), gn =

2

3
n(n− 2), 0 ≤ t ≤ T.
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In exactly the same way one can prove a more general (integral) version of
Lemma 1, where it is assumed that the moments {mn(t), n = 0, 1, . . . } satisfy
integral equations (14). In such version the inequalities (20) for n ≥ 3 should
be replaced by integral inequalities

(21) mn(t) ≤ mn(0) + gnm0(0)

τ∫
0

dτmn−3(τ)

in the notation of Eqs. (20). Perhaps the integral version of Lemma 1 can be
applied to Villani’s H -solutions [16] of the Landau equation (the propagation
of moments for these solutions is proved in [6]).

In the next section we apply Lemma 1 to evaluation of series (16).

5 - Estimates of exponential moment I3(λ, t)

Our goal in this section is to prove the following theorem

Th e o r em 1. Let f(v, t) be a non-negative solution of the Landau equation
on the time-interval 0 ≤ t ≤ T . It is assumed that

(i) power moments {m3n(0), n = 0, 1, . . . } (9) satisfy Eqs. (12), (13) (or
integral equations (14) for 0 ≤ t ≤ T )

(ii) the initial values {m3n(0), n = 0, 1, . . . } of these moments satisfy in-
equalities

(22) m3n(0) ≤
Cn!

3bn+1
, n = 0, 1, . . .

for some constants C > 0 and b > 0. Then the following estimate of the
exponential moment I3(λ, t) (16) is valid for all 0 ≤ t ≤ T :

(23) I3(λ, t) ≤
C

3
[b1(t)− λ]−1, b1(t) = b exp[−6m0(0) bt], 0 < λ < b1(t).

Rema r k 1. In fact the condition (ii) of Theorem 1 can be replaced by
the equivalent condition (ii’): I3(λ0, 0) < ∞ for some λ0 > 0. Such condition
means that the series (16) for I3(λ, 0) has a positive radius of convergence
R > 0. Then it follows from above formula for R that

m3n(0)

n!
≤ m0(0)b

−n, n = 0, 1, . . .

for some b > 0. These are exactly inequalities (22) with C = 3m0(0)b.
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To prove the theorem we need the following lemma.

L emma 2. Let functions {xn(t), n = 0, 1, . . . } satisfy for t ≥ 0 inequalities

dxn(t)

dt
≤ nxn−1, n = 1, 2, . . . ;

x0(t) = x0(0);

0 ≤ xn(0) ≤ 1, n = 0, 1, . . .

(24)

Then

(25) xn(t) ≤ exp[(n+ 1)t], n = 0, 1, . . .

P r o o f. We integrate inequalities (24) and obtain

xn(t) ≤ 1 + n

t∫
0

dτxn−1(τ), n ≥ 1.

The estimate (24) is obviously correct for n = 0, since x0(0) ≤ 1. Then we use
induction and get for any n ≥ 1

xn(t) ≤ 1 + n

t∫
0

dτ exp(nτ) = exp(nt) ≤ exp[(n+ 1)t], t ≥ 0.

This completes the proof. �

Then we pass to the proof of Theorem 1.

P r o o f. We note that the exponential moments I3(λ, t) depends only on
power moments m3n(t), n ≥ 0, as it is seen from the series (16). We also
remind to the reader that accordingly to (10), the assumption (ii) of Theorem 1
means simply that the moments m3n(0) are controlled by similar moments of
the function C exp(−bv3) with arbitrary parameters C > 0 and b > 0. It was
already shown that this assumption leads to a simple estimate (17) of I3(λ, 0).
In fact, Theorem 1 gives an extension of that estimate to positive values of
time t.

To prove this extension we first simplify inequalities (20) in obvious way
and obtain

dmn(t)

dt
≤ 2n2

3
m0(0)mn−3(t), n ≥ 3.
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Then we consider these inequalities for a subset of indices n = 3ñ, ñ ≥ 1.
Omitting tildes, we obtain

dm3n(t)

dt
≤ 6n2m0(0)m3(n−1)(t), n = 1, 2, . . . ; m0(t) = m0(0).

After that we change variables by transformation

m3n(t) =
C n!

3 bn+1
xn(τ), τ = 6m0(0) b t , n ≥ 0.

Then we obtain

dxn(τ)

dτ
≤ nxn−1(τ), xn(0) ≤ 1, n ≥ 1; x0(τ) = x0(0) ≤ 1.

It remains to apply Lemma 2 to this set of inequalities. Coming back to initial
variables, we get the following estimates for moments

m3n(t) ≤
Cn!

3bn+1
exp[6m0(0) b (n+ 1) t], n = 0, 1, . . .

Finally we substitute these estimates into the series (16) and obtain the result-
ing inequality (23).

This completes the proof of Theorem 1. �

6 - Conclusions

We have considered in this paper some properties of radially symmetric
solutions f(v, t) of the Landau equation, where v ≥ 0 denotes the absolute
value of the velocity. The main result is the proof of propagation in time t > 0
of the exponential moment

I3(λ, t) =

∞∫
0

dvf(v, t)v2 exp(λv3), λ > 0,

of the third order. The result is formulated in Theorem 1 and Remark 1 (Sec-
tion 5). It simplifies the proof of similar result from [1] and contains some new
explicit estimates of the integral I3(λ, t).

We expect that f(v, t) converges to a Maxwellian M = Ae−bv2 , as t → ∞.
Then formally the integral I3(λ, t) tends to infinity for any fixed λ > 0. This
does not contradict to Theorem 1. In fact we have proved that, for any t > 0,
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I3(λ, t) can be represented by its Taylor series in λ, but the radius R(t) of
convergence of the series tends to zero exponentially in time t, as t → ∞.

The propagation of I3(λ, t) for the original Landau equation (1) from [12]
considered in the present paper shows a big difference in asymptotic properties
with the Boltzmann equation for hard forces. It was already discussed in Intro-
duction that the propagation of the exponential moment I2(λ, t) of the second
order is proved and studied in detail for the Boltzmann equation. The moment
I3(λ, t) does not exist in that case because of the Maxwellian lower bound [13]
mentioned in Introduction. It is clear that similar lower bound cannot exist
for solutions of the Landau equation (1). On the other hand, the Maxwellian
lower bound is also valid for the Landau equation with hard potentials [7]. Of
course, such difference in properties is not related to grazing collisions limit,
but rather to the difference in collision frequency as the function of relative
velocity. It would be more reasonable to compare solutions of equation (1)
with solutions of the Boltzmann equation for soft potentials, but we do not
know much about exponential moments for that case. It is interesting that the
asymptotic solutions of the Landau equation constructed in [3] are in complete
agreement with Theorem 1 applied to initial data f(v, 0) with compact support.
Roughly speaking, it follows from Theorem 1 that the solution f(v, t) for such
initial data decays, as v → ∞, like exp(−bv3) or faster. Of course, it does not
contradict to relaxation of f(v, t) to some Maxwellian for large values of time.
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