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The porous medium equation with capillary pressure effects

Abstract. We consider a third order equation, which includes pressure
as a dissipative term, and describes the dynamics of two-phase flows in a
porous media. It is a generalization of Benjamin-Bona-Mahony equation,
which models long waves in a nonlinear dispersive system. We prove the
well-posedness of the Cauchy problem, associated with this equation.
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1 - Introduction

In this paper, we investigate the existence of the classical solution of the
following Cauchy problem:

1) Oy + Opf(u) = 0 (g(u)Opu) + B20;0%u, t>0,2 € R,
u(0,z) = up(z), z € R,

where 8 # 0 and f : R — R is smooth function, such that

(12) f e\ (®),

while, on the function g, we assume one within the following two

(1.3) g€ C'(R), |g(u)| <L, foreveryucR;
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(1.4) g€C'(R), g(u)>0.
On the initial datum, we assume
(1.5) uyg € H'(R).

The nonnegativity assumption on the diffusion coefficient g in (1.4) is often

present on papers on the porous medium equation. Here we consider the case

of a purely bounded coefficients without any restriction on the sign (see (1.3)).
When g =0 (1.1) becomes

(1.6) Opu + 0, f (u) = 320,02,

which is known as the Benjamin-Bona-Mahony equation [7].

The function u(t, z), in (1.1), represents the saturation (volume fraction) of
one of the phases. The flux f(u), known as the fractional flow rate, depends on
the ratio of relative permeabilities of the two phases. The function g(u) repre-
sents the equilibrium capillary pressure. From a mathematical point of view,
g(u) is, usually, a positive and decreasing function of saturation. It approaches
zero at u = 0, 1, where one phase is absent. Finally, 32 is a relaxation time for
the dynamic capillary pressure with a linear rate dependence.

There has been much interest recently in refining the Hassanizadeh-Gray
dynamic capillary pressure model (see [23] and the references therein) and
in exploring properties of wave-like solutions of (1.1) and related equations
[14,18,19,30].

Much of the recent effort has focused on characterizing traveling wave so-
lutions under various simplifications and constitutive assumptions. A striking
novel feature of the analysis is the presence of traveling waves that are under-
compressive in the sense of shock waves [17,20].

In [28,29], the authors analyze traveling wave solutions for (1.1), in the nat-
ural case in which relative permeabilities are quadratic functions of saturation.
In particular, in [28] the authors prove that the structure of traveling waves
suggests the form of a nonclassical Riemann solver (in the limit of negligible
capillary pressure), in which shock waves are deemed admissible only if they
are singular limits of traveling waves.

In [1,21,31,33,34], the authors develop a numerical scheme for (1.1), while,
in [30], the existence of T'W solution is studied. Instead, in [32], the existence
of non-monotone travelling waves solutions is proven. The stability of travelling
wave solutions and the asymptotic behavior for (1.1) are studied in [2,13,24]
assuming

(L7) Fu) =2, g(u) = 1.
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Finally, in [27], the existence of the travelling waves solutions for (1.1) in the
case

(1.8) fw)=u—ud, g(w)=o.
Equation (1.1) is a generalization of the following one
(1.9) O = 0 (g(u)dpu) + B20;0%u,

which is deduced in [6] to describe the seepage of homogeneous liquids in fis-
sured rocks, and in [4,5] to describe the fluid flow.

From a mathematical point of view, in [15], the initial and boundary value
problem for (1.9) is studied, while, in [26] some existence result are proven.

If g(u) = 0, (1.1) is equivalent to (1.6), which models long waves in a
nonlinear dispersive system and is also called the regularized long wave equation
[7].

From a mathematical point of view, the Cauchy problem for (1.6) is studied
in [3,16], while, in [8,9,10,25], the convergence of the solution of (1.6) to the
unique entropy one of the following scalar conservation law

Opu+ 0y f(u) =0,  fu) =u?, u?,
is proven. We use the following definition of solution.

Definition 1.1. We say that a function u : [0,00) X R — R is a solution

of (1.1), if

uwe HY((0,T) x R)N L>¥(0,T; H*(R)), 10,u € L>(0,T; L*(R)), T >0,
u(0,-) = up a.e. in (0,00) x R

and for every test function p € C*(R?) with compact support

/ / (Orup + 0 f (W) + g(u)Dpudpp + 526t81u6)zg0) dtdx = 0.
0o Jr

The main result of this paper is the following theorem.

Theorem 1.1. FizxT > 0. Assume (1.2), (1.5) and one between (1.3) and
(1.4). There exists a solution u of (1.1), such that

u € HY((0,T) x R) N L>(0,T; HY(R)) N WH>((0,T) x R),

(1.10)
90,u € L(0,T; LA(R).
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In particular, if f € C?(R), u is unique. Moreover, if u; and us are two
solutions of (1.1), we have that

, 260D ,

(1.11) Jur(t, ) = wa(t, ) r) < — lut,0 = w2031 gy »
i

where

(1.12) 7'12 = min{1, 52}, 7'22 = max{1, 62},

for some suitable C(T) > 0, and every 0 <t <T.

Since (1.3) and (1.4) are satisfied by (1.6), Theorem 1.1 holds also for (1.6).

The paper is organized as follows. In Section 2, we prove several a priori
estimates on a vanishing viscosity approximation of (1.1). Those play a key
role in the proof of our main result, that is given in Section 3.

2 - Vanishing viscosity approximation

Our existence argument is based on passing to the limit in a vanishing
viscosity approximation of (1.1).

Fix a small number ¢ > 0, and let u. = u.(t,x) be the unique regular
solution of the following problem (see [22]):

2.1) Opte + Op f (ue) = O0x(g(ue)Opue) + B28t8£ug — Eaﬁua, t>0,z€R,
. us(0,z) = ug (), x € R,

where u. o is C>°(R) approximations of uy such that

(22) ||u€,0HH1(R) S ||UOHH1(R) ) \/g HOEUE,OHIQ(R) +e€ HaguE,UHLQ(R) é CO?

and Cj is a positive constant, independent on &.

Let us prove some a priori estimates on u., denoting with C' the constants
which depend only on the initial data, and C(T") the constants which depend
also on T

Lemma 2.1. Fix T > 0 and assume (1.3). There exists a constant
C(T) > 0, independent on e, such that

(23)  [lue(t, )72 + 82 10ue(t, ) 72w
2nt [t _2Ls 5
+ 2¢ce #? / e 7 H82u6(3,~)HL2(R)d3SC(T),
0

for every 0 <t <T. In particular, we have that
(2.4) [[te | Lo ((0,00) x ) < C(T).
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Proof. Multiplying (2.1) by 2u., an integration on R gives

d
pr (Hue(t, ')”%Q(R) + B2 ||0pus(t, ')H%Q(R)) = 2/ ueOpucdr — 262/ U010 u da
R R

= —2/uaf'(ug)azugdx—l—Q/ugﬁx(g(ug)ﬁxua)dx—%/uaaiuadm
R R R
=0
= —2/R (ue)(Oy ug) dr — 2¢ H8 ue(t HLQ(R

Hence, we have that

& (et 2y + 8% N00e(t, ) oy

(2.5)
+ 2 H82u5 HL2 = —2/Rg(u5)(81u5)2dac.

Thanks to (1.3),

2L
2 / ()] (Dr112)* < 2L et ) Faqey < 3 8° 10selt, Mgy

Consequently, by (2.5),

d
= (et >HL2 )+ B 10sue(t, ) oy ) + 2€ [[02ue(t )| ey

2L
= < 5 (leelt M Fagey + 8100t ) oqey) -

It follows from the Gronwall Lemma and (2.2) that

e (8, M2y + B2 10zue (t, ) | 2wy

28 Ot Mz2my

2Lt t _2rs 2Lt
+ 2¢ce #* /0 e 5 Hﬁgus(s,-)Hiz(R)dsgCeﬁ2 < C(T),

which gives (2.3).
Finally, we prove (2.4). Due to the Holder inequality,

ul(t, z) :2/ U Optuedy < 2/ |te ||Opuie |da:
(2.6) o0
< et )l 2my 102ue(t; )l L2(m)
Therefore, by (2.3),
e |7 0 ((0,00)x) < C(T),
which gives (2.4). O
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Lemma 2.2. Assume (1.4). For each t > 0, we have that

(2.7)
e (8, M Z2ry + 87 100ue(t, ) 172wy

t
+ 2// g(ue) (Oyue)*dsdx + 28/ H@%ug(s, ')H;(R) ds < C.
0JR 0

In particular, we get

(2.8) [[ue (t, )l ooy < C-

Proof. Arguing as in Lemma 2.1, thanks to (1.4), we have that

d
= (et Y32y + 8 1058, ) 2oy )
£ 8 £ d 82 5 2 — U.
4—2/]R (1) (Opue )? z +2e||05u HL 0

Integrating on (0,%), by (2.2), we have (2.7).
Finally, we prove (2.8). Thanks to (2.6) and (2.7),

e (t, Moo ) < C
which gives (2.8). O

Lemma 2.3. FizT > 0 and assume (1.3), or (1.4). There exist a constant
C(T) > 0, independent on e, such that

t
e (|02t )| / 0pue (s, )22z ds
(2.9) ’

t
e / 1000te (5, )2y ds < C(T),

for every 0 <t < T.

Proof. Let 0 <t < T. Multiplying (2.1) by 20,u., an integration on R
gives

2| Opue(t, )||L2 :—2/ f’(ue)ﬁmueatugdac—i—Q/Gm(g(ue)azue)ﬁtue
R R

+2ﬁ2/ atusataguedx—%/ 8tu68;‘u€dx
R R
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= — 2/ f'(us)Opu-Opucdr — 2/ 9(ue)Opuc 00y udx
R R
— 262 | OuDyua b, )2y + 26 / 090 da
R
= - 2/ fl(ua)azuaatuedx - 2/ g(ua)axuaataxuadx
R R

— 282 (|9, 0y uc (2, )HL2 H@zue HL2

Therefore, we have that
(2. 10)
H82u5 HL2 + 2 || Opuc (2, )||L2(]R) + 252 010 uc(t, )”L2(]R)

= — 2/ I (ue)OpusOpucdr — 2/ 9(ue )0yt 00z ucde.
R R

Due to Lemma 2.1, or 2.2 and the Young inequality,

Q/RUI(UE)HaxuaH({)t“EWx < 2Hf/”Loo(O(T)@(T))/R|8xua||atua’dﬂf

< ZC(T)/ |Oztic|[Opuc|da < C(T) [|Opue (8, ')H%?(R) + [[Orue (¢, ')H%?(R)
< O(T) + [|0eue(t, |72 wy

Q/R’g(ue)HarusHatazuf:’dx < 2H9HL°°(C(T),C(T))/ |Optic |01 Opuc|da

T) 0y ue

< ZC'(T)/ |Op e || 0Oz us|dx = 2/ ‘ |BOL Oy ue | dx

gc<w8%<me+WWﬁw<ﬂmm
C(T) + B |00 us(t, )HL2

It follows from (2.10) that

||82ua HLz(RJrllatua( W) + B2 100ue(t, )2y < CT).

Integrating on (0,t), by (2.2), we get

t
 02uett, )P Auwaaw@mws
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t
+W/W@m%mwéwws0+cwﬁéaﬂ,
0

which gives (2.9). O

Lemma 2.4. FizT > 0 and assume (1.3), or (1.4). There exist a constant
C(T) > 0, independent on e, such that

t
e2 Hagus(t,~)HiQ(R) +5/ H@fxug(sj-)HiQ(R) ds
(2.11) 0

- /Ot 100021z, ) | ds < OT).
for every 0 <t <T.
Proof. Let 0 <t <T. We begin by observing that
(2.12) B (9(ue)dpue) = g (ue) (Bptie)® + Poue.
Multiplying (2.1) by —2e0;0%u,, thanks to (2.12), an integration on R gives

28% Hata ue(t HL2(R)

:25/ 8tu58t8§ugd:c+2s/ [ (u2)0pu:0;0%u dx
R R

—28/ g/(ug)(ﬁxu5)28t8§ugdx—25/ 9(ue) 010> u dx
R R
—1—252/3§u58t@§u5d:n

R

= 2 e, ) By + 26 / £ (1) Py 0,0 da
R

_25/g/(us)(awua)2ataguadx_25/g(ua)agueataguadx
R R

at 07 ue(t, ')HL2(R)
Therefore, we have that

d
03t ) [y + 22 190arae () 3oy + 26% 0020 (8, [ ey

(2.13) :25/ f’(ue)amueatagugdx—25/g'(u€)(8mu5)28t8§u€dx
R R
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— 26/ g(ue)Pu 0,02 u dx.
R
Since 0 < € < 1, thanks to (2.9), Lemmas 2.1 or (2.2) and the Young inequality,

% /R 7 )l sl 902l < 22 ||y _ory o) /R 100ue| 0,02 | da

SEC(T)/ 10, u€|]8t82u5|da;—a/ ’8“5

‘Bata%ue‘ dx

< eO(T) 0zue(t, )| T2w +*H3t32“e HL2

<cm+ 2= Hata%g .

25/ "(ue)|(Oyus)?|0 (ﬁu8 dx < 2e|ld'], / Opus)?|0, fﬁug dx
R|g( )‘( ) ’ t | Hg HL (—C(T),c(T)) R( ) | 3 ’
SEC’(T)/(B Ue) ]8t82u5|d:1::5/ ’M‘ |80 OFuc | da
< eC(T) ||Optie (t, ) | 11 gy H8t82ua

My

25/ |9(ue)||0Fue] |01 ue|dw < QEHQHLoo(_C(T),C(T))/ |0ue |00 e | dx

< (T / 102, |0,02u. | dz — ¢ / ‘ D0 | 39,620 da
<o Hé‘2 et ey + 2 [0t o
< C(T) H8t82u€ HL2(]R

It follows from (2.13) that

d
52Hw5 Mooy + 2 190D (2, ) |22z
(2.14)

+ P Hata2ua HLz < C(T) 4+ eC(T) [|Ogus(t, )||L4(]R

and using [11, Lemma 2.3]

(2.15)

9t 8, Eagry < 6 (e (8, ) oy + 19ue(t, M oy ) 1920t ) oy
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Thanks to (2.9), (2.15) and Lemmas 2.1, or 2.2,
(2.16) eC(T) ||0zues(t, )HL4 <eC(T)||02ue(t, HL2 < C(T).

Consequently, by (2.11) and (2.16), we have that

H(’33u5 M2y + 22 10Datie(t, ) 72y + Hata%e Wi < D).

Integratlng on (0,t), by (2.2), we get
t
2
52 Hagus(ta ')HL2(R) =+ 25/0 Hataﬁvua(sa )H%Q(R) ds

B25 t 2 2
- /O |00z, ) || L2y ds < € + C(T)E < C(T),

which gives (2.11). O

Lemma 2.5. FizT > 0 and assume (1.3), or (1.4). There exist a constant
C(T) > 0, independent on €, such that

(2.17) 10eue (¢, )72y + B 100zt (t, )| T2y < C(T),
for every 0 <t <T. Moreover,

(2.18) 10ktue || oo (0,7) k) < C(T).

Proof. Let 0 <t < T. Multiplying (2.1) by 20;u., an integration on R
gives

2 ||Opu(t, )HLQ ®R) = 2/Rf’(us)8mu€8tugdx+2/H§6x(g(us)8mus)8tuadx
252/ &gﬁgusatugda?—%/Biueatusdx
R R
= - 2/ f/(ua)axuaatuadx - 2/ g(ua)awuaataxuadx
R R

— 2% |9;0puc (1, ')H%?(R) + 25/ OPuc0y0pucdz.
R

Therefore, we have that

(2.19)
2|1 Bgue (t, )17 2y + 267 100z ue (8, ) 172w

= —2/ f’(ug)awuaatuedm—Q/g(ug)azugatamusdx—%/ Gguaatﬁgguedx.
R R R
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Due to (2.11), Lemmas 2.1, or 2.2 and the Young inequality,

QA]f'(ug)]\axug\|8tug|dm§ 2||f’||Lm(_C(T)7C(T))/R|8$u€|]8tu5]d:c
< QC(T)/ |0z ue|[Oguc|dx = C(T) [|0zue (b, ) F2my + 10rue(t, )1 F2ry
< C(T) + 1 9suc(t, 72wy »

2/ |9(ue)||Ozue |00y uc|dr < 2HQHLOO(—C(T),C(T))/ |0z tie||0p O ue | de

/\a Uz |94, u€|dx—/‘ T)dyue |80, 0puc| dz
C(T) ||0ruc(t, )HL?(R ||6t8 ue(t, )||L2(R
ﬂ
< CO(T) + — 010z ue(t, )IIL2
9 / 05| |OyDae | da — / 260z | | 56,00, |

R »3

= 52 H(93u6 HL2(R ||8t(9 us( )HL?(R
<O(T)+ Hf)tf) ue(t, )||L2

Consequently, by (2.19), we have that
19pue (8, T2y + B2 100z, ) |7 2y < C(T),

which gives (2.17).
Finally, we prove (2.18). Thanks to (2.17) and the Young inequality,

(Opuc(t, x))2 :2/ Oste 0 Opuedy < 2/ |Opue|| 0 Ot | dx
<2 [|Opue(t, )|l 2 (ry [10:0zue(t, )| 2wy < C(T).

Hence,

10¢tue | F e (0,7 ¢y < C(T),

which gives (2.18). O
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3 - Proof of Theorem 1.1

Using the Sobolev Immersion Theorem, we prove the following result.

Lemma 3.1. Fiz T > 0. There exist a subsequence {ue, }ren of {ue}es0
and an a limit function u which satisfies (1.10) such that

(3.1) Ue, — u a.e. and in Lj ((0,T) xR), 1 < p < .
Moreover, u is solution of (1.1).

Proof. Thanks to Lemmas 2.1, or 2.2, 2.3 and 2.5,
(3.2) {uz}eso is uniformly bounded in H'((0,T) x R),

which gives (3.1).
Observe that, thanks to Lemmas 2.1, or 2.7,

we L®(0,T; H'(R)),

while, by Lemma 2.5,
u € WHe((0,T) x R).

Moreover, by Lemma 2.3, we have that
O10,u € L*((0,T) x R).
Therefore, (1.10) holds and u is solution of (1.1). O
Following [12, Theorem 1.1], we prove the following result.
Lemma 3.2. If f € C*(R), then (1.11) holds.

Proof. Let T > 0. Since C?*(R) C C!(R), Lemma 3.1 gives the existence
of a solution u of (1.1) such that (1.10) holds.

We prove (1.11). Let uj, u2 be two solutions of (1.1), which satisfy (1.10),
that is

{&gm + f'(u1)0pur — B20,0%u1 = 0p(g(u1)0pur), t>0,z€R,

u1(0,2) = ug,0(x), z €R,

{&guz + f'(u2)Opus — 526,58%@42 = 0, (g(u2)0yu2), t>0,x€eR,

u2(0,x) = ug,o(x), x €R.
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Then, the function

(3.3) W =u; — U

is the solution of the following Cauchy problem:
dw — B2010%w + f(u1)0pur — f'(ug)Orusz

(3.4) = 0z(g9(u1)0zu1 — g(u2)0zuz),  t>0,z€R,
wo(x) = u1,0(x) — ug,0(x), xz € R.

Since

d

185

2 2 _ 2 2 2
2AQ&wm—m3Aya@mw—ﬁ(W@ﬁmﬂm+ﬁH%Mtﬂpmﬂ,

2/ wax(g(ul)amul - g(u2)8xu2)d$ = 2/(9(“1)8mul - g(u2)axu2)ax‘ddxa
R R

multiplying (3.4) by 2w, an integration on R gives
(3.5)

d

@ (ol 2y + B2 0ol ) 2y )

= —2/R (f’(ul)axul — f’(u2)8xu2) wdx — 2/(g(u1)8xu1 — g(u2)0yug)Opwdz.

R
Observe that

f(u1)deur — f(u2)0puz = f'(u1)dpw 4 (f'(ur) — f'(uz))0zuz
g(u1)0zu1 — g(u2)Opuz =g(u1)0zw + (g(u1) — g(uz))Orus.
Therefore, by (3.5),
d

= (oot My + B2 100t M )

= —Q/Rf’(ul)waxwdx—Q/Rw(f/(ul) — ' (u2))0puz
(3.6) =2 [ )@z =2 [ (o) - g(u2)) Oy
=2 [ f)duntde =2 [ () = 02)ads

- 2/Rg(u1)(8$w)2dx -2 /(g(ul) — g(u2))O0ru20wdx.
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Since, u1, ug € L>=(0,T; H'(R)), thanks to (3.3), we have

|f'(ur) = f'(u2)| <C(T)|u1 — uz| = C(T)|wl,

(3.7)
9(u1) = gluz)| O(T)ur = ug] = C(T) ],

where

(38) O = sw {f"w)+ ")} + s {glu) +glus)}.

(0,T)xR (0,T)xR

Moreover, there exists a constant C'(T") > 0 such that
(3.9) 18211t ) 2y » [0wu2(ts )l 2wy < C(T),

for every 0 < ¢ < T. Due to (3.7), (3.8), (3.9) and the Young inequality that

2/R\f"(u1)|8xu1]w2dx =2 Hf”HLw(fC(T),C(T)) /R |0t |w? da

< 20(T) / Oy |w2dz < C(T) / (D)2 + C(T) ot ) o
R

R
< O(T) llwo(ts W7o gy 18zu1 (8, 72y + C(T) lw(t, |72
< O(T) [l (t, Mooy + CTD) lw(t, ) 2wy

2/ lw|| £ (u1) — f'(ug)||Oruadz| < 2C(T)/w28xu1d:1c
R R

< C(T) /Rw2(81u1)2d:6 + CO(T) ||w(t, -)||%2(R)

< O(T) llwo(ts Moo my 18z01 (8, 72y + C(T) lw(t, )lIZ2)
< O(T) [l (t; Mooy + C(T) lwt, ) 2wy

2 / \g(m)\(axwwxszugum, coy 10a(t, )
C(T) [0 (t, ) rcay -

/]g u1) — g(ug)||0pus||Opw|dx < 2C(T / |w]||Opuz||w|dx

< o) /R W (@) da + C(T) [9at0(t, )|y

< O(T) [lw(t, Moo @y 18zt2(t, 72y + C(T) 10s0(t, )72z
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< C(T) [ty )2y + CD) 100t ) 2y
If follows from (3.6) that

(3.10)

o (S R LIRS ey

dt
< O(T) [|lw(t, 7oy + C(T) lw(t, N 22y + C(T) 102w (t, ) 22y
Observe that

T
Wit x) = 2/ woywdy < 2/ |wl|Opw|dx.
R

— 00

Therefore, by the Young inequality,

oot M2y < oot M Z ey + 100t )2

Consequently, by (3.10), we have that

& (It MEacay + B2 Nt My
< C(T) |lw(t, M Z2my + C(T) |00 (t, )1 2Ry

< (D) (It Maqey + B 10:0(t. 7oy ) -
The Gronwall Lemma and (3.4) give
oot N Zaqey + B Nt N 2oy < €“O* (I lZay + 62 9oty ) -
By (1.12), we have that
(3.11) 71wl gy < e lwolli g -

Therefore, (1.11) follows from (3.4) and (3.11). O

Proof of Theorem 1.1. Theorem 1.1 follows from Lemmas 3.1and 3.2. [
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