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On the unramified Iwasawa module of a Zp-extension
generated by division points of a CM elliptic curve

Abstract. We consider the unramified Iwasawa module X(F∞) of a cer-
tain Zp-extension F∞/F0 generated by division points of an elliptic curve
with complex multiplication. This Zp-extension has properties similar
to those of the cyclotomic Zp-extension of a real abelian field, however,
it is already known that X(F∞) can be infinite. That is, an analog
of Greenberg’s conjecture for this Zp-extension fails. In this paper, we
mainly consider analogs of weak forms of Greenberg’s conjecture.

Keywords. Non-cyclotomic Zp-extension, Iwasawa module, CM elliptic
curve.

Mathematics Subject Classification: 11R23, 11G05, 11G15.

1 - Introduction

1.1 - Our questions

In this paper (except for Section 4), we shall consider the following situation:

(C1) K is an imaginary quadratic field whose class number is 1,

(C2) p is an odd prime number which splits in two distinct primes p and p in
K,

(C3) E is an elliptic curve over Q which has complex multiplication by the ring
of integers OK of K, and E has good reduction at p.

In Sections 1–3, we shall always work under the following
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A s s u m p t i o n. K, p, and E satisfy (C1), (C2), and (C3).

We recall several known facts (see, e.g., [6], [3], [17, pp.364–365], [10, Sec-
tion 1]). Let ψ be the Grössencharacter of E over K, and put π = ψ(p).
Then, π is a generator of the principal ideal p. For every non-negative integer
n, let E[πn+1] ⊂ E(Q) be the group of πn+1-division points of E. We put
Fn = K(E[πn+1]) for every n. Then Fn/K is an abelian extension, and p is
totally ramified in Fn/K. We also put F∞ =

⋃
n Fn. It is known that

Gal(F∞/K) ∼= ∆× Γ,

where ∆ ∼= Gal(F0/K) is a cyclic group of order p − 1 and Γ = Gal(F∞/F0)
is topologically isomorphic to the additive group Zp. We often identify ∆ with
Gal(F0/K) via the natural restriction map. Let P be the unique prime of F0

lying above p. Note that F∞/F0 is a Zp-extension which is unramified outside P.
We denote by L(F∞) (resp. M(F∞)) the maximal abelian unramified (resp.

unramified outside p) pro-p-extension of F∞. We put X(F∞) = Gal(L(F∞)/F∞)
(the unramified Iwasawa module) and X(F∞) = Gal(M(F∞)/F∞) (the p-rami-
fied Iwasawa module). We also put Λ = Zp[[Γ]]. Then, it is well known that
X(F∞) is a finitely generated torsion Λ-module. We note that X(F∞) is also a
finitely generated torsion Λ-module (see [15, p.94]).

The Zp-extension F∞/F0 and the cyclotomic Zp-extension of real abelian
fields have several similar properties. It is conjectured that the unramified
Iwasawa module of the cyclotomic Zp-extension is finite for every totally real
field (Greenberg’s conjecture [14]). On the other hand, the following result is
known. We denote by rankZE(Q) the rank of the Mordell-Weil group E(Q).

T h e o r em X (see Rubin [37, p.551, Remark], Greenberg [17, pp.364–366]).
If rankZE(Q) ≥ 2, then X(F∞) is not finite.

Hence, the analog of Greenberg’s conjecture does not hold in general for
F∞/F0. Let us then consider the analog of “weak forms” of Greenberg’s conjec-
ture. The following questions are the analog of conjectures treated in [25], [26].
We denote by X(F∞)fin the maximal finite Λ-submodule of X(F∞).

• Does either X(F∞) = 0 or X(F∞)fin �= 0 hold?

• Does either X(F∞) = 0 or Gal(M(F∞)/L(F∞)) �= 0 hold?

It is known that X(F∞) does not have non-trivial finite Λ-submodules (see
[15, p.94]). Hence if X(F∞)fin �= 0, then Gal(M(F∞)/L(F∞)) �= 0. Thus an
affirmative answer for (Q1) implies that the same holds for (Q2) (but not vice
versa).
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R em a r k 1.1.1. In [20, Appendix A], similar assertions for “tamely rami-
fied Iwasawa modules” of the cyclotomic Zp-extension of a totally real field are
considered. See also [9].

Actually, it is already known that the second question has an affirmative
answer for a large family of elliptic curves.

T h e o r em Y (see Coates-Wiles [6, Lemma 35]). If rankZE(Q) ≥ 1, then
Gal(M(F∞)/L(F∞)) �= 0.

Strictly speaking, in [6] the authors assumed p ≥ 5. However, one can also
show the same assertion for p = 3 similarly (see [37, (11.6) Proposition], [17,
pp.364–365]).

Let φ be the isomorphism Gal(F∞/K) → Z×
p which satisfies P σ = φ(σ)P

for all P ∈ E[πn+1] and σ ∈ Gal(F∞/K) (see, e.g., [17, p.364], [10, p.541]). Let
χ be the restriction of φ on ∆. For any Zp[∆]-module M , we define its χ-part
Mχ as

{m ∈ M | mδ = χ(δ)m for every δ ∈ ∆}.

Both X(F∞)χ and X(F∞)χ are also considered as Λ-modules. We define
X(F∞)χfin similarly. In this paper, we mainly treat the χ-part version of the
above questions.

Q u e s t i o n s.

(Q1) Does either X(F∞)χ = 0 or X(F∞)χfin �= 0 hold?

(Q2) Does either X(F∞)χ = 0 or Gal(M(F∞)/L(F∞))χ �= 0 hold?

Note that Theorems X and Y actually give the results for the χ-part. (See [6,
p.250], [37, p.551, Remark], [17, p.365].)

T h e o r em Z.

(i) If rankZE(Q) ≥ 2, then X(F∞)χ is not finite.

(ii) If rankZE(Q) ≥ 1, then Gal(M(F∞)/L(F∞))χ �= 0.

Hence, (Q2) has an affirmative answer if rankZE(Q) ≥ 1.

1.2 - Organization of the present paper

Our purpose in this paper is to give criteria for (Q1) and (Q2), and prove
these statements for specific elliptic curves.
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We will give the criteria in Section 2, and examples in Section 3. We treat
the elliptic curves of the form y2 = x3 − dx with p = 5 in Section 3.2, and
y2 = x3 − 264d2x+ 1694d3 with p = 3 in Section 3.3. For (Q1), we found that
the following cases exist.

• X(F∞)χ is infinite and X(F∞)χfin = 0 (i.e., (Q1) has a negative answer).

• X(F∞)χ is infinite and X(F∞)χfin �= 0.

• X(F∞)χ is non-trivial and finite.

On the other hand, for most of the cases we examined, (Q2) has an affirmative
answer, and no negative examples for (Q2) are found at this time.

In Section 4, we will treat the case p = 2. We shall consider similar questions
(Q1t), (Q2t) and give a partial result.

2 - Criteria for questions (Q1) and (Q2)

2.1 - Preliminaries

Let the notation be as in Section 1. We also define the following notation:

• Kp : the completion of K at p,

• (F0)P : the completion of F0 at P,

• OP : the valuation ring of (F0)P,

• U i = 1 +PiOP (for i = 1, 2),

• E(F0)
1 : the group of units of F0 which are congruent to 1 modulo P,

• E1 : the closure of E(F0)
1 in U1,

We fix a topological generator γ0 of Γ, and we shall identify Λ with Zp[[T ]]
(γ0 �→ 1 + T ). For a finitely generated torsion Λ-module Y , let Y Γ be the
Γ-invariant submodule of Y , YΓ the Γ-coinvariant quotient of Y , CharΛ Y the
characteristic ideal of Y , and Yfin the maximal finite Λ-submodule of Y . For a
finite group B, we denote by |B| the order of B.

Let M(F0) (resp. L(F0)) be the maximal abelian pro-p-extension unramified
outside P (resp. maximal abelian unramified p-extension) of F0. By class field
theory, we see that

Gal(M(F0)/L(F0)) ∼= U1/E1.
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The P-adic analog of Leopoldt’s conjecture for F0 asserts that the Zp-rank of
E1 is equal to the free rank of the group of global units of F0, and this holds
true since F0/K is an abelian extension (see [15, p.94]). This implies that
Gal(M(F0)/F∞) is finite. Let A(F0) be the Sylow p-subgroup of the ideal class
group of F0. By taking the χ-parts, we obtain the exact sequence

(1) 0 → (U1/E1)χ → Gal(M(F0)/F0)
χ → A(F0)

χ → 0.

We note that the isomorphisms

(2) X(F∞)χΓ
∼= Gal(M(F0)/F0)

χ and X(F∞)χΓ
∼= A(F0)

χ

hold. The first one is obtained from the isomorphism Gal(M(F0)/F0)
χ ∼=

Gal(M(F0)/F∞)χ (cf. the proof of [31, Lemma 2]), and the second one fol-
lows from the fact that P is the only prime which ramifies in F∞/F0 and it is
totally ramified (see, e.g., [39, Theorem 5.1]). From the above facts, we see that
X(F∞)χΓ is finite. We also note that X(F∞)χ = 0 if and only if A(F0)

χ = 0.
The following results are the analog of those given in the proof of [30, Propo-

sition 2], and they can be obtained by imitating the arguments. By using
the structure theorem of finitely generated torsion Λ-module and the fact that
X(F∞)χfin = 0, we obtain an injective Λ-module homomorphism X(F∞)χ → E
with finite cokernel, where E is an elementary torsion Λ-module (see [44, p.351]).
Since X(F∞)χΓ is finite, we see that EΓ is also finite. Therefore, CharΛX(F∞)χ

is prime to TΛ, and the same result also holds for CharΛX(F∞)χ. It can be
shown that EΓ = 0, and hence (X(F∞)χ)Γ = 0. By applying the same argument
to X(F∞)χ/X(F∞)χfin, we can also show that (X(F∞)χ)Γ = (X(F∞)χfin)

Γ. More-
over, from the well known exact sequence involving Γ-invariants and
Γ-coinvariants, we obtain the exact sequence

(3) 0 → (X(F∞)χ)Γ → Gal(M(F∞)/L(F∞))χΓ → X(F∞)χΓ → X(F∞)χΓ → 0.

R e ma r k 2.1.1. Let (U1/E1)tor be the Zp-torsion subgroup of U1/E1. By
using the argument given in [8, Section 4], we can show that

Gal(M(F0)/L(F0)F∞) ∼= (U1/E1)tor.

Hence, for the question on the non-triviality of Gal(M(F∞)/L(F∞)), it also
seems significant to study (U1/E1)tor (more generally, a similar object for Fn).
See also the proof of Theorem 4.1.1 (ii).

R e ma r k 2.1.2. Concerning the above remark, the works [1], [13] may be
helphul to study (U1/E1)tor. The author would like to thank Christian Maire
for giving a comment about this and related topics.
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2.2 - Criteria for (Q2)

L e mm a 2.2.1 (cf. e.g., [31, Lemma 2]). If (U1/E1)χ �= 0, then
Gal(M(F∞)/L(F∞))χ �= 0.

P r o o f. Using (1), (2), (3), we see that Gal(M(F∞)/L(F∞))χ = 0 implies
(U1/E1)χ = 0. �

P r o p o s i t i o n 2.2.2.

(i) If E1 is contained in U2, then Gal(M(F∞)/L(F∞))χ �= 0.

(ii) If U1 contains a primitive p-th root of unity, then Gal(M(F∞)/L(F∞))χ

�= 0.

P r o o f. There is a Zp[∆]-module isomorphism

(4) E[π] ∼= U1/U2.

(See [40, Lemma 10.4]. Note that there the author assumed p > 7, however we
can show that this assertion holds for p ≥ 3. See also [6, Lemma 9].) Then, (i)
follows from this isomorphism and Lemma 2.2.1.

We prove (ii). Assume that U1 contains a primitive p-th root of unity ζp.
That is, (F0)P is isomorphic to Qp(ζp) (see also the proof of [6, Lemma 12]).
Since ζp U2 generates U1/U2, it follows that ζp is contained in (U1)χ by (4).
We claim that E1 does not contain ζp. Note that the global field F0 does not
contain a primitive p-th root of unity because E has good reduction at p, see,
e.g., [40, Corollary 3.17]. The claim follows combining this fact and the validity
of the P-adic analog of Leopoldt’s conjecture (see, e.g., [13, Lemma 3.1 and
Corollary 3.2]), and it implies that (U1/E1)χ �= 0. �

R e ma r k 2.2.3. Assume that U1 does not contain any primitive p-th root
of unity. In this case, (U1)χ is a free Zp-module of rank 1. Hence, by using (4),
we see (U1)χ/((U1)χ)p ∼= U1/U2. From this, we can see that (U1/E1)χ = 0 if
and only if there is a (global) unit u of F0 such that up−1 �≡ 1 (mod P2).

R e ma r k 2.2.4. Let Ẽ(Fp) be the group of Fp-rational points of the reduc-
tion of E at p. Assume that |Ẽ(Fp)| is divisible by p. Then we can see that
ψ(p) + ψ(p) ≡ 1 (mod p), where ψ is the Grössencharacter of E over K (see,
e.g., [43, Chapter II, Corollary 10.4.1 (b)]). By using the argument given in
the proof of [6, Lemma 12], we see that (F0)P contains a primitive p-th root of
unity. Hence (Q2) has an affirmative answer by Proposition 2.2.2 (ii).
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R em a r k 2.2.5. Let L(E/Q, s) (resp. L(E/K, s)) be the complex L-func-
tion of E over Q (resp. over K). We assume that L(E/Q, 1) �= 0. In this
situation, we can show that if the p-rank of A(F0)

χ is odd then (Q2) has
an affirmative answer. We give an outline of the proof. We first note that
L(E/K, 1) is also not equal to 0, and then E(K) is finite (see, e.g., [6, p.251],
the proof of [24, Corollary 3.2]). Let Sπ(E/K) ⊂ H1(Gal(K/K), E[π]) be
the Selmer group relative to π, and S′

π(E/K) the enlarged Selmer group rel-
ative to π (see, e.g., [34, p.32], [40, Definition 6.3]). We may assume that
|Ẽ(Fp)| �≡ 0 (mod p) (see Remark 2.2.4). Under this assumption, we can show
that S′

π(E/K) ∼= Sπ(E/K) (see [34, p.35]). Note that

S′
π(E/K) ∼= Hom(Gal(M(F0)/F0)

χ, E[π]).

(See [40, Theorem 6.5]. In our situation, this holds even when p = 3.) We
claim that the p-rank of S′

π(E/K) is even. Let Ш(E/K) (resp. Ш(E/Q)) be
the Tate-Shafarevich group of E/K (resp. E/Q). We denote by Ш(E/K)[π] the
π-torsion subgroup of Ш(E/K) (we also define Ш(E/K)[p], Ш(E/K)[π], and
Ш(E/Q)[p] similarly). In our situation, it is known that both |Ш(E/K)| and
|Ш(E/Q)| are finite ( [37]). Then, by a result of Cassels (see, e.g., [42, Chapter
X, Theorem 4.14]), the p-rank of Ш(E/Q) is even. Moreover, we can show
that Sπ(E/K) ∼= Ш(E/K)[π] in our situation. We write K = Q(

√
d) with a

negative square-free integer d. Let Ed be the quadratic twist of E by d. We
have the following:

Ш(E/K)[p] ∼= Ш(E/Q)[p]⊕ Ш(Ed/Q)[p]

(see, e.g., [27, Lemma 3.1]),

Ш(E/Q)[p] ∼= Ш(Ed/Q)[p]

(this was suggested by an anonymous referee of an earlier manuscript, and the
author express his gratitude to him/her),

Ш(E/K)[p] ∼= Ш(E/K)[π]⊕ Ш(E/K)[π], |Ш(E/K)[π]| = |Ш(E/K)[π]|

(cf. the argument given in [16, p.260]). By using these results, we see that the p-
rank of Ш(E/K)[π] is even. The claim follows. Hence the p-ranks of S′

π(E/K)
and of Gal(M(F0)/F0)

χ are even as well. Therefore if the p-rank of A(F0)
χ is

odd, then A(F0)
χ is not isomorphic to Gal(M(F0)/F0)

χ and (U1/E1)χ �= 0.

2.3 - Criteria for (Q1)

P r o p o s i t i o n 2.3.1. If (U1/E1)χ = 0 and rankZE(Q) ≥ 1, then
X(F∞)χfin �= 0.
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P r o o f. We first recall that Gal(M(F∞)/L(F∞))χ �= 0 by Theorem Z (ii).
The essential idea of the following argument was given to the author by

Satoshi Fujii (concerning his work [8, Section 4]). We mention that a similar
idea also can be found in, e.g., [2, Théorème 2.1].

Since (U1/E1)χ = 0, we see that X(F∞)χΓ
∼= X(F∞)χΓ by using (2) and (1).

Recall also that (X(F∞)χ)Γ = 0. From these facts and (3), we see that

(X(F∞)χ)Γ ∼= Gal(M(F∞)/L(F∞))χΓ.

Since Gal(M(F∞)/L(F∞))χ �= 0, we can show that Gal(M(F∞)/L(F∞))χΓ �= 0
using Nakayama’s lemma. Then, (X(F∞)χfin)

Γ = (X(F∞)χ)Γ �= 0. �

C o r o l l a r y 2.3.2. If (U1/E1)χ = 0, rankZE(Q) = 1, and |A(F0)
χ| = p,

then X(F∞)χ is non-trivial and finite.

P r o o f. Since |A(F0)
χ| = p, we see that X(F∞)χfin = 0 or X(F∞)χ =

X(F∞)χfin (this can be shown by using the same idea given in the first paragraph
of the proof of [29, Theorem 2]). Under the assumption of this corollary, the
former case never occurs by Proposition 2.3.1. �

For the triviality of X(F∞)χfin, we obtain the following result (cf. [20, Sections
1–4]). Let κ be the restriction of φ on Γ (see Section 1.1). Put r = rankZE(Q).
It is known that CharΛX(F∞)χ is contained in (T + 1 − κ(γ0))

r−1Λ (see [17,
p.366]).

P r o p o s i t i o n 2.3.3. Let the notation be as above. If r ≥ 2 and |A(F0)
χ| =

pr−1, then X(F∞)χfin = 0 and CharΛX(F∞)χ = (T + 1− κ(γ0))
r−1Λ.

P r o o f. Let f(T ) be a generator of CharΛX(F∞)χ. It is well known that

|(X(F∞)χ)Γ|
|X(F∞)χΓ|

= |f(0)|p,

where | · |p denotes the normalized p-adic (multiplicative) absolute value (see,
e.g., [44, Exercise 13.12]).

Recall that X(F∞)χΓ
∼= A(F0)

χ and (X(F∞)χ)Γ = (X(F∞)χfin)
Γ. As noted

above, f(T ) is divisible by (T + 1− κ(γ0))
r−1. Hence, if |A(F0)

χ| = pr−1, then
(X(F∞)χfin)

Γ = 0 and CharΛX(F∞)χ = (T + 1 − κ(γ0))
r−1Λ. Note that the

triviality of (X(F∞)χfin)
Γ implies the triviality of X(F∞)χfin. �

R em a r k 2.3.4. If E and p satisfy the assumptions of the above Proposition
2.3.3, then [10, Conjecture 1.2] holds for E and p. However, we mention that
this does not imply the validity of [10, Conjecture 1.1].
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3 - Examples for questions (Q1) and (Q2)

3.1 - Software used in the example computations

The author used PARI/GP [33] to compute the ideal class groups, units,
values of L-functions, etc. For the computation of the rank of elliptic curves
given in Section 3.3, the author used Sage [41], in particular, mwrank [7]. In the
computation on Sage, the article [21] was very helpful. The author also would
like to thank Iwao Kimura for giving comments.

3.2 - Examples with K = Q(
√
−1) and p = 5

In this subsection, we put K = Q(
√
−1) and p = 5. An example treated in

Fukuda-Komatsu [10] gives a negative answer for (Q1).

E x a m p l e 3.2.1 (see Fukuda-Komatsu [10, Section 4.1]). Let E be an el-
liptic curve defined by the Weierstrass equation

y2 = x3 + 99x.

Then K, p, E satisfy (C1), (C2), (C3). It is known that rankZE(Q) is 2 ( [3,
Table des valeurs des λ(l∗p,i): I]), and then X(F∞)χ is not finite by Theorem Z (i).
It is also known that |A(F0)| = 5, hence the infiniteness of X(F∞)χ implies that
|A(F0)

χ| = 5. By Proposition 2.3.3, we see that X(F∞)χfin = 0. Then, this is a
negative example for (Q1). On the other hand, (Q2) has an affirmative answer
by Theorem Z (ii). Note also that Proposition 2.3.3 gives an alternative proof
of the fact (already confirmed in [10]) that CharΛX(F∞)χ = (T +1−κ(γ0))Λ.

R e ma r k 3.2.2. In [10, Sections 4.2, 4.3], Fukuda and Komatsu gave ex-
amples of elliptic curves of the form y2 = x3 − dx which satisfy that X(F∞)χ

is finite. Although it is not explicitly written there, these examples seem
to satisfy X(F∞)χ �= 0. The author confirmed this fact for two of them
(d = −1331,−2197) by checking A(F0)

χ �= 0.

We give an example for (Q2) with rankZE(Q) = 0 and X(F∞)χ �= 0.

E x am p l e 3.2.3. Let E be an elliptic curve defined by the Weierstrass
equation

y2 = x3 − 3072x.

It is known that L(E/Q, 1) �= 0 (see [36, Theorem 1]), and the author checked
that |A(F0)| = |A(F0)

χ| = 5. Then the criterion given in Remark 2.2.5 is appli-
cable, and hence this is a non-trivial example in which (Q2) has an affirmative
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answer. Note that one can also check the non-triviality of (U1/E1)χ by using a
more direct method (Remark 2.2.3). We also remark that Proposition 2.2.2 (ii)
is not applicable for this example.

R e ma r k 3.2.4. Concerning Remark 3.2.2 and Example 3.2.3, the author
computed |A(F0)

χ| with a help of PARI/GP and several known results. An
explicit Kummer generator of F0 over K is given in [10, p.547]. One way to
check A(F0)

χ �= 0 is to observe the ∆-action on an ideal class. For the case of
Remark 3.2.2, the author also used another method referring to the data given
in [3, Table des valeurs des λ(l∗p,i): I] and computing the ideal class group of
the quadratic intermediate field of F0/K. For Example 3.2.3, the full Birch and
Swinnerton-Dyer conjecture holds for E (see [38, p.26, Theorem]), and there
is another way of checking A(F0)

χ �= 0 by computing the analytic order of
Ш(E/Q). (See Remark 2.2.5. See also the proof of [40, Corollary 6.10].)

3.3 - Examples with K = Q(
√
−11) and p = 3

Let Ed
◦ be an elliptic curve defined by the Weierstrass equation

y2 = x3 − 264d2x+ 1694d3,

where d is a non-zero square-free integer. We put K = Q(
√
−11) and p = 3.

It is well known that Ed
◦ has complex multiplication by OK (see, e.g., [19]).

Note also that Ed
◦ has good reduction at p = 3 if and only if d ≡ 0 (mod 3)

(see [19]). We also note that Ed
◦ and E−11d

◦ are isomorphic over K. Hence, in
the remaining part of this subsection, we assume

(D1) d is a square-free integer satisfying d ≡ 0 (mod 3) and d �≡ 0 (mod 11).

Then, under (D1), K, p, Ed
◦ satisfy (C1), (C2), (C3). We choose p as the prime

generated by (−1−
√
−11)/2. We put d′ = d/3, then

F0 = K

(√
d′ (11−

√
−11)

)
.

This can be obtained using an explicit endomorphism given in [35, Theorem 3].
(However, it seems that the multiplication by (−1 +

√
−11)/2 endomorphism

given in [35, Theorem 3] is actually the multiplication by (−1 −
√
−11)/2 en-

domorphism.)
Let p be the conjugate of p. Then, p is unramified in F0. Moreover, we

can see that p splits completely in F0 if and only if d′ ≡ 1 (mod 3) (i.e., d ≡ 3
(mod 9)). We also note that U1 contains a primitive third root of unity if and
only if p splits completely in F0. Hence, by Proposition 2.2.2 (ii), we have the
following result.
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• If d ≡ 3 (mod 9), then (Q2) has an affirmative answer for Ed
◦ .

Let L(Ed
◦/Q, s) be the complex L-function of Ed

◦ over Q. We note that
if d > 0, then the root number of Ed

◦ is −1 (see [18, Theorem 19.1.1]) and
L(Ed

◦/Q, 1) = 0.
We shall give several examples for the case d ≡ 6 (mod 9). First, we shall

consider (Q2). For this question, we can use Theorem Z (ii) and Proposition
2.2.2. Recall that if d ≡ 6 (mod 9) then U1 does not contain a primitive third
root of unity. We can check whether (U1/E1)χ = 0 or not by using the method
stated in Remark 2.2.3.

E x a m p l e 3.3.1. Assume that d > 0 and d ≡ 6 (mod 9). In the range
1 < d < 3000, the following values satisfy |A(F0)

χ| �= 1.

(5)

d = 78, 87, 141, 177, 186, 195, 213, 285, 357, 366,

393, 447, 501, 510, 537, 609, 699, 717, 753, 807,

843, 861, 870, 915, 942, 969, 987, 1005, 1149, 1167,

1203, 1230, 1293, 1365, 1374, 1482, 1545, 1554, 1635, 1662,

1689, 1707, 1779, 1842, 1851, 1887, 1923, 1959, 2085, 2121,

2139, 2202, 2247, 2301, 2346, 2454, 2463, 2481, 2490, 2562,

2571, 2589, 2634, 2679, 2715, 2769, 2877, 2922, 2949, 2967, 2985.

Recall that L(Ed
◦/Q, 1) = 0 in this situation. Hence, if L′(Ed

◦/Q, 1) �= 0, we see
that rankZE

d
◦(Q) = 1 ( [37, Corollary C]). For the above values, the condition

L′(Ed
◦/Q, 1) �= 0 is satisfied except for the cases d = 141, 807, 2121. Moreover,

for these 3 values, the author checked that rankZE
d
◦(Q) = 3. Hence, for the

values of d listed above, (Q2) has an affirmative answer by Theorem Z (ii). For
d = 141, 807, 2121, it can be checked that (U1/E1)χ �= 0, and hence Lemma
2.2.1 is applicable.

E x a m p l e 3.3.2. Assume that d < 0 and d ≡ 6 (mod 9). In the range
−3000 < d < 0, the following 48 values of d satisfy |A(F0)

χ| �= 1.

(6)

d = −2955,−2910,−2874,−2847,−2757,−2730,−2703,−2649,

−2613,−2559,−2514,−2478,−2469,−2433,−2361,−2298,

−2271,−2262,−2154,−2109,−2010,−1974,−1965,−1758,

−1731,−1695,−1623,−1461,−1281,−1263,−1227,−1137,

−1119,−1110,−1065,−1038,−1002,−993,−678,−651,

−489,−399,−390,−327,−255,−174,−93,−21.

The 45 values different from −2910,−2361,−1731 satisfy (U1/E1)χ �= 0, then
(Q2) has an affirmative answer for these values. From the computation of
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approximate values, we can expect that L(Ed
◦/Q, 1) = 0 for several values in

the above list (see Example 3.3.4). In particular, for the case d = −2361, we will
later see that rankZE

d
◦(Q) = 2, and hence this is also an affirmative example

for (Q2).

Next, we consider (Q1).

E x am p l e 3.3.3. We go back to the situation treated in Example 3.3.1.
For the values given in (5), rankZEd

◦(Q) ≥ 1. Moreover, if (U1/E1)χ = 0 then
(Q1) has an affirmative answer by Proposition 2.3.1. Among the values in (5),
the following ones satisfy (U1/E1)χ = 0.

d = 78, 87, 186, 195, 213, 285, 393, 447, 501, 510, 537, 609, 699, 717,

753, 861, 870, 915, 969, 987, 1005, 1167, 1230, 1293, 1365, 1482,

1545, 1635, 1662, 1707, 1779, 1842, 1851, 1887, 1923, 1959, 2085,

2139, 2247, 2454, 2463, 2481, 2562, 2571, 2634, 2679, 2715, 2769,

2877, 2922, 2967, 2985.

Note that all of these values satisfy rankZE
d
◦(Q) = 1. In addition, if |A(F0)

χ|
= 3, then X(F∞)χ is non-trivial and finite by Corollary 2.3.2. In the above list,
the condition |A(F0)

χ| = 3 is satisfied except for the cases d = 1167, 1482, 2247.

We provide now several negative examples for (Q1).

E x am p l e 3.3.4. As noted in Example 3.3.2, for several values of d in (6),
we can expect L(Ed

◦/Q, 1) to be 0 from its approximate value. Such values are
the following:

d = −2874,−2847,−2730,−2703,−2649,−2514,−2361,−2271,

−2154,−1974,−1965,−1758,−1119,−1002,−651,−489,

−399,−390,−255,−174,−21.

The author checked that rankZE
d
◦(Q) = 2 for all of the above values. Hence,

for these values, we see that X(F∞)χ is infinite by Theorem Z (i). Moreover, if
|A(F0)

χ| = 3, then X(F∞)χfin = 0 and CharΛX(F∞)χ = (T + 1 − κ(γ0))Λ by
Proposition 2.3.3. In the above list, we have |A(F0)

χ| = 3 except for the cases
d = −2703,−2361.

E x am p l e 3.3.5. We consider d = 141, 807, 2121. Recall that rankZEd
◦(Q)

= 3 for these values (see Example 3.3.1). Moreover, it can be checked that
|A(F0)

χ| = 9 for all of these values. Then we see that X(F∞)χfin = 0 and
CharΛX(F∞)χ = (T + 1− κ(γ0))

2Λ by Proposition 2.3.3.
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The above Example 3.3.5 gives examples of rank 3 elliptic curves for which
[10, Conjecture 1.2] is valid.

R em a r k 3.3.6. We can also find examples satisfying X(F∞)χ is infinite and
X(F∞)χfin = 0 for the case d ≡ 3 (mod 9). For instance, d = −159,−114,−51.

We provide a final positive example for (Q1) where X(F∞)χ is infinite and
X(F∞)χfin �= 0.

E x a m p l e 3.3.7. We consider d = −2361. Recall that rankZE
−2361
◦ (Q)

= 2, and hence X(F∞)χ is infinite (Example 3.3.4). In this case, (U1/E1)χ = 0
(Example 3.3.2). Thus, by Proposition 2.3.1, we see that X(F∞)χfin �= 0.

As a conclusion of this subsection, for the case of Ed
◦ with an integer d

satisfying (D1), we have confirmed the following:

• In the range −3000 < d < 3000, (Q2) has an affirmative answer except
for the cases d = −2910,−1731 (for which our criteria do not apply). It
is likely that (Q2) holds for these two values as well.

• Similar to the situation treated in Section 3.2, both affirmative and neg-
ative examples exist for (Q1).

4 - Similar questions for the case p = 2

4.1 - Questions and results

In this section, we fix K = Q(
√
−7) and p = 2. For a non-zero square free

integer d, let Ed
∗ be the elliptic curve over Q defined by the equation

y2 = x3 + 21dx2 + 112d2x.

It is well known that Ed
∗ has complex multiplication by OK . This situation is

well studied, and we recall several facts. Note that Ed
∗ has good reduction at 2

if and only if d ≡ 1 (mod 4) (see, e.g., [19]). Moreover, if d is prime to 7, then
Ed

∗ is isomorphic to E−7d
∗ over K (see, e.g., [42, Chapter X], [12, Section 7], [24,

Section 2]). Hence, we assume

(D2) d is a square-free integer satisfying d ≡ 1 (mod 4) and d �≡ 0 (mod 7).

Recall that p = 2 splits in K, and the class number of K is 1. Let p be a
prime of K lying above 2. We denote by ψ the Grössencharacter of Ed

∗ over K,
and put π = ψ(p). We also put Fn = K(Ed

∗ [π
n+2]) for all n ≥ 0. Note that

this definition of Fn is slightly different from the case p ≥ 3. Then F0/K is a
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quadratic extension (see, e.g., [12, Section 2], [4]). It is known that Fn/K is
totally ramified at p (see, e.g., [37, (3.6)Proposition (i)], [4]). We denote by P
the unique prime of F0 lying above p. We put F∞ =

⋃
n Fn, then F∞/F0 is a

Z2-extension unramified outside P.
In the following, we choose p as the prime generated by (−1 −

√
−7)/2. It

is known that

(7) F0 = K(

√
d
√
−7)

(see [4, Lemma 2.2], however notice the difference in the choice of p).
We define the notation Γ, Λ, X(F∞), X(F∞), M(F∞), L(F∞), etc. as in

previous sections. In this section, we shall consider the following:

Q u e s t i o n s. Let the notation be as in the previous paragraphs, and assume
that d satisfies (D2).

(Q1t) Does either X(F∞) = 0 or X(F∞)fin �= 0 hold?

(Q2t) Does either X(F∞) = 0 or Gal(M(F∞)/L(F∞)) �= 0 hold?

Concerning the above questions, we shall show the following:

T h e o r em 4.1.1. Assume that d satisfies (D2).

(i) If d ≡ 5 (mod 8), then (Q1t) has an affirmative answer for Ed
∗ .

(ii) Suppose that d ≡ 1 (mod 8). If Gal(M(F∞)/L(F∞)) �= 0, then X(F∞)fin
�= 0.

Similar to the case p ≥ 3, if (Q1t) has an affirmative answer then (Q2t) also
has, because X(F∞)fin = 0 ( [15, p.94]). For the case d ≡ 1 (mod 8), if (Q2t)
has an affirmative answer then (Q1t) also has. That is, the above theorem also
says that the case “(Q2t) is affirmative but (Q1t) is negative” does not occur.

One can also show an analog of Theorem Y for this situation. That is,
(Q2t) has an affirmative answer if rankZE

d
∗(Q) ≥ 1. This can be shown by

slightly modifying the argument given in [6], however, we omit the details. By
combining this fact and Theorem 4.1.1, we obtain the following:

C o r o l l a r y 4.1.2. Assume that d satisfies (D2). If rankZEd
∗(Q) ≥ 1, then

(Q1t) has an affirmative answer for Ed
∗ .

R em a r k 4.1.3. The analog of Theorem X also holds for this setting. We
can show this by modifying the method presented in [11] (see also [37, p.551,
Remark]).
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R em a r k 4.1.4. As noted in [12, Section 7], it is known that L(Ed
∗ , 1) = 0

when d < 0 (recall that d �≡ 0 (mod 7)). Hence, rankZEd
∗(Q) is expected to

be positive for this case. We also mention that a sufficient condition to have
rankZE

d
∗(Q) = 1 is given in [5, Theorem 1.4].

R e ma r k 4.1.5. The Z2-rank of X(F∞) was considered in [4], [23]. These
results seem helpful for future research on our questions (Q1t), (Q2t).

4.2 - Proof of Theorem 4.1.1

Let the notation be as in Section 4.1. Recall that F0/K is totally ramified
at p, and P is the unique prime of F0 lying above p. Let cl(P) be the ideal class
of F0 containing P. We note that the order of cl(P) is equal to 1 or 2 because
the class number of K is 1.

L e mm a 4.2.1. Assume that d satisfies (D2). If cl(P) is not trivial, then
X(F∞)fin �= 0.

P r o o f. For n ≥ 0, let A(Fn) be the Sylow 2-subgroup of the ideal class
group of Fn, and Dn the subgroup of A(Fn) consisting of the classes containing
a power of the prime lying above P. Note that cl(P) is contained in D0. Assume
that cl(P) is not trivial.

In our situation, we can see that |A(Fn)
Gal(Fn/F0)| is bounded with respect to

n (cf. the proof of [14, Theorem 1]), and then |Dn| is also bounded. From this,
we can show that cl(P) capitulates in Fn if n is sufficiently large (cf. [14, p.267]).
Thus, by using [28, p.218, Proposition], we see that X(F∞)fin �= 0. �

We also show the following lemma. This can be seen as the analog of [32,
Lemma 2].

L e mm a 4.2.2. Assume that d satisfies (D2). If d has a rational prime
divisor � which satisfies � ≡ ±3 (mod 8), then cl(P) is not trivial.

P r o o f. We put �∗ = � or −� so that �∗ satisfies �∗ ≡ 1 (mod 4). Then
K(

√
�∗)/K is unramified outside the primes lying above �∗, and every prime of

K lying above �∗ is totally ramified in K(
√
�∗).

We note that every prime of K lying above � also ramifies in F0. Since the
prime of K lying above 7 is ramified in F0, K(

√
�∗) and F0 are disjoint. (See

(7)).
Note that every prime of K lying above � is tamely ramified in F0(

√
�∗).

Combining the above results, we see that F0(
√
�∗)/F0 is unramified.

On the other hand, the rational prime 2 is inert in Q(
√
�∗). Since 2 splits

in K and p ramifies in F0, we see that P is inert in the unramified quadratic
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extension F0(
√
�∗)/F0. Then, by class field theory, cl(P) is not trivial. �

We now give a proof of Theorem 4.1.1 (i). Since d ≡ 5 (mod 8), there is a
rational prime divisor � of d which satisfies � ≡ ±3 (mod 8). Then the assertion
follows from Lemmas 4.2.1 and 4.2.2.

In the rest of this subsection, we give a proof of Theorem 4.1.1 (ii). We
define (F0)P, U1, E(F0)

1, and E1 similar to the case p ≥ 3 (see Section 2.1).

L e mm a 4.2.3. Assume that d satisfies (D2) and d ≡ 1 (mod 8). If P is
principal, then U1/E1 has no non-trivial Z2-torsion element.

P r o o f. We mention that a quite similar result in a slightly different situ-
ation was given in [22, Theorem 1 (2) and Lemma 5 (2)]. The field Q( 4

√
−q)

with a prime number q satisfying q ≡ 7 (mod 16) was considered in [22]. Our
case is F0 = Q( 4

√
−7d2) with d ≡ 1 (mod 8). Our result can be also shown by

using the same argument, and hence we only give an outline of the proof.
By taking a suitable generator γ of P, we can see that the group of units

of F0 is generated by −1 and η = γ2/2 (see the proof of [22, Lemma 5]). Let
ordP(·) be the normalized (additive) valuation at P, then

ordP(η
2 − 1) = 2 and ordP(η − 1) = ordP(−η − 1) = 1.

We can see that the torsion units of U1 are ±1. (Note that (F0)P is isomorphic
to Q2(

√
3) when d ≡ 1 (mod 8). See also [22].) From these facts, we can see

that U1/E1 has no non-trivial Z2-torsion element. �

We finish the proof of Theorem 4.1.1 (ii). If cl(P) is not trivial, then
X(F∞)fin �= 0 by Lemma 4.2.1. Hence, in the following, we assume that
cl(P) is trivial. Similar to the proof of Proposition 2.3.1, we use the argu-
ment given in [8, Section 4]. Under the above assumption, we see that U1/E1

has no non-trivial Z2-torsion element by Lemma 4.2.3. From this, we see that
X(F∞)Γ ∼= X(F∞)Γ, and then

X(F∞)Γfin = X(F∞)Γ ∼= Gal(M(F∞)/L(F∞))Γ.

(We used the validity of the P-adic analog of Leopoldt’s conjecture for F0 and
the fact that X(F∞)fin = 0.) The assertion follows from this. �
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