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1 - Introduction

In this article, we study the following (p, q)-eigenvalue problems

(1.1) −Hpu+ α(−∆p)
su = λ‖u‖p−q

Lq(Ω)|u|
q−2u in Ω,

where α = 0 or 1 and Ω ⊂ RN is a bounded domain. For α = 0, it will be
understood that (1.1) holds under the Dirichlet boundary condition u = 0 on
∂Ω and for α = 1, the boundary condition u = 0 in RN \ Ω holds. Throughout
the rest of the paper, we assume that 0 < s < 1, 1 < p < ∞, 1 < q < p∗, where
p∗ = Np

N−p if 1 < p < N and p∗ = ∞ if p ≥ N unless otherwise stated. For
0 < s < 1,

(−∆p)
su = P.V.

ˆ

RN

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy,
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is the fractional p-Laplace operator, where P.V. denotes the principal value, see
[13] for more details. Further Hpu = div(H(∇u)p−1∇H(∇u)) is the anisotropic
p-Laplace operator, where H : RN → [0,∞) is a Finsler-Minkowski norm, that
is H is nonnegative in RN , which is C1(RN \ {0}) and strictly convex such that
H(x) = 0 iff x = 0 and

(1.2) c1|x| ≤ H(x) ≤ c2|x|, ∀x ∈ RN ,

for some positive constants c1, c2 and H is even, positively homogeneous of
degree 1, so that

(1.3) H(tx) = |t|H(x), for every x ∈ RN and t ∈ R.

From the proof of [27, Lemma 5.9], it follows that

(1.4) 〈H(x)p−1∇H(x)−H(y)p−1∇H(y), x− y〉 > 0,

for every x, y ∈ RN such that x �= y.
The dual H0 : RN → [0,∞) of H is defined by

(1.5) H0(ξ) := sup
x∈RN\{0}

〈x, ξ〉
H(x)

.

A typical example of H includes the lr-norm defined by

(1.6) H(ζ) =
( N∑

i=1

|ζi|r
) 1

r
, r > 1,

where ζ = (ζ1, ζ2, . . . , ζN ). When H is the lr-norm as in (1.6), we have

(1.7) Hpu =
N∑
i=1

∂

∂xi

(( N∑
k=1

∣∣∣ ∂u
∂xk

∣∣∣
r) p−r

r
∣∣∣ ∂u
∂xi

∣∣∣
r−2 ∂u

∂xi

)
.

For r = 2 in (1.7), Hp becomes the usual p-Laplace operator ∆p. Moreover, for
r = p in (1.7), the operator Hp reduces to the pseudo p-Laplace operator.
Therefore, equation (1.1) covers a wide range of mixed local and nonlocal
problems and in particular, extends the following mixed eigenvalue problem

(1.8)
N∑
i=1

∂

∂xi

(( N∑
k=1

∣∣∣ ∂u
∂xk

∣∣∣
r) p−r

r
∣∣∣ ∂u
∂xi

∣∣∣
q−2 ∂u

∂xi

)
+α(−∆p)

su = λ‖u‖p−q
Lq(Ω)|u|

q−2u in Ω.
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In the local case (α = 0), the p-Laplace eigenvalue problem

−∆pu = λ‖u‖p−q
Lq(Ω)|u|

q−2u in Ω, u = 0 on ∂Ω,

has been studied widely. In this concern, for p = q, we refer to the works
in [25,32,34] and the references therein. When p �= q, we again refer to [25]
including [15,16,17,18,19,28,30,31,37,38,39] and the references therein.

The pseudo Laplace (p, q)-eigenvalue problem

(1.9) −
N∑
i=1

∂

∂xi

(
∂u

∂xi

∣∣∣
p−2 ∂u

∂xi

)
= λ‖u‖p−q

Lq(Ω)|u|
q−2u in Ω, u = 0 on ∂Ω

is studied for p = q in [3]. For p �= q, refer to [36] and the references therein.
Further equation (1.9) is extended to the anisotropic (p, q)-eigenvalue problem

(1.10) −Hpu = λ‖u‖p−q
Lq(Ω)|u|

q−2u in Ω, u = 0 on ∂Ω

in [21] for q = 2. For p = q, see [1,2,11,12] and the references therein.
In the nonlocal case, following fractional p-Laplace eigenvalue problem

(−∆p)
su = λ‖u‖p−q

Lq(Ω)|u|
q−2u in Ω, u = 0 in RN \ Ω

is studied for p = q in [5, 9, 20, 33] and the references therein. For p �= q,
see [18].

When H(x) = |x|, in the mixed local and nonlocal case, the following
eigenvalue problem

−∆pu−
ˆ

RN

J (x− y)|u(x)− u(y)|p−2(u(y)− u(x))dy = λ|u|p−2u in Ω,

u = 0 in RN \ Ω,

has been studied by [10, 26], where J : RN → R+ is a nonsingular, radially
symmetric, nonnegative and compactly supported kernel. Further, [6,8] studied
the limiting problem for mixed local and nonlocal problems. Recently, the mixed
local and nonlocal (p, q)-eigenvalue problem

(1.11) −∆pu+ (−∆p)
su = λ‖u‖p−q

Lq(Ω)|u|
q−2u in Ω, u = 0 in RN \ Ω

has been studied in [24].
In the work [14] the authors considered mixed local and nonlocal linear

eigenvalue problems with Neumann boundary condition. For regularity results
in the mixed case, see [4] and the references therein.



220 prashanta garain and alexander ukhlov [4]

To the best of our knowledge, mixed anisotropic and nonlocal p-Laplace
equation is very less understood. We refer to the recent works [22, 23]. As
far as we are aware, for such general class of the Finsler-Minkowski norm H
considered in this paper, mixed anisotropic and nonlocal p-Laplace eigenvalue
problem (1.1) is not studied before even for p = 2. Our main purpose in this
article is to investigate the existence and regularity of the eigenvalue problem
(1.1) by considering both the purely anisotropic case (α = 0) and mixed case
(α = 1) in (1.1). To this end, we follow the approach introduced in Ercole [18].
Further, we employ the recent regularity results from [22].

The organization of the paper is as follows: In Section 2, we present the
functional setting, state some auxiliary results and the main results of this
article. In Section 3, some preliminary results are proved. Finally, in Section 4,
we prove the main results.

2 - Basic definitions and main results

In this section, we present some known results for the Sobolev spaces, see [13]
for more details. Let Ω ⊂ RN , N ≥ 2 be a bounded domain. The fractional
Sobolev space W s,p(Ω), 0 < s < 1 < p < ∞, is defined by

W s,p(Ω) =
{
u ∈ Lp(Ω) :

|u(x)− u(y)|

|x− y|
N
p
+s

∈ Lp(Ω× Ω)
}

and endowed with the norm

‖u‖W s,p(Ω) =

(ˆ

Ω
|u(x)|p dx+

ˆ

Ω

ˆ

Ω

|u(x)− u(y)|p

|x− y|N+ps
dx dy

) 1
p

.

The Sobolev space W 1,p(Ω), 1 < p < ∞, is defined as the Banach space of
locally integrable weakly differentiable functions u : Ω → R equipped with the
norm

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

The Sobolev space X0 := W 1,p
0 (Ω) is defined as the closure of C∞

c (Ω) with
respect to the norm ‖u‖ = ‖H(∇u)‖Lp(Ω).

To study the mixed problem, we consider the space X1 defined as

X1 = {u ∈ W 1,p(RN ) : u|Ω ∈ X0, u = 0 a.e. in RN \ Ω}

under the norm

‖u‖ = ‖H(∇u)‖Lp(Ω) +

∥∥∥∥∥
u(x)− u(y)

|x− y|
N+ps

p

∥∥∥∥∥
Lp(RN×RN )

.
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Next, we have the following result from [6, Lemma 2.1].

L em m a 2.1. There exists a constant c = c(N, p, s,Ω) such that

(2.1)
ˆ

RN

ˆ

RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy ≤ c

ˆ

Ω
|∇u|p dx

for every u ∈ X1.

For the following result, see [40].

L em m a 2.2. Let α = 0 and 1. Then the spaces Xα are real separable and
uniformly convex Banach space.

From [29, Lemma 2.1] we have the following result.

L em m a 2.3. Let 1 < p < ∞ and H : RN → [0,∞) be a Finsler-Minkowski
norm. If

(2.2) H(x)p + (p− 1)H(y)p − p〈x,H(y)p−1∇H(y)〉 = 0,

for some x, y ∈ RN , y �= 0 and H(x) = H(y). Then x = y.

Moreover, for the following properties, refer to [29, Pages 539-540].

L em m a 2.4. Let 1 < p < ∞ and H : RN → [0,∞) be a Finsler-Minkowski
norm. Then

(a) H0(∇H(x)) = 1 for every x ∈ RN \ {0}.

(b) For every x, ξ ∈ RN , we have

(2.3) 〈x, ξ〉 ≤ H0(ξ)H(x),

where the equality in (2.3) holds iff

(2.4) x = H(ξ)∇H(ξ) or, equivalently, H0(ξ) = H(x).

Next, we state the following result, which follows from [7, Theorem 9.14].

T h e o r em 2.5. Let V be a real separable reflexive Banach space and V ∗ be
the dual of V . Assume that A : V → V ∗ is a bounded, continuous, coercive and
monotone operator. Then A is surjective, i.e., given any f ∈ V ∗, there exists
u ∈ V such that A(u) = f . If A is strictly monotone, then A is also injective.

The next result follows from [35, Corollary 1.57].
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L em m a 2.6. Let Ω ⊂ RN be such that |Ω| < ∞ and 1 < p < ∞, 1 < r <
p∗. Then for every u ∈ W 1,p

0 (Ω), there exists a positive constant C = C(r, p,N)
such that

(2.5)
(ˆ

Ω
|u|r dx

) 1
r

≤ C|Ω|
1
r
− 1

p
+ 1

N

(ˆ

Ω
|∇u|p dx

) 1
p

.

Next we define the notion of solution of the problem (1.1).

D e f i n i t i o n 2.7. Let α = 0 or 1. We say that (λ, u) ∈ R×Xα \ {0} is an
eigenpair of (1.1) if for every φ ∈ Xα, we have

(2.6)
ˆ

Ω
H(∇u)p−1∇H(∇u)∇φ dx

+ α

ˆ

RN

ˆ

RN

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+ps
dxdy

= λ‖u‖p−q
Lq(Ω)

ˆ

Ω
|u|q−2uφ dx.

We observe that Lemma 2.1 ensures the above Definition in (2.6) is well
stated. We refer to λ as an eigenvalue and u as an eigenfunction of (1.1)
corresponding to the eigenvalue λ.

2.1 - Main results

Our main results in this article reads as follows:

T h e o r em 2.8. Let α = 0 or 1. Suppose 0 < s < 1, 1 < p < ∞ and
1 < q < p∗. Then the following properties hold:

(a) There exists a sequence {wn}n∈N ⊂ Xα ∩ Lq(Ω) such that ‖wn‖Lq(Ω) = 1
and for every v ∈ Xα, we have

(2.7)
ˆ

Ω
H(∇wn)

p−1∇H(∇wn)∇v dx

+α

ˆ

RN

ˆ

RN

|wn(x)− wn(y)|p−2(wn(x)− wn(y))(v(x)− v(y))

|x− y|N+ps
dxdy

= µn

ˆ

Ω
|wn|q−2wnv dx,
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where

µn ≥ λ := inf
{u∈Xα∩Lq(Ω), ‖u‖Lq(Ω)=1}

{ˆ

Ω
H(∇u)p dx

+α

ˆ

RN

ˆ

RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy

}
.

(b) Moreover, the sequences {µn}n∈N and {‖wn+1‖pXα
}n∈N given by (2.7) are

nonincreasing and converge to the same limit µ, which is bounded below
by λ. Further, there exists a subsequence {nj}j∈N such that both {wnj}j∈N
and {wnj+1}j∈N converges in Xα to the same limit w ∈ Xα ∩ Lq(Ω) with
‖w‖Lq(Ω) = 1 and (µ,w) is an eigenpair of (1.1).

T h e o r em 2.9. Let α = 0 or 1. Assume that 0 < s < 1, 1 < p < ∞
and 1 < q < p∗. Suppose {un}n∈N ⊂ Xα ∩ Lq(Ω) such that ‖un‖Lq(Ω) = 1 and
limn→∞ ‖un‖pXα

= λ.
Then there exists a subsequence {unj}j∈N which converges weakly in Xα to

u ∈ Xα ∩ Lq(Ω) with ‖u‖Lq(Ω) = 1 such that

λ =

ˆ

Ω
H(∇u)p dx+ α

ˆ

RN

ˆ

RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy.

Moreover, (λ, u) is an eigenpair of (1.1) and any associated eigenfunction of λ
are precisely the scalar multiple of those vectors at which λ is reached.

Our final main result concerns the following qualitative properties of the
eigenfunctions of (1.1).

T h e o r em 2.10. Let α = 0 or 1. Assume that 0 < s < 1, 1 < p < ∞
and 1 < q < p∗. Suppose λ > 0 is an eigenvalue of the problem (1.1) and
u ∈ Xα \ {0} is a corresponding eigenfunction. Then (a) u ∈ L∞(Ω). (b)
Moreover, if u is nonnegative in Ω, then u > 0 in Ω. Further, for every ω � Ω
there exists a positive constant c depending on ω such that u ≥ c > 0 in ω.

3 - Coercive operators

In this section, we establish some preliminary results that are crucial to
prove our main results. To this end, Let α = 0 or 1. For v ∈ Xα, we define the
operators Aα : Xα → Xα

∗ by

(3.1) 〈Aα(v), w〉 =
ˆ

Ω
H(∇v)p−2∇H(∇v)∇w dx
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+α

ˆ

RN

ˆ

RN

|v(x)− v(y)|p−2(v(x)− v(y))(w(x)− w(y))

|x− y|N+ps
dxdy, ∀w ∈ Xα

and B : Lq(Ω) → (Lq(Ω))∗ by

〈B(v), w〉 =
ˆ

Ω
|v|q−2vw dx, ∀w ∈ Xα.(3.2)

The symbols Xα
∗ and (Lq(Ω))∗ denotes the dual of Xα and Lq(Ω) respectively.

First, we have the following result.

L e mm a 3.1. Let α = 0 or 1. Then (i) The operators Aα defined by (3.1)
and B defined by (3.2) are continuous. (ii) Moreover, A is bounded, coercive
and monotone.

P r o o f. (i) Continuity: Suppose vn ∈ Xα such that vn → v in the norm
of Xα. Thus, up to a subsequence ∇vn(x) → ∇v(x) for almost every x ∈ Ω.
We observe that

(3.3) ‖H(∇vn)
p−1∇H(∇vn)‖

L
p

p−1 (Ω)
≤ c‖H(∇vn)‖p−1

Lp(Ω) ≤ c,

for some constant c > 0, which is independent of n. Thus, up to a subsequence,
we have

(3.4) H(∇vn)|p−1∇H(∇vn) ⇀ H(∇v)p−1∇H(∇v) weakly in Lp′(Ω),

where p′ = p
p−1 . Moreover, for α = 1, by Lemma 2.1, up to a subsequence, we

have

(3.5)
|vn(x)− vn(y)|p−2(vn(x)− vn(y))

|x− y|
N+ps

p′
⇀

|v(x)− v(y)|p−2(v(x)− v(y))

|x− y|
N+ps

p′

weakly in Lp′(R2N ). Since, the weak limit is independent of the choice of the
subsequence, as a consequence of (3.4) and (3.5), we have

lim
n→∞

〈Aα(vn), w〉 = 〈Aαv, w〉

for every w ∈ Xα. Thus Aα is continuous. Similarly, we obtain B is continuous.

(ii) Boundedness: First using Cauchy-Schwartz inequality, for every v, w ∈
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Xα, we obtain

〈Aα(v), w〉 =
ˆ

Ω
H(∇v)p−1∇H(∇v)∇w dx

+ α

ˆ

RN

ˆ

RN

|v(x)− v(y)|p−2(v(x)− v(y))(w(x)− w(y))

|x− y|N+ps
dxdy

≤
ˆ

Ω
H(∇v)p−1H0(∇H(∇v))H(∇w) dx

+ α

ˆ

RN

ˆ

RN

|v(x)− v(y)|p−1|w(x)− w(y)|
|x− y|N+ps

dxdy.

Now using Hölder’s inequality with exponents p
p−1 and p we have

(3.6) 〈Aα(v), w〉

≤
ˆ

Ω
H(∇v)p−1H(∇w) dx+ α

ˆ

RN

ˆ

RN

|v(x)− v(y)|p−1|w(x)− w(y)|
|x− y|N+ps

dxdy

≤
( ˆ

Ω
H(∇v)p dx

) p−1
p
( ˆ

Ω
H(∇w)p dx

) 1
p

+ α
( ˆ

RN

ˆ

RN

|v(x)− v(y)|p

|x− y|N+ps
dxdy

) p−1
p
( ˆ

RN

ˆ

RN

|w(x)− w(y)|p

|x− y|N+ps
dxdy

) 1
p

≤

[( ˆ

Ω
H(∇v)p dx

) p−1
p

+ α
( ˆ

RN

ˆ

RN

|v(x)− v(y)|p

|x− y|N+ps
dxdy

) p−1
p

]
‖w‖Xα

≤
( ˆ

Ω
H(∇v)p dx+ α

ˆ

RN

ˆ

RN

|v(x)− v(y)|p

|x− y|N+ps
dxdy

) p−1
p ‖w‖Xα

= ‖v‖p−1
Xα

‖w‖Xα ,

where in the second and third step above, we have used Lemma 2.4.
Therefore, we have

‖Aα(v)‖X∗
α
= sup

‖w‖Xα≤1
|〈Av,w〉| ≤ ‖v‖p−1

Xα
‖w‖Xα ≤ ‖v‖p−1

Xα
.

Thus, Aα is bounded.
Coercivity: We observe that

〈Aα(v), v〉 =
ˆ

Ω
|∇v|p dx+ α

ˆ

RN

ˆ

RN

|v(x)− v(y)|p

|x− y|N+ps
dxdy = ‖v‖pXα

.

Since p > 1, we have Aα is coercive.
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Monotonicity: For u ∈ Xα, let us denote by

A(u(x, y)) = |u(x)− u(y)|p−2(u(x)− u(y)), dµ =
dxdy

|x− y|N+ps
.

Using the inequality (1.4), for every v, w ∈ Xα, we have

〈Aα(v)−Aα(w), v − w〉

=

ˆ

Ω
〈H(∇v)p−1∇H(∇v)−H(∇w)p−1∇H(∇w),∇(v − w)〉 dx

+ α

ˆ

RN

ˆ

RN

(
A(v(x, y))−A(w(x, y))

)
((v(x)− w(x))− (v(y)− w(y))) dµ

≥ 0.

Thus, Aα is monotone.

L e mm a 3.2. Let α = 0 or 1. Then the operators Aα defined by (3.1) and
B defined by (3.2) satisfy the following properties:

(H1) Aα(tv) = |t|p−2tAα(v) ∀t ∈ R and ∀v ∈ Xα.

(H2) B(tv) = |t|q−2tB(v) ∀t ∈ R and ∀v ∈ Lq(Ω).

(H3) 〈Aα(v), w〉 ≤ ‖v‖p−1
Xα

‖w‖Xα for all v, w ∈ Xα, where the equality holds if
and only if v = 0 or w = 0 or v = tw for some t > 0.

(H4) 〈B(v), w〉 ≤ ‖v‖q−1
Lq(Ω)‖w‖Lq(Ω) for all v, w ∈ Lq(Ω), where the equality

holds if and only if v = 0 or w = 0 or v = tw for some t ≥ 0.

(H5) For every w ∈ Lq(Ω) \ {0} there exists u ∈ Xα \ {0} such that

〈Aα(u), v〉 = 〈B(w), v〉 ∀ v ∈ Xα.

P r o o f. (H1) Follows by the definition of Aα.

(H2) Follows by the definition of B.

(H3) First,we note that from (3.6) the inequality〈Aα(v), w〉 ≤ ‖v‖p−1
Xα

‖w‖Xα

holds for all v, w ∈ Xα. Let the equality

(3.7) 〈Aα(v), w〉 = ‖v‖p−1
Xα

‖w‖Xα

holds for every v, w ∈ Xα. We claim that either v = 0 or w = 0 or v = tw for
some constant t > 0. Indeed, if v = 0 or w = 0, this is trivial. Therefore, we
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assume v �= 0 and w �= 0 and prove that v = tw for some constant t > 0. By
the estimate (3.6) if the equality (3.7) holds, then we have

〈Aα(v), w〉 =
ˆ

Ω
H(∇v)p−1H(∇w) dx(3.8)

+ α

ˆ

RN

ˆ

RN

|v(x)− v(y)|p−1|w(x)− w(y)|
|x− y|N+ps

dxdy,

which gives us

(3.9)
ˆ

Ω
f(x) dx+ α

ˆ

RN

ˆ

RN

g(x, y) dxdy

|x− y|N+ps
= 0,

where
f(x) = H(∇v)p−1H(∇w)−H(∇v)p−1〈∇H(∇v),∇w〉

and

g(x, y) = |v(x)−v(y)|p−1|w(x)−w(y)|−|v(x)−v(y)|p−2(v(x)−v(y))w(x)−w(y).

By Cauchy-Schwartz inequality and Lemma 2.4, we have f ≥ 0 in Ω and g ≥ 0
in RN×RN . Hence using these facts in (3.9), we have f = 0 in Ω, which reduces
to

(3.10) H(∇v)p−1H(∇w) = H(∇v)p−1〈∇H(∇v),∇w〉 in Ω.

On the other hand, if the equality (3.7) holds, then by the estimate (3.6) we
have

f1 − f2 = α(g2 − g1),(3.11)

where

f1 =

ˆ

Ω
H(∇v)p−1H(∇w) dx, f2 =

( ˆ

Ω
H(∇v)p dx

) p−1
p
( ˆ

Ω
H(∇w)p dx

) 1
p
,

g1 =

ˆ

RN

ˆ

RN

|v(x)− v(y)|p−2(v(x)− v(y))(w(x)− w(y))

|x− y|N+ps
dxdy

and

g2 =
( ˆ

RN

ˆ

RN

|v(x)− v(y)|p

|x− y|N+ps
dxdy

) p−1
p
( ˆ

RN

ˆ

RN

|w(x)− w(y)|p

|x− y|N+ps
dxdy

) 1
p
.

If α = 0, then from (3.11) we get f1 = f2. If α = 1, then by Hölder’s inequality,
we know that f1 − f2 ≤ 0 and g2 − g1 ≥ 0. Therefore, we obtain from (3.11)
that

f1 = f2 and g1 = g2.
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Since f1 = f2, the equality in Hölder’s inequality holds, which gives

(3.12) H(∇v) = H(t∇w) in Ω,

for some constant t > 0. Using (3.12), we observe that

L1 = H(t∇w)p + (p− 1)H(∇v)p

= H(∇v)p + (p− 1)H(∇v)p = pH(∇v)p.
(3.13)

By (3.10) and (3.12), we obtain

L2 = p〈t∇w,H(∇v)p−1∇ηH(∇v)〉

= pH(∇v)p−1H(t∇w) = pH(∇v)p.
(3.14)

Thus, from (3.13) and (3.14), we have

(3.15) L = L1 − L2 = 0.

Noting (3.12) and (3.15), by Lemma 2.3 to obtain ∇v = t∇w in Ω. Therefore,
v = tw in Ω for some constant t > 0. Hence, the property (H3) is verified.

(H4) This property can be verified similarly as in (H3).

(H5) Note that by Lemma 2.2, it follows that Xα is a separable and reflexive
Banach space. By Lemma 3.1, the operator Aα : Xα → X∗

α is bounded,
continuous, coercive and monotone.

By the Sobolev embedding theorem, we have Xα is continuously embedded
in Lq(Ω). Therefore, B(w) ∈ X∗

α for every w ∈ Lq(Ω) \ {0}.
Hence, by Theorem 2.5, for every w ∈ Lq(Ω)\{0}, there exists u ∈ Xα \{0}

such that
〈Aα(u), v〉 = 〈B(w), v〉 ∀v ∈ Xα.

Hence the property (H5) holds. This completes the proof.

4 - Proof of the main results:

Proof of Theorem 2.8:

(a) First we recall the definition of the operators Aα : Xα → X∗
α from (3.1)

and B : Lq(Ω) → (Lq(Ω))∗ from (3.2) respectively. Then, taking into account
the property (H5) from Lemma 3.2 and proceeding along the lines of the proof
in [18, page 579 and pages 584− 585], the result follows.
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(b) Note that by Lemma 2.2, Xα is uniformly convex Banach space and by the
Sobolev embedding theorem, X is compactly embedded in Lq(Ω). Next, using
Lemma 3.1-(i), the operators Aα : Xα → X∗

α and B : Lq(Ω) → (Lq(Ω))∗ are
continuous and by Lemma 3.2, the properties (H1) − (H5) holds. Taking into
account these facts, the result follows from [18, page 579, Theorem 1].

Proof of Theorem 2.9: The proof follows due to the same reasoning
as in the proof of Theorem 2.8-(b) except that here we apply [18, page 583,
Proposition 2] in place of [18, page 579, Theorem 1].

Proof of Theorem 2.10:

(a) Due to the homogeneity of the equation (1.1), without loss of generality,
we assume that ‖u‖Lq(Ω) = 1. Let k ≥ 1 and set L(k) := {x ∈ Ω : u(x) > k}.
Choosing v = (u− k)+ as a test function in (2.6), we obtain using (1.2) that

c1

ˆ

L(k)
|∇u|p dx+ α

ˆ

RN

ˆ

RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dxdy

≤ λ

ˆ

L(k)
uq−1(u− k) dx ≤ λ

ˆ

L(k)
uq−1(u− k) dx.

(4.1)

Now proceeding along the lines of the proof of [24, Theorem 2.8], the result
follows.

(b) By [27, Theorem 3.59] (for α = 0) and by [22, Theorem 3.10] (for α = 1),
the result follows.
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