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Powers of Fibonacci numbers which are products of repdigits

Abstract. In this article we solve the equation F k
n =

(
d1 · 10m−1

9

)
·(

d2 · 10q−1
9

)
, with n, k, d1, d2,m, q ∈ N, d1, d2 = 1, . . . , 9,m, q ≥ 2, k ≥ 2,

showing that the only perfect power of a Fibonacci number which is a
product of two repdigits is F 2

10 = 55 · 55.
In order to do this we use only elementary methods, like divisibility prop-
erties of Fibonacci numbers, periodicity, results on prime factorizations
and an application of Nagell-Ljunggren equations.
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1 - Introduction

Let Fn be the Fibonacci sequence defined by F1 = 1, F2 = 1, and Fn =
Fn−1 + Fn−2, for n ≥ 3.

A repdigit is a number written with only one distinct digit and at least two
digits.

Problems involving Fibonacci numbers and their products which are repdig-
its and products of such numbers have been studied in several articles, for
example in [2,3].

The common strategy in those papers is to use linear forms in logarithms
to bound the largest index in a solution, and then applying Baker-Davenport’s
reduction method to lower that bound and search for possible solutions through
computer calculations. See [1,8].

For instance, in [2] it is shown that F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5,
F6 = 8 and F10 = 55 are the only Fibonacci numbers which are products of
two numbers written with only one distinct digit.
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In this article we extend that result for powers of Fibonacci numbers, using
only divisibility properties, periodicity, results on prime factorizations, and a
result on the Nagell-Ljunggren equation, showing that the only solution of the
equation

F k
n =

(
d1 ·

10m − 1

9

)
·
(
d2 ·

10q − 1

9

)

with n, k, d1, d2,m, q ∈ N, d1, d2 = 1, . . . , 9,m, q ≥ 2, k ≥ 2 is given by
(n, k, d1, d2,m, q) = (10, 2, 5, 5, 2, 2).

2 - On the equation F k
n =

(
d1 · 10m−1

9

)
·
(
d2 · 10q−1

9

)

First we state some useful lemmas and propositions that will be used in
the solution and prove some of them.

The well known divisibility properties of Fibonacci numbers are used
throughout the article, like if 2 | Fn then 3 | Fn, if 3 | Fn, then 4 | n, if
5 | n then 5 | Fn, if 6 | n, then 8 | Fn.

L emma 2.1. Let n be an odd number. If p is an odd prime with p | Fn,
then p ≡ 1 (mod 4). See [4].

De f i n i t i o n 2.2. Let
(
a
p

)
denote the Legendre Symbol of a mod p.

L emma 2.3. Let n be an odd number. Then
(
Ln
5

)
= 1, where Ln is the

n-th Lucas Number. See [7].

L emma 2.4. The only solutions to the Nagell-Ljunggren equation y2 =
xn−1
x−1 , for x, y, n ∈ N, n ≥ 3 are given by x = 3, n = 5, y = 11 and x = 7, n =
4, y = 20. See [5,9].

P r o p o s i t i o n 2.5. The product
(
10n−1

9

)
·
(
10m−1

9

)
is a perfect square if

and only if n = m.

P r o o f. If n = m clearly the product is a perfect square. Suppose without
loss of generality that n > m.

We have (10n− 1, 10m− 1) = 10(n,m)− 1, where (n,m) denotes the greatest
common divisor of n,m.

Hence, 10n−1 = x·
(
10(n,m) − 1

)
and 10m−1 = y ·

(
10(n,m) − 1

)
for naturals

x, y, with (x, y) = 1.
Therefore,

92 ·
(
10n − 1

9

)
·
(
10m − 1

9

)
= x · y ·

(
10(n,m) − 1

)2
.
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In order for this number to be a perfect square, x and y must be perfect
squares.

Let d = (n,m). We can write n = q · d and m = p · d for some natural
numbers q, p. If p = 1, then q ≥ 2 since n �= m. Suppose q = 2. It follows that

x =
102d − 1

10d − 1
= 10d + 1.

But 10d + 1 ≡ 2 (mod 3), and 2 is not a quadratic residue modulo 3, so
that x is not a perfect square.

Suppose q ≥ 3. Then,

x =
(10d)

q − 1

10d − 1
.

If x = k2, then

k2 =
(10d)

q − 1

10d − 1
.

But this is a Nagell-Ljunggren equation and by Lemma 2.4 this equation
has no solution.

Consider the case p = 2. Then

y =
102d − 1

10d − 1
= 10d + 1

and analogously y can not be a square.

If p ≥ 3, similarly

y =
(10d)

p − 1

10d − 1

and y can not be a square.

Therefore, for n �= m the product is not a perfect square.

P r o p o s i t i o n 2.6. If F k
n =

(
d1 · 10m−1

9

)
·
(
d2 · 10q−1

9

)
, m, q ≥ 2, then

necessarily n is even.

P r o o f. If m, q ≥ 2, then 11 . . . 1 ≡ 3 (mod 4), so that there exists a prime
p ≡ 3 (mod 4) with p | 11 . . . 1. Therefore, p | F k

n and necessarily p | Fn. By
Lemma 2.1, it follows that n is even.

P r o p o s i t i o n 2.7. The only solution to the equation F k
n =

(
d1 · 10m−1

9

)
·(

d2 · 10q−1
9

)
, with k ≥ 2, m, q ≥ 2 and at least one of m, q less than or equal to

4, is given by (n, k, d1, d2,m, q) = (10, 2, 5, 5, 2, 2).
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P r o o f. It can be checked by direct calculations that for 2 ≤ m, q ≤ 4 the
only solution is (n, k, d1, d2,m, q) = (10, 2, 5, 5, 2, 2).

Hence, we have to consider the cases in which one of m, q is larger than or
equal to 5 and the other is 2, 3 or 4. By Proposition 2.6, it follows that n is
even, so this occurs in all the cases.

By symmetry, we can suppose without loss of generality that m = 2, 3, 4
and q ≥ 5. Suppose m = 2. Then the equation is

F k
n = d1 · 11 · d2 ·

10q − 1

9
.

Since 11 | F k
n , 11 | Fn and then 10 | n and 5 | Fn, so that either d1 or d2 is

equal to 5.
If only one of d1, d2 is equal to 5, then clearly 5 || F k

n , and necessarily k = 1.
If both are equal to 5, by Proposition 2.5 the right-hand side is not a square,
and since 52 || F k

n , necessarily k = 1.
Therefore, there is no solution in this case.
Suppose m = 3. Then the equation is

F k
n = d1 · 111 · d2 ·

10q − 1

9
.

Since 37 | 111, 37 | F k
n and 19 | n. Thus 113 | Fn.

The order of 10 modulo 113 is 112, so if 113 | 10q − 1, then 112 | q, and q
must be even. But q even implies 11 | 10q − 1, so that 11 | Fn and 10 | n.
Hence, the right-hand side is multiple of 5 and at least one of d1, d2 is equal
to 5. Analogously to the previous case, k = 1.

Therefore, there is no solution in this case.
Suppose m = 4. Then the equation is

F k
n = d1 · 1111 · d2 ·

10q − 1

9
.

Since 11 | 1111, 11 | Fn and then 10 | n, so that 5 | Fn. By the same
argument of the previous cases, k = 1.

Therefore, there is no solution in this case.

L emma 2.8. The only Fibonacci numbers that are written with only one
distinct digit are F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F10 = 55.
See [7].

L emma 2.9. The only solutions to the equation F k
n = d · 10m−1

9 with
n, k, d,m ∈ N,k ≥ 2, d = 1, . . . , 9 are given by (n, d,m) = (1, 1, 1) and
any k ≥ 2, (n, d,m) = (2, 1, 1) and any k ≥ 2, (n, k, d,m) = (3, 2, 4, 1),
(n, k, d,m) = (3, 3, 8, 1), (n, k, d,m) = (4, 2, 9, 1). See [6].
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Now we prove the claim.

Th e o r em 2.10. The only solution to the equation

F k
n =

(
d1 ·

10m − 1

9

)
·
(
d2 ·

10q − 1

9

)

with n, k, d1, d2,m, q ∈ N, k ≥ 2, d1, d2 = 1, . . . , 9, m, q ≥ 2, is given by
(n, k, d1, d2,m, q) = (10, 2, 5, 5, 2, 2).

P r o o f. In view of the previous lemmas and propositions, it is necessary
to consider only the cases in which n is even, and both m, q ≥ 5.

Case d1 = 1:

If d2 is even, then 2 | Fn and 3 | n, so that 6 | n. Thus, 8 | Fn and necessarily
k = 1, since the highest power of 2 that divides the right-hand side is 23 = 8,
corresponding to d2 = 8.

If d2 = 1, the equation becomes

F k
n =

(
10m − 1

9

)
·
(
10q − 1

9

)
.

First we consider m �= q.

By Proposition 2.5, the right-hand side is not a square, so that k is odd.

Rewrite this equation as

Fn · F k−1
n =

(
10m − 1

9

)
·
(
10q − 1

9

)
.

Since k is odd, F k−1
n is a perfect square. Also 10m−1

9 ≡ 7 (mod 32), 10q−1
9 ≡ 7

(mod 32), 10m−1
9 ≡ 7 (mod 16) and 10q−1

9 ≡ 7 (mod 16) for m, q ≥ 5.

It follows that m and q must be odd, otherwise 11 divides the right-hand
side, so that 11 | Fn, which implies 10 | n and then 5 | Fn, contradiction since
the right-hand side is not multiple of 5.

The only odd squares modulo 16 are 1 and 9. If F k−1
n ≡ 9 (mod 16), by the

equation it follows that Fn ≡ 9 (mod 16). By periodicity and since n is even,
the only possibility would be n ≡ 14 (mod 24).

Put n = 24x + 14. Next, consider the equation modulo 5 and use the well
known relation F2n = Fn · Ln. Since the Legendre Symbol is a completely
multiplicative function, we have

(
Fn

5

)
= 1.
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Thus,
(
F12x+7·L12x+7

5

)
= 1, and by Lemma 2.3 it follows that

(
F12x+7

5

)
= 1.

Let p be any prime factor of F12x+7. Then, p | Fn so that p | 10m−1
9 or

p | 10q−1
9 . From

10m − 1

9
≡ 0 (mod p),

or
10q − 1

9
≡ 0 (mod p),

it follows that

10m+1 ≡ 10 (mod p),

or

10q+1 ≡ 10 (mod p),

so that
(
10
p

)
= 1. This splits into the possibilities

(
2
p

)
= 1 and

(
5
p

)
= 1, or(

2
p

)
= −1 and

(
5
p

)
= −1.

By the Law of Quadratic Reciprocity
(
p
5

)
=

(
5
p

)
, and by Lemma 2.1,

p ≡ 1, 5 (mod 8). Hence, in order to have
(
F12x+7

5

)
= 1 it is necessary that the

amount of primes congruent to 5 modulo 8 counted with multiplicity be even.
This shows that F12x+7 ≡ 1 (mod 8), which is a contradiction, since the

period of Fibonacci numbers modulo 8 is 12 and for r ≡ 7 (mod 12), Fr ≡ 5
(mod 8).

Hence, the only possibility is F k−1
n ≡ 1 (mod 16), by periodicity and since

n is even, it follows from the equation that n ≡ 2 (mod 24).
The only odd squares modulo 32 are 1, 9, 17, 25. Since F k−1

n ≡ 1 (mod 16),
necessarily F k−1

n ≡ 1, 17 (mod 32).
For F k−1

n ≡ 1 (mod 32), it follows from the equation that Fn ≡ 17
(mod 32). By periodicity and since n is even, n ≡ 26 (mod 48).

Thus, Fn ≡ 6 (mod 7). Hence, the left-hand side is congruent to 6 modulo 7.
Clearly, m and q are not divisible by 3, otherwise 3 | Fn and 4 | n, which does
not occur. Since m and q are odd, they can be only of the form 6x + 1 or
6x+5. Hence, modulo 7 the right-hand side can be congruent only to 1, 2 or 4.
Therefore, the equality can not hold.

For F k−1
n ≡ 17 (mod 32), it follows that Fn ≡ 1 (mod 32). But any power

of 1 is congruent to 1 modulo 32, so this is not a possibility.
Now we consider m = q.
We have k even, put k = 2z. The equation becomes

F z
n =

(
10m − 1

9

)
.
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If z ≥ 2, by Lemma 2.9 this does not give a solution. If z = 1, by Lemma 2.8
this does not give a solution.

If d2 = 3, then if 3 � m and 3 � q, it follows that 3 || F k
n , which implies k = 1.

If 3 | m or 3 | q then 111 | Fn, so that 19 | n, which implies 113 | Fn.
Similarly to the proof of the Proposition 2.7, this implies m or q even, and then
11 | Fn, 10 | n and 5 | Fn, but 5 does not divide the right-hand side.

If d2 = 5, then 5 || F k
n , which implies k = 1.

If d2 = 7, then if 6 � m and 6 � q, 7 || F k
n which implies k = 1. If 6 | m

or 6 | q, then m or q is even, and analogously to the previous proofs 5 | Fn

resulting in the same contradiction.
If d2 = 9, then the right-hand side is congruent to 1 mod 8. If m �= q, by

Proposition 2.5 it follows that k is odd. Rewrite the equation as

Fn · F k−1
n = 9 ·

(
10m − 1

9

)
·
(
10q − 1

9

)
.

The only odd square modulo 8 is 1, so that F k−1
n ≡ 1 (mod 8). Hence, Fn ≡ 1

(mod 8). By periodicity and since n is even, n ≡ 2 (mod 12). But this is a
contradiction, since 3 | Fn so 4 | n.

If m = q, 3 � m and 3 � q, then 32 || F k
n , so that k = 1 or k = 2. Suppose

k = 2. The equation becomes

F 2
n = 3 ·

(
10m − 1

9

)
.

By Lemma 2.9, this does not give a solution.
If 3 | m or 3 | q, then 111 | Fn, so that 37 | Fn, which implies 19 | n. Hence,

113 | Fn and m or q is even. Thus, 11 | Fn, 10 | n and then 5 | Fn, but this is a
contradiction since the right-hand side is not multiple of 5.

Therefore, there is no solution in this case.

Case d1 = 2 :

By symmetry, the possibility d2 = 1 has already been dealt in the previous
case.

If d2 is even, analogously to the previous proofs, 6 | n so 8 | Fn. Since the
highest power of 2 that divides the right-hand side is 24 = 16, corresponding
to d2 = 8, this implies that k = 1.

If d2 is odd, then clearly 2 || F k
n , contradiction.

Therefore, there is no solution in this case.

Case d1 = 3 :

By symmetry the possibilities d2 = 1 and d2 = 2 have already been dealt
in the other cases.
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If d2 is even, analogously to the previous proofs 6 | n so 8 | Fn. Since the
highest power of 2 that divides the right-hand side is 23 = 8, corresponding to
d2 = 8, necessarily k = 1.

If d2 = 3, 3 � m and 3 � q, then 32 || F k
n , and if m �= q, by Proposition 2.5

the right-hand side is not a square, so that k is odd and k = 1.

If m = q, 3 � m or 3 � q, then 32 || F k
n , so that k = 1 or k = 2. Suppose

k = 2. Then the equation becomes

F 2
n = 3 ·

(
10m − 1

9

)
.

By Lemma 2.9, this does not give a solution.

If 3 | m or 3 | q, analogously to the previous proofs 37 | Fn and 19 | n, so that
113 | Fn and m or q is even, which implies 5 | Fn and the same contradiction.

If d2 = 5, then clearly 5 || F k
n and necessarily k = 1.

If d2 = 7, then if 6 � m and 6 � q, 7 || F k
n , and necessarily k = 1.

If 6 | m or 6 | q, then m or q is even, and analogously to the previous proofs,
5 | Fn, contradiction.

If d2 = 9, 3 � m and 3 � q, then 33 || F k
n so that k = 1 or k = 3. Suppose

k = 3. Then the equation becomes

F 3
n = 3 · 9 ·

(
10m − 1

9

)
·
(
10q − 1

9

)
.

The right-hand side is congruent to 11 modulo 32. The only solution of the
congruence x3 ≡ 11 (mod 32) is x ≡ 19 (mod 32), so that Fn ≡ 19 (mod 32).
By periodicity, n ≡ 28 (mod 48). This implies n ≡ 12 (mod 16), so that Fn ≡ 4
(mod 7).

We have m and q odd, otherwise similarly to the previous cases 11 | Fn and
5 | Fn, contradiction.

Since m and q can be only of the forms 6x+1 or 6x+5, the right-hand side
can be congruent only to 6, 5 or 3 modulo 7. But 43 ≡ 1 (mod 7), contradiction.

Therefore, there is no solution in this case.

Case d1 = 4 :

Since 2 | Fn, 3 | n and then 6 | n, so that 8 | Fn.

If d2 is even then the highest power of 2 that divides the right-hand side
is 25, corresponding to d2 = 8. Hence, k = 1.

If d2 is odd, then 4 || F k
n , contradiction.

Therefore, there is no solution in this case.

Case d1 = 5 :
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If d2 �= 5, then 5 || F k
n and necessarily k = 1.

If d2 = 5, then 52 || F k
n , which implies k = 1 or k = 2. Suppose k = 2.

Then, by Proposition 2.5, m = q and the equation becomes

Fn = 5 ·
(
10m − 1

9

)
.

By Lemma 2.8, the only solution is given by n = 10 and m = 2, which gives
the solution (n, k, d1, d2,m, q) = (10, 2, 5, 5, 2, 2), and since we are considering
m, q ≥ 5, there is no new solution in this case.

Case d1 = 6 :

Since 2 | Fn, 3 | n and since 3 | Fn, 4 | n , then 12 | n, so that 16 | Fn.
If d2 is odd, clearly 2 || F k

n , contradiction.
If d2 is even, the highest power of 2 that divides the right-hand side is 24

corresponding to d2 = 8. Hence, k = 1.
Therefore, there is no solution in this case.

Case d1 = 7 :

By symmetry, the possibilities d2 = 1, 2, 3, 4, 5, 6 have already been dealt in
the previous cases.

If d2 = 7, then m and q must be odd, since similarly to the previous proofs,
if any of them is even, 5 | Fn, but the right-hand side is not a multiple of 5.

Hence, 72 || F k
n , and k = 1 or k = 2. Suppose k = 2. If m �= q, by

Proposition 2.5 the right-hand side is not a square, contradiction.
If m = q, the equation becomes

Fn = 7 ·
(
10m − 1

9

)
.

By Lemma 2.8, this does not give a solution.
If d2 �= 7, since also d2 �= 5, m and q must be odd and clearly 7 || F k

n , so
that k = 1.

Therefore, there is no solution in this case.



214 abel medina lourenço [10]

Case d1 = 8 :

By symmetry, the cases d2 = 1, 2, 3, 4, 5, 6, 7 have already been dealt.

Since 2 | Fn, 3 | n, so that 6 | n and then 8 | Fn.

If d2 = 8, the highest power of 2 dividing the right-hand side is 26, so that
k = 1 or k = 2. Suppose k = 2. By Proposition 2.5, m = q and the equation
becomes

Fn = 8 ·
(
10m − 1

9

)
.

By Lemma 2.8, this does not give a solution.

If d2 = 9, then clearly 23 || F k
n , so that k = 1.

Therefore, there is no solution in this case.

Case d1 = 9 :

By symmetry the cases d2 = 1, 2, 3, 4, , 6, 7, 8 have already been dealt.

If d2 = 9, then if m �= q by Proposition 2.5, k is odd.

Rewrite the equation as

Fn · F k−1
n = 9 · 9 ·

(
10m − 1

9

)
·
(
10q − 1

9

)
.

The only odd square modulo 8 is 1, thus F k−1
n ≡ 1 (mod 8). The right-hand

side is congruent to 1 modulo 8. Hence, by the equation Fn ≡ 1 (mod 8). By
periodicity and since n is even, n ≡ 2 (mod 12). But this is a contradiction
since 3 | Fn so 4 | n.

If m = q, then k is even. Put k = 2z. Then, the equation becomes

F z
n = 9 ·

(
10m − 1

9

)
.

For z ≥ 2, by Lemma 2.9 this does not give a solution.

For z = 1, by Lemma 2.8 this does not give a solution.

Therefore, there is no solution in this case.
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