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Stable periodic configurations

in nonlocal sharp interface models

Abstract. This paper collects results obtained by the author together
with Chen Chao-Nien, Choi Yung Sze, Nicola Fusco, Vesa Julin and
Massimiliano Morini (in various groupings) in the last years; it is in-
tended to be an introduction to the “geometric” perspective on some
physical problems. Equilibrium models based on energy competition
between volume and surface terms, in connection with nonlocal effects,
got special attention in recent investigations, as their critical points ex-
hibit various patterns with high degree of symmetry. There is interest
in both finding the possible equilibrium shapes, and (which is the ob-
ject of the present works) proving that they actually are (local) isolated
minimizers. Particularly the latter has been thoroughly investigated for
lamellar configurations in a model with long-range interaction governed
by a screened Coulomb kernel. A section with open problems concludes
the paper.

Keywords. Lamella, stability, sharp interface model, nonlocal geomet-
ric variational problem.
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1 - Introduction

In the last decades, many researchers devoted tremendous efforts in study-
ing mathematical mechanisms responsible for pattern formation in nature; the
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present bibliography will therefore be necessarily hugely incomplete. Only some
references, regardless of priority, will be given here; surely most contributors to
the theory will find their names here or in the bibliographies of quoted papers.
Also, no attempt will be made to rigorously explain the underlying physical or
chemical phenomena. Fields in which pattern formation occurs include, for ex-
ample, ferroelectric and ferromagnetic films, diblock copolymers and degenerate
ferromagnetic semiconductors, [8,10,19,21,22,23,26,27,28,29,32]. The cases
reported in this paper concern equilibrium models based on a free energy func-
tional with long range interaction whose typical form is [7,13,14,15,24,30,31]

Jε(u) = MMε(u) +NL(u)

=

∫

Ω

(
ε

2
|∇u|2 + ε−1F (u)

)
dx + γ

∫

Ω

∫

Ω
ψ(u(x))G(x, ξ)ψ(u(ξ))dξdx ,(1.1)

where u is a scalar function, F is a double-well potential, G is a positive kernel,
ψ is a given smooth function, ε is a small positive parameter and Ω ⊂ RN is
a given bounded domain. A well-known example of G is the Green’s function
associated with a uniformly elliptic operator. These energies are made of a
(local) Modica-Mortola term MMε governing short-range behaviour [24] and
a nonlocal term NL which takes into account the long-range effects; the first
part favours the presence of coexisting phases induced by the two wells, with
a layer of rapid change in between representing the interface; when ε is small,
the resulting structure of nearly sharp transition interfaces defines the pattern.
This turns (1.1) into a competition between short and long-range interactions;
who is winning depends on the precise tuning of the control parameters. The
short-range MMε term leads to congregation, favoring large domains of pure
phases with boundary shape that minimizes its surface area; at the same time
the long-range effect NL is repulsive in nature biasing towards small domains.
Further players in the game may be volume constraints, or boundary effects.

We will focus on two cases, the Ohta-Kawasaki model for diblock copolymers
and the (simplified) FitzHugh-Nagumo model of reaction-diffusion. For diblock
copolymers, the observed mesoscopic domains are highly regular periodic struc-
tures that include spheres, cylindrical tubes, lamellae and double-gyroids [10].
On the mathematical side, it was proposed [29] to study the critical points of
a functional like (1.1) with G being the Green’s function for the Laplace op-
erator subject to the homogeneous Neumann boundary conditions or periodic
boundary conditions, see also [5,6,16,18,20,25,28]:

(1.2)

(OKε)

∫

Ω

(
ε

2
|∇u|2+(u2 − 1)2

4ε
)

)
dx+γ

∫

Ω

∫

Ω
(u(x)−m)G(x, ξ)(u(ξ)−m)dξdx
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with prescribed mass constraint
∫
Ω u dx = m and small ε, so that u expecially

favours taking values −1 or 1. It is clear that studying minimizers of OKε is a
difficult task, but Γ-convergence comes to our aid, in that [24] as ε → 0 the L1

norm Γ-limit of the functional (1.2) goes to (γ′ = 3/16 is a fixed multiplicative
constant)

(1.3)
γ′

2
|Du|(Ω) + γ

∫

Ω

(
|∇vu|2

)
dx,

where u is a BV function from Ω to {−1, 1} with prescribed integral m, its
total variation measure is |Du| and

vu(x) =

∫

Ω
G(x, ξ)(u(ξ)−m)dξ ,

the inverse Laplacian of u − m with zero average. The core business of Γ-
convergence (devised for equi-coercive functionals) is that if u is a strict local
minimizer of (1.3) then [24] it is the L1-limit of a sequence {uε} of local min-
imizers of (1.2); thus instead of solving the original ε-problem we are allowed
to deal with the possibly simpler problem (1.3), knowing that if it has, say, a
bubble as a local minimizer then for ε small (1.2) will have local minimizers
which resemble a bubble.

A further step towards an analytic-geometric isoperimetric problem is to
abandon the function setting and switch to sets: indeed if E = {x : u(x) = 1}
so that u(x) = uE(x) = χE − χΩ\E , the above problem (we drop the harmless
γ′ from now on, simply thinking it is incorporated into the other constant) may
be rephrased as

(OKgeom) PΩ(E) + γ

∫

Ω
|∇vE |2 dx

where P is the perimeter [33] and

−∆vE = uE −m ,

∫

Ω
vE = 0 .

When Ω is a very large domain, one expects that the effect of boundary con-
ditions diminishes in its interior and the minimizer may settle down into a
natural minimal energy periodic configuration. It is known that in one space
dimension, minimizers of (1.2) and (1.3) are periodic [13,31], see also [7] for
an investigation in higher dimension. On these grounds, to separate boundary
effects from energy-induced pattern formation we replace the generic Ω by a
periodic torus T, i.e., a box [0, T ]N with periodic boundary conditions; we now
collect results on the Ohta-Kawasaki model, then we will present analogies and
differences with the FitzHugh-Nagumo case.
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2 - Ohta-Kawasaki, stationary points and stability

With the previous notation, in particular with uE = χE − χT\E , the Ohta-
Kawasaki energy we consider is thus

(2.1) JOK(E) = PT(E) + γ

∫

T
|∇vE |2 dx ,

with

|E|− |T \E| = m , −∆vE = uE −m , vE is T-periodic and

∫

T
vE = 0 .

It is quite easy to show [17] that the Euler-Lagrange equation satisfied by local
minimizers of class C2 is

(2.2) H∂E(x) + 4γvE(x) = λ

where H is the curvature (sum of the principal curvatures, or in a geometric-
measure-theoretic vocabulary the tangential divergence of the unit outward
normal ν), the number 4 is due to the fact that uE jumps 2 units across the
boundary of E and λ is a Lagrange multiplier due to the volume constraint.
The equation may be derived by deforming E through the time flow associated
with a (regular) vector field X on T into a time-indexed family Et, and taking
the time derivative of JOK(Et) at t = 0. We call stationary points all regu-
lar solutions of (2.2). Several authors found instances of sets satisfying (2.2),
among them balls, cylinders, lamellae and gyroids, but proving they actually
are minimizers is a task of a different magnitude. Analogous to the positive
second derivative criterion in R, one may compute the second derivative of
JOK , and call “stable” those stationary points at which the second derivative
is positive (in some sense). The difficulties one faces are many: first, actually
computing the second derivative requires some effort, see [17]; second, in the
periodic setting all translates of E share its same energy, so the concept of
“positive” second variation has to be made precise by the use of equivalence
classes: one has to replace the usual L1 distance of sets, d(E,F ) = |E�F |,
with

dtrasl(E,F ) = min
x

|E�(x+ F )|

so that a strict local minimizer E of JOK is an admissible set (i.e.
∫
uE = m)

such that for some δ > 0

JOK(E) < JOK(F ) ∀F : 0 < dtrasl(E,F ) < δ ,

always keeping the volume constraint |E| = |F |. This gives meaning to “strict”
or “isolated” but does not solve the problem of the meaning of “positive”.
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Assuming E is sufficiently smooth, by the results of [17] one sees that the
second variation computed along the flow associated with X only requires the
component of X parallel to the normal to ∂E: thus one may associate with the
second variation of JOK the quadratic form J ′′

OK(E) defined on all functions φ ∈
H1(∂E) with

∫
φ = 0 [the latter condition is due to the volume constraint] by

J ′′
OK(E)[φ] =

∫

∂E

(
|Dτφ|2 − |B∂E |2φ2

)
dHN−1

+8γ

∫

∂E

∫

∂E
G(x, y)φ(x)φ(y) dHN−1(x)dHN−1(y)(2.3)

+4γ

∫

∂E
∂νvE φ2 dHN−1

where B∂E is the second fundamental form. The translation invariance con-
dition JOK(E + tη) = JOK(E) for all η ∈ RN and all t, differentiated twice
with respect to t, gives J ′′

OK(E)[η · ν] = 0, thus one has to get rid of the (fi-
nite dimensional) subspace spanned by the components of the normal field ν.
Setting

(2.4) T ⊥(∂E) = {φ ∈ H1(∂E) :

∫

∂E
φ dHN−1 = 0 ,

∫

∂E
φνi dHN−1 = 0 ∀i}

one may finally say that J ′′
OK(E) is positive whenever J ′′

OK(E)[φ] > 0 for all
φ ∈ T ⊥(∂E) \ {0}.

Even before Choksi and Sternberg [17], where the second variation is com-
puted at any generic critical point of JOK , it was known for special nice sets E
represented by bubbles, cylinders or lamellae that J ′′

OK(E) was positive, see the
many papers by Ren and Wei quoted in [1,4]. Here comes the third and the
hardest difficulty: this intuition is a good omen, but does not yet prove that
critical sets where the J ′′

OK is positive are indeed isolated local minimizers; in R,
one proves this for a function f essentially by integrating f ′′ from the critical
point x0 to nearby points x. For the Ohta-Kawasaki energy this was solved
in [4] where the second variation is computed at all sets (and not only critical
ones) and this result is used to deduce the following minimality criterion with
quantitative estimate [4, Theorem 1.1].

T h e o r em 2.1. Let E ⊂ T be a regular critical set of JOK such that
J ′′
OK(E)[φ] > 0 for all φ ∈ T ⊥(∂E) \ {0}. Then there exist δ, C > 0 such

that

JOK(F ) ≥ JOK(E) + C
[
dtrasl(E,F )

]2

for all F ⊂ T with |F | = |E| and dtrasl(E,F ) < δ.
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Proving Theorem 2.1 does not simply reduce to computing J ′′ and integrat-
ing it along a flow Et: this treatment only proves the quantitative inequality
above [4, Theorem 3.9] for a set F whose boundary is the graph over ∂E of a reg-
ular function, that is its boundary may be written as {σ+ ν(σ)ψ(σ) : σ ∈ ∂E};
moreover, due to the volume constraint one should produce a volume preserv-
ing flow, just going straight along ν is not enough, [4, Theorem 3.7]. Getting
rid of possible translations is a tough issue, reducing to sets whose boundary
is in a tubular neighbourhood of ∂E is another one, and the celebrated result
by Almgren [9], stating that any sequence Eh of ω-minimizing sets of the area
functional with equibounded perimeters which converges in L1 to some regular
set E is made (for h large) of graphs over ∂E, allows us to deduce the general
result from the one on graphs (tackling, among others, problems arising from
the unknown Lagrange multipliers).

With some hard work, see [3], it is possible to show an even deeper stability
result: if E is such a stable critical set, it is an attractor, in the sense that
starting from any sufficiently close set F and letting it evolve along the gradient
flow associated with JOK , the evolution will converge to (a translate of) E.

3 - FitzHugh-Nagumo, stationary points and stability

We start directly from the geometric version of the problem, which is

JFHN (E) = PT(E)− α|E|+ σ

2

∫

E
NE dx ,

with no volume constraint on E; α, σ > 0 and NE is the solution of the modified
Helmholtz equation:

−∆NE +NE = χE in T, NE is periodic in T .

At the same time NE is the unique T-periodic minimizer of

v �→
∫

T

( |Dv|2

2
+

v2

2
− vχE

)
dx

and it takes values between 0 and 1. By its definition
∫

E
NE dx =

∫

T
NE(x)χE(x) dx =

∫

T

(
|NE |2 + |∇NE |2

)
dx ,

so we may rewrite JFHN in a way similar to JOK , compare (2.1):

JFHN (E) = PT(E)− α|E|+ σ

2

∫

T

(
|NE |2 + |∇NE |2

)
dx .
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Local minimizers will be those sets E such that JFHN (E) ≤ JFHN (F ) for all
sets F such that dtrasl(E,F ) < δ for some δ > 0. A classical stationary set of
J has a C2 interface that satisfies the Euler-Lagrange equation

(3.1) H(∂E)− α+ σNE = 0 on ∂E ,

see for example [11,12]. A first difference between OK and FHN is that prov-
ing some easy set satisfies (2.2) requires combining curvature and the solution
of the Poisson equation, which were done for lamellae, spheres, cylinders, but
checking (3.1) involves the Helmholtz equation, which limits the easy case to
that of lamellar solutions; the studies of spherical bubbles in [11,12] are for infi-
nite domain RN , rather than in periodic setting. The ratio between parameters
α and σ plays an important role, and it is useful to introduce the “emptiness
parameter”

c := 1− 2α

σ
;

indeed, if c > 0 the empty set E∅ = ∅ is more energetically favourable than
the full set ET = T, and the opposite is true when c < 0. In fact the empty
set is the unique global minimizer when c ≥ 1, while the full set is the unique
global minimizer when c ≤ −1. One may go a step further: naming cN the
isoperimetric constant in the torus in RN

PT(E) ≥ cN min{|E|, |T \ E|}1−1/N ∀E ⊂ T ,

then we have a global minimality result near the extreme cases [1, Proposition
1.5]: in the case 1 > c > 0, the empty set remains the unique global minimizer
of JFHN for all α ≤ cN

N
√
2/T where, as we recall, T is the side of the torus.

Conversely in the case −1 < c < 0 the full torus is still the unique global
minimizer for all α ≥ σ − cN

N
√
2/T . Finding global minimizers is a rare event;

from now on we focus on characterizing local minimizers with easy structures,
and in particular seeing the conditions under which lamellar sets (i.e. sets E
made of a lot of slabs, all parallel to one face of the torus) are stationary points
and if so, do they represent stable local minimizers.

Our set E will then be a k-lamella L, made of k layers all orthogonal to the
x1 axis (not necessarily the same size), and we denote by x′ all the remaining
variables so that x = (x1, x

′). Using the total width x0 of the lamellae compos-
ing L, it is readily verified that not only L but also NL has a one-dimensional
structure, in that it depends on x1 alone, and we have [1, Theorem 2.9]

T h e o r em 3.1. If L is a stationary point of JFHN then

(i) necessarily α ≤ σ, i.e. c ≥ −1;
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(ii) all lamellae are equally spaced and have the same width

x0
k

=
T

2k
− arc sinh

(
c sinh

T

2k

)
;

(iii) the function NL takes the same value on the sides of all lamellae, and
its derivative takes the same value d0 on the left sides, and −d0 on right
sides of all lamellae;

(iv) stationary lamellae depend only on c, but not on σ (as long as we adjust
α accordingly).

(v) the corresponding energy is

(3.2)

JFHN (L) = kTN−1

{
2 + c

σ

2

[ T
2k

− arc sinh
(
c sinh

T

2k

)]

− σ

2 sinh T
2k

(
cosh

T

2k
−

√
1 + c2 sinh2

T

2k

)}
.

Thus, to every value of c there corresponds a single value of x0 for which the
lamella is stationary, and x0 decreases as the emptiness parameter increases,
which gives meaning to the name “emptyness” parameter; the exact forms of
the energy and of x0 are shown only to see that they are heavy, nonlinear
expressions. One may wonder if, among all stationary lamellae (one for every
value of k) there is an optimal k whose energy is the lowest. The expression of
JFHN (L) shows no clear signs of convexity with respect to any parameter— and
indeed it is not convex. Nevertheless, it is evident that T/2k appears almost
everywhere, so if we call F(c, σ, T/2k) the quantity between curly braces in
(3.2) we have

2

TN
JFHN (L) =

F(c, σ, T/2k)

T/2k
;

the miracle is [1, Proposition 3.3] that the function t �→ F(c, σ, t) is decreas-
ing and strictly convex, but (apart from a positive multiplicative constant)
JFHN (L) is the slope of the line connecting the origin and the point(
t,F(c, σ, t)

)
; in addition, the asymptote of F as t → ∞ involves the “threshold

function”
Γ(c) = |c| − 1− |c| log |c|

which appears in the following Theorem. It turns out that for certain values of
the parameters the slope (i.e. our energy!) decreases continuously as t increases,
while for other values of the parameters the graph of F has a tangent line from
the origin to a certain point with abscissa t = t0(c, σ), thus the slope first
decreases then increases. This leads to [1, Corollary 3.6]
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Th e o r em 3.2. Given a torus with side T and −1 ≤ c ≤ 1

(i) if Γ(c) ≥ −4/σ the minimal energy among stationary k-lamellae is at-
tained for k = 1, but either the empty set or the full torus (the trivial
states) will have even less energy;

(ii) if Γ(c) < −4/σ the minimal energy configuration among all k-lamellae
will divide the torus in k bands with mesh (i.e. one lamella plus one
interspace) size close to T0 = 2t0(c, σ), and precisely with k = T/T0 if
this is an integer, else with k integer just above or below T/T0.

One may play with the size T : fix k first, and choose T = kT0 in order to get
a minimal k-lamella: it may be shown [1, discussion just below Corollary 3.6]
that for T and k large enough, the minimal k-lamella has less energy than both
trivial states. Having thus identified the lamella which has minimal energy
among all fellow lamellae, we turn to stability. The situation is similar to
the Ohta-Kawasaki case, with some help given by the absence of the volume
constraint, and some problem given by the Helmholtz operator replacing the
Laplacian, but in the end one replaces (2.3),(2.4) with

J ′′
FHN (E)[φ] =

∫

∂E

(
|Dτφ|2 − |B∂E |2φ2

)
dHN−1

+σ

∫

∂E

∫

∂E
G(x, y)φ(x)φ(y) dHN−1(x)dHN−1(y)(3.3)

+σ

∫

∂E
∂νNE φ2 dHN−1 ,

T ⊥(∂E) =

{
φ ∈ H1(∂E) :

∫

∂E
φνi dHN−1 = 0 ∀i

}

and one deduces the analogous of Theorem 2.1, see [2, Theorem 3.5]

T h e o r em 3.3. Let E ⊂ T be a regular critical set of J such that

J ′′
FHN (E)[η] > 0 for all η ∈ T ⊥(∂E) \ {0} .

Then there exist δ, C > 0 such that

JFHN (F ) ≥ JFHN (E) + C
(
dtrasl(E,F )

)2

for all F ⊂ T with dtrasl(E,F ) < δ.
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Observe that stability of lamellae depends on both parameters c and σ.
The task to be completed now is to prove that, for some or all k-lamellae,
the second variation is positive, so the above theorem concludes that they
are isolated local minimizers. We know something about stationary lamellae,
namely Theorem 3.1, and this structure leads to a simplification of (3.3), at the
price of additional notations. Calling �i with i = 1, . . . , 2k the x1-coordinate
of the 2k sides of the k lamellae (in increasing order; in particular all “left”
sides have odd index), the admissible functions φ on which one has to check
J ′′
FHN (L)[φ] > 0 are defined only on these sides, so we may label φi the restric-

tions. Following an idea in [25] we decompose each φi = µi+ ζi where µi is the
average on this face of the lamella, and consequently ζi is periodic with zero
average. Then φ belongs to T ⊥ reduces to imposing that the sum of averages
on left sides equals the sum on right sides, i.e., introducing for ease the vector
M = (−1,+1,−1,+1, · · · ,+1) ∈ R2k,

φ ∈ T ⊥ ⇐⇒ (µ1, . . . , µ2k) ·M = 0 .

As a consequence J ′′
FHN comes from two distinct contributions: that of the

averages and that of terms containing ζ, with no interaction between the two.
Denoting by G the Green’s function of the Helmholtz operator on the periodic
segment [0, T ], which is an easily computable one-dimensional function, and
by |a−b|T the closest distance between two numbers a, b in [0, T ] if one identifies
this interval as a circumference with length T , the contribution of all averages
to J ′′

FHN is then

2k∑
i,j=1

µiµjG(|�j − �i|T )µiµj − d0

2k∑
i=1

µ2
i

where d0 is the slope of NE on the (left) sides of the lamellae, which appeared
in Theorem 3.1, (iii). It turns out that the eigenvalues of the matrix appearing
in the first sum are all real and can be computed (another miracle, coming
from a result by Tee [34] on block-circulant matrices); all but one are strictly
greater than d0, and the eigenvector corresponding to the smallest eigenvalue d0
is just M , so the contribution of the average part µ to J ′′

FHN is strictly positive
whenever φ ∈ T ⊥.

There remains to check the contribution of the zero-average part ζ. In
general, it is easy to show that for a certain range of the parameters this is
non-negative, which proves stability of lamellae, but the result is not sharp (nor
satisfying); so we specialize to the 2D setting, where the torus is a square and
the sides of lamellae are segments: this reduction also inspires an open problem
stated in the last section. We decompose each ζi in Fourier series resulting
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in a sum of the contributions from each disturbance mode m1,m2, . . . where
mh corresponds to sines or cosines of (2πh/T )x′. A simple calculation shows
that interaction occurs only within the same mode; within the confine of the
same mode, disturbances from distinct lamella faces can influence one another.
Hence to prove J ′′ is positive one must show that the contribution of any single
mode is positive. The final study compares stability for a k-lamella for various
k, stability for a k-lamella for various values of the emptiness parameter c, effect
of the size T on stability, and the loss of stability due to the action of different
modes. The last is the cleanest result [2, Theorem 5.11]: if the contribution to
J ′′ of mode mi is non-negative, so is the contribution of mode mi+1; thus loss of
stability can only occur due to the first disturbance mode. As for dependence
on c we have [2, Theorem 5.13] that likeliness of stability increases with |c|, in
the sense that if a stationary k-lamella with a certain value c0 of the emptiness
parameter is stable, so is the stationary k-lamella for all c with |c| > |c0|: thus
the most delicate case for stability is c = 0. Finally, regarding dependence
on k, there is only a partial result [2, Theorem 5.15]: in the case c = 0, if the
stationary k-lamella is stable so is the stationary (k+1)-lamella; thus the worst
case for stability is the 1-lamella. The last result in this summary concerns the
effect of T (see [2, Corollary 5.20]), for which we may find a number T0(k) such
that in the case c = 0 the k-lamella is stable for T < T0(k) and unstable for
T > T0(k): we may näıvely explain this by observing that periodic functions on
a torus with side 10 consist of not only 1-periodic functions, but many others;
disturbing stability becomes easier.

4 - Work in progress, and main open problems concerning FHN

Lamellar stationary points may lose their stability when the parameters are
varied: a work in progress addresses the possible bifurcation phenomena at the
point where stability starts to fail.

The last results only cover the case c = 0; there are at least computational
complexity reasons which inhibited us from analyzing the general case, which
is left open.

A majority of the stability results is done only in the 2D case, which leaves
open the (physically interesting) case of 3D.

In [2, Corollary 5.7] the existence of non-lamellar sets with lower energy
than all lamellae and both trivial states has been shown in suitable parameter
regimes, no qualitative information is available about its structure. This will
be of interest.

For the bravest, the asymptotic stability result reported for the Ohta-Ka-
wasaki model at the end of Section 2 is missing for the FitzHugh-Nagumo case.
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