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Mertens type formulas based on density

Abstract. We introduce a new density among sets of prime numbers
which is called the Mertens density. Building on the works of Olofsson,
Pollack and Wirsing, it is shown, in complete contrast with the cases
of relative natural density and Dirichlet density, that the existence of
Mertens density of a set of prime numbers turns out to be equivalent to
Mertens type formulae and the limiting behaviors of the associated zeta
function at one together with the size of the corresponding semigroup,
all formed according to the underlying set of primes. Various constants,
such as the Meissel-Mertens constants, appearing in the equivalent state-
ments are shown to be related with each other through elementary for-
mulas. This allows us to study specific partitioning properties between
sets of primes taking into account their density and the asymptotics of
the generated semigroup. It is further demonstrated that the Mertens
density neither implies nor is implied by the relative natural density.
Assuming explicit forms of the error terms, sharper versions of some of
our results are also obtained.
Keywords. Mertens type formula, Mertens density, relative natural
density, Dirichlet density, associated zeta function, size of semigroup.
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1 - Introduction

After the pioneering works of Chebyshev [7], [8] and Riemann [37] on the
distribution of prime numbers during the period 1850–1860, up until the proof of
the prime number theorem (abbreviated as PNT throughout) by Hadamard [16]
and de la Vallée Poussin [41] in 1896, the only major progress in the field was
due to Mertens [30], [31] who proved the following three important asymptotic
formulas using mainly elementary methods.

(1.1)
∑
p≤x

log p

p
= log x+O(1),
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(1.2)
∑
p≤x

1

p
= log log x+B1 +O

(
1

log x

)
,

(1.3)
∏
p≤x

(
1− 1

p

)−1

= eγ log x+O(1),

where p always denotes a prime number and x ≥ 2. In (1.3), γ is the Euler-
Mascheroni constant defined by

γ := lim
x→∞


∑

n≤x

1

n
− log x


 = 0.5772 . . . ,

B1 in (1.2) is the Meissel-Mertens constant defined by

B1 := lim
x→∞


∑

p≤x

1

p
− log log x


 = 0.2614 . . . ,

and furthermore, B1 and γ are related by the formula

B1 = γ +
∑
p

(
log

(
1− 1

p

)
+

1

p

)
.

For the analysis of another series connecting B1 and γ, see [27]. In the rest
of the paper, we will refer to (1.1), (1.2) and (1.3) as (M1), (M2) and (M3),
respectively. Recently, (M2) was extended to the cases of products of two and
three primes by Popa [34], [35]. The most subtle feature of Mertens formulas
is the unexpected appearance of eγ in (M3). Despite the initial interest and
curiosity that these formulas spiked, Mertens was not able to deduce the PNT
from them. Today we know that stronger versions of (M1) and (M2) such as
the existence of the limit

lim
x→∞


∑

p≤x

log p

p
− log x


 ,

and ∑
p≤x

1

p
= log log x+B1 + o

(
1

log x

)

as x → ∞, both imply the PNT. For versions of (M3) with better error terms
taking advantage of the Vinogradov-Korobov type zero-free region for the Rie-
mann zeta function, see [43] and [44]. We should also mention that a very useful
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variant of (M2) that applies to number fields was first obtained by Rosen [38].
Although falling short of implying the PNT in their original forms, striking
connections between (M3) and other aspects of the theory were recently dis-
covered by Olofsson [32] and Pollack [33]. To be precise, let P be any set of
prime numbers and NP (x) be the number of elements not exceeding x that are
in the multiplicative semigroup generated by P . The associated zeta function
can then be represented as

ζP (s) =
∑

n∈〈P 〉

1

ns
=

∏
p∈P

(
1− 1

ps

)−1

for �(s) > 1, where

(1.4) 〈P 〉 := {n = pk11 ...pkrr : r ≥ 1, pi ∈ P, ki ≥ 0}

denotes the semigroup of positive integers generated by P . Olofsson [32] then
showed that if NP (x) ∼ cx for some constant c > 0 as x → ∞, then

(1.5)
∏
p≤x
p∈P

(
1− 1

p

)−1

∼ ceγ log x

holds as x → ∞. Pollack [33] further enhanced this result by demonstrating
that (1.5) is indeed equivalent to

(1.6) ζP (s) ∼
c

s− 1

when s ↓ 1 (by s ↓ 1, we mean that s approaches to 1 from the right through
real values). The interesting feature of these results is that extensions of (M3)
to general sets of prime numbers are strong enough to dictate the simple pole
behavior of the corresponding zeta function at s = 1 as pointed out by (1.6). In
addition, both authors obtained the above asymptotics in the setting of Beurl-
ing’s generalized prime number systems [5]. For different aspects of Beurling
systems see [3], [4]. Other types of far reaching analogs of (M2) and (M3)
(also of (M1), but we will not need it in the sequel) hold for all arithmetic
progressions of primes. In particular, if 1 ≤ a ≤ q and (a, q) = 1, then we have

(1.7)
∑
p≤x

p≡a (mod q)

1

p
=

1

φ(q)
log log x+B1(q, a) +Oq

(
1

log x

)

and

(1.8)
∏
p≤x

p≡a (mod q)

(
1− 1

p

)−1

= C1(q, a)(log x)
1/φ(q)

(
1 +Oq

(
1

log x

))
,
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where φ(q) is Euler’s function, and the constants B1(q, a) and C1(q, a) are
given by explicit but complicated expressions involving γ, values of Dirichlet
characters modulo q and values of Dirichlet L-functions at s = 1. Here (1.7) can
be referenced to define B1(q, a) as the generalized Meissel-Mertens constant.
Both (1.7) and (1.8) reveal quantitative forms of Dirichlet’s theorem on the
infinitude of primes in a progression. For better forms of (1.7) and (1.8) with
improved remainder terms, the reader may consult [42]. Further research on the
finer structure of Mertens type formulas in progressions and fruitful numerical
studies on the behavior of B1(q, a), C1(q, a) were carried out by Languasco and
Zaccagnini [22], [23], [24], [25], [26].

If P is any set of prime numbers, then the relative natural density and the
Dirichlet density of P are defined by the limits, when they exist,

lim
x→∞

P (x)

π(x)

and

lim
s↓1

∑
p∈P

1
ps

log 1
s−1

,

respectively, where P (x) and π(x) are the counting functions of P and the set
of all primes, respectively. Moreover, if P has relative natural density τ ∈ [0, 1],
then using P (x) = (τ + o(1))π(x) as x → ∞, one obtains by partial summation
that

(1.9)
∑
p≤x
p∈P

1

p
= (τ + o(1)) log log x.

However, conversely, (1.9) is far from implying that P has relative natural
density τ . A classical theorem of Landau (see pages 641–669 of [21]) concerning
the relative natural density states that if P is taken to be the union of r distinct
arithmetic progressions modulo q, so that the relative natural density of P is
r/φ(q), then

NP (x) ∼
cx

(log x)
1− r

φ(q)

holds for some constant c > 0. This was greatly extended by Wirsing [45] who
showed for 0 < τ < 1 that

(1.10) NP (x) ∼
cx

(log x)1−τ

holds whenever P has relative natural density τ . Once again, the converse of
this statement is not true. Wirsing [46] further showed for a general class of
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multiplicative arithmetic functions f(n) satisfying mild conditions that

∑
p≤x

f(p) ∼ τx

log x

implies
∑
n≤x

f(n) ∼ e−γτ

Γ(τ)

x

log x

∏
p≤x

(
1 +

f(p)

p
+

f(p2)

p2
+ . . .

)
,

where Γ denotes the gamma function. At this point, it should be said that
the relative natural density is not the right type of density suitable for the
characterization of asymptotic behavior such as the ones encountered in (1.9)
and (1.10).

A major goal of this paper is to supply a general framework which extends
and unifies the above mentioned theorems of Olofsson, Pollack and Wirsing by
the consideration of specific Mertens type formulae based on a different formu-
lation of the density of the underlying set of primes. Our critical innovation in
this effort is to introduce a new weight on sets of prime numbers which forms an
equivalent condition at once for all Mertens type formulae, for the behavior of
the corresponding zeta function at s = 1, and for the asymptotic size of NP (x).
To make our point more transparent, let us define the Mertens density of a set
P of prime numbers to be the number τ ∈ [0, 1] whenever

(1.11)
∑
p∈P

1

ps
= τ log

1

s− 1
+KP + o(1)

holds for some constant KP as s ↓ 1. In this case, we write τ = δ(P ). It is
obvious from (1.11) that the Mertens density is a stringent form of the Dirichlet
density, implying that the Dirichlet density of P is also τ . In light of the
above remarks, we can now give our main contribution which completely settles
the quest about the characterization of Mertens type formulas in terms of the
Mertens density of the relevant set of primes.

T h e o r em 1. Let P be a set of prime numbers, and consider the following
statements.

(i) The asymptotic formula

(1.12)
∑
p≤x
p∈P

1

p
= τ log log x+ cP + o(1)

holds for some constants cP and 0 ≤ τ ≤ 1 as x → ∞.
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(ii) The asymptotic formula

(1.13)
∏
p≤x
p∈P

(
1− 1

p

)−1

= (1 + o(1))aP (log x)
τ

holds for some constants aP > 0 and 0 ≤ τ ≤ 1 as x → ∞, where (log x)τ is
taken to be 1 when τ = 0.

(iii) The asymptotic formula

(1.14) ζP (s) ∼
A

(s− 1)τ

holds for some constants A > 0 and 0 ≤ τ ≤ 1 as s ↓ 1, where (s− 1)τ is taken
to be 1 when τ = 0.

(iv) The Mertens density of P is τ ∈ [0, 1] so that δ(P ) = τ .

(v) The asymptotic formula

(1.15) NP (x) ∼
cx

(log x)1−τ

holds for some constants c > 0 and 0 < τ ≤ 1 as x → ∞, where (log x)1−τ is
taken to be 1 when τ = 1.

Then the statements (i), (ii), (iii) and (iv) are equivalent, and all of the state-
ments are equivalent when 0 < τ ≤ 1. Furthermore, if we define a constant c×P
by

(1.16) c×P = cP −
∑
p∈P

(
log

(
1− 1

p

)
+

1

p

)
,

then the constants appearing in the above asymptotic formulas are subject to
the following relations.

(1.17) aP = ec
×
P , A = aP e

−γτ

holds when 0 ≤ τ ≤ 1, and

(1.18) c =
A

Γ(τ)

holds when 0 < τ ≤ 1, where

Γ(t) =

∫ ∞

0
e−xxt−1 dx

is the gamma function for t > 0.
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Some comments on Theorem 1 are now in order. First, when τ = 0, we may take
P to be the empty set so that all of (i), (ii), (iii) and (iv) hold with cP = 0,
aP = 1 = A and δ(P ) = 0. But NP (x) = 1 for all x ≥ 1 so that (v) does
not hold. Moreover, when τ = 1, the equivalence of (i) and (v) gives that
NP (x) ∼ cx is equivalent to the general Mertens type formula

∑
p≤x
p∈P

1

p
= log log x+ cP + o(1).

But since, using (M2),

∑
p≤x
p∈Q

1

p
=

∑
p≤x

1

p
−

∑
p≤x
p∈P

1

p
= B1 − cP + o(1)

holds, where Q is the complement of P in the set of all prime numbers, we infer
that NP (x) ∼ cx is equivalent to the convergence of

(1.19)
∑
p∈Q

1

p
.

Consequently, we also have

(1.20) c =
∏
p∈Q

(
1− 1

p

)
.

Note that (1.20) is a manifestation of a fundamental principle in sieve theory,
noticed and elaborated by Erdös [13], as NP (x) is the number of remaining
integers not exceeding x when we sift out by the primes in Q. Concerning
NP (x), it is important to realize that Wirsing’s formula in (1.10) is not true in
general for a set of relative natural density 1. To give a counterexample, one
needs to show the existence of a set P of primes with relative natural density
1 such that (1.19) diverges. We refer to part (i) of Theorem 2 and its proof
below for the actual construction of such a P . To make another remark, let P
and Q be complementary sets of primes such that δ(P ) = τ ∈ (0, 1) (so that
δ(Q) = 1 − τ). Then by the equivalence of (iv) and (v), we may let c1 > 0
and c2 > 0 be the corresponding constants in (1.15) for NP (x) and NQ(x),
respectively. Since ζP (s)ζQ(s) = ζ(s) for �(s) > 1, we readily deduce from
(1.18) that

lim
τ↓0

c1c2 = lim
τ↓0

1

Γ(τ)Γ(1− τ)
= 0.
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To illustrate the numerology in Theorem 1, consider the following sets of prime
numbers: P1 = {3} ∪ {p : p ≡ 1 (mod 3)}, P ′

1 = {p : p ≡ 1 (mod 3)} and
P2 = {p : p ≡ 2 (mod 3)}. Using (M3), (1.8) and the notation of (1.13) with
τ = 1/2, we deduce that

aP ′
1
aP2 =

2eγ

3
.

The instrumental L-function in this situation is given by

L(s, χ) =
∞∑
n=0

(
1

(3n+ 1)s
− 1

(3n+ 2)s

)

for �(s) > 0, where χ is the odd character modulo 3. It is well-known that

L(1, χ) =
π

3
√
3
.

Therefore, using the Euler product

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

when s ↓ 1, we see that

∏
p≤x

p≡1 (mod 3)

(
1− 1

p

)−1

.
∏
p≤x

p≡2 (mod 3)

(
1 +

1

p

)−1

=
π

3
√
3
+ o(1),

and consequently that

aP ′
1

aP2

=
π

3
√
3

∏
p≡2 (mod 3)

(
1− 1

p2

)
.

Note that we derived two equations in the unknown constants aP ′
1
and aP2 . In

this way, we obtain

aP2 =

√
2 4
√
3√

π
eγ/2


 ∏

p≡2 (mod 3)

(
1− 1

p2

)


− 1
2

.

Since aP1aP2 = eγ ,

aP1 =

√
π√

2 4
√
3
eγ/2


 ∏

p≡2 (mod 3)

(
1− 1

p2

)


1
2
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follows. Let us mention that this way of obtaining the constants aP1 and aP2

using the relevant L-function was first noticed by Uchiyama [40] who applied it
to the more classical case of progressions 1 and 3 modulo 4. Recently, Languasco
and Zaccagnini [24], [25] refined and elaborated on his approach by giving many
other interesting evaluations with respect to other moduli. For evaluations of
L-functions with periodic coefficients, see [2]. It follows from (1.17) and (1.18)
of Theorem 1 that

ζP1(s) ∼
A1

(s− 1)1/2
, ζP2(s) ∼

A2

(s− 1)1/2

when s ↓ 1 with

A1 =

√
π√

2 4
√
3


 ∏

p≡2 (mod 3)

(
1− 1

p2

)


1
2

,

A2 =

√
2 4
√
3√

π


 ∏

p≡2 (mod 3)

(
1− 1

p2

)


− 1
2

,

and

NP1(x) ∼
c1x√
log x

, NP2(x) ∼
c2x√
log x

as x → ∞ with

c1 =
A1

Γ(1/2)
=

1√
2 4
√
3


 ∏

p≡2 (mod 3)

(
1− 1

p2

)


1
2

,

c2 =

√
2 4
√
3

π


 ∏

p≡2 (mod 3)

(
1− 1

p2

)


− 1
2

.

Finally, we have

c×P1
=

1

2


γ + log(π/2)− log 3

2
+

∑
p≡2 (mod 3)

log

(
1− 1

p2

)
 ,

c×P2
=

1

2


γ + log(2/π) +

log 3

2
−

∑
p≡2 (mod 3)

log

(
1− 1

p2

)
 .
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Note that c1c2 = 1/π, A1A2 = 1, aP1aP2 = eγ and c×P1
+c×P2

= γ, as they should
be, since P1 and P2 form a partition of the set of all primes. Lastly, we have

ζP ′
1
(s) ∼ A′

1

(s− 1)1/2
, NP ′

1
(x) ∼ c′1x√

log x

when s ↓ 1 and x → ∞, respectively, with A′
1 = 2

3A1 and c′1 = 2
3c1. The

evident inequality c1 < c2 can be seen as a heuristic evidence supporting the
claim that there are more primes congruent to 2 modulo 3 than congruent to 1
modulo 3 in a certain sense. This is an analog of Chebyshev’s bias [9] (see also
the paper of Fujii [14] for generalizations of Chebyshev’s bias) which claims a
similar favor for primes congruent to 3 modulo 4 over primes congruent to 1
modulo 4. As a final remark, let us say that the above approach can be adapted
to the progressions 1 and 5 modulo 6 with the help of the L-function

L(s, χ1) =

∞∑
n=0

(
1

(6n+ 1)s
− 1

(6n+ 5)s

)

for �(s) > 0, where χ1 is the odd character modulo 6, together with the
evaluation

L(1, χ1) =
π

2
√
3
.

As suggested by the above comments about the rich interplay between the
various constants appearing in Theorem 1, we are well prepared on our way to
look at partitioning properties between sets of prime numbers with a viewpoint
towards Mertens type formulas based on density.

T h e o r em 2. (i) There exists two complementary sets of primes P and Q
such that P has relative natural density 1 and

∑
p∈Q

1

p

diverges. Therefore, (1.10) is not true in general whenever the relative natural
density of the underlying set of primes is 1.

(ii) For 1 ≤ k ≤ 9, let P k be the set of all primes whose first digit in the decimal
expansion is k (when viewed from left to right). Let Qk be any subset of P k

such that

(1.21)
∑

p∈Qk

1

p
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converges. Then P k − Qk can never be partitioned into finitely many subsets
P1, . . . , Pm such that

(1.22) NPi(x) ∼
cix

(log x)ai

holds for all i as x → ∞, where ci’s are positive constants and each ai is an
algebraic number belonging to [0, 1).

(iii) Let Q be any set of primes containing P k with the property that

NQ(x) ∼
cx

(log x)a

holds with a positive constant c as x → ∞, where a ∈ [0, 1) is an algebraic num-
ber. Then Q−P k can not be partitioned into finitely many subsets Q1, . . . , Qm

such that

NQi(x) ∼
cix

(log x)ai

holds for all i as x → ∞, where ci’s are positive constants and each ai ∈ [0, 1)
is an algebraic number.

(iv) Let P1, . . . , Pm be pairwise disjoint sets of primes having Dirichlet densities
τ1, . . . , τm, respectively. Assume that each τi is a transcendental number. Then
the maximal number of unordered pairs (Pi, Pj) with i �= j such that

(1.23) NPi∪Pj (x) ∼
cijx

(log x)aij

holds with positive constants cij as x → ∞, where each aij ∈ [0, 1) is an alge-
braic number, can not exceed [m2/4].

(v) Assume that P1, . . . , Pm form a partition of the set of all prime numbers in
such a way that

(1.24) NPi(x) ∼
cix

(log x)ai

holds for all i as x → ∞, where ci is a positive constant and ai ∈ (0, 1). Then

(1.25)
∏

ci =

(∫

R

∏
x−ai
i dX

)−1

,

where dX =
∏

dxi and R ⊆ Rm is the region defined by the conditions

xi ≥ 0,
∑

xi ≤ 1.
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In particular, when m = 2, we have

(1.26) c1c2 =
sinπa1

π
.

Consequently, if a1 is rational, then c1c2 is transcendental.

We leave it as an interesting bonus problem to decide whether the product

m∏
i=1

ci

is always transcendental or not when m ≥ 3 in case all the ai ∈ (0, 1) are
rational numbers adding up to 1. As we shall verify later (see (4.21) below),
this problem is equivalent to deciding whether the product

m∏
i=1

Γ(τi)

is transcendental or not whenever τi ∈ (0, 1) are all rational numbers whose sum
happens to be 1. Our next objective is to clarify the status of Mertens density.
In particular, we show that the relative natural density and the Mertens density
are incomparable. However, they are both stronger than the Dirichlet density.
The precise formulation of this goes as follows.

T h e o r em 3. There exists a set of prime numbers with relative natural
density but having no Mertens density. Conversely, there exists a set of prime
numbers with Mertens density but having no relative natural density.

In case the o(1) terms in (1.12) and (1.13) are given in the form of explicit
error terms, we can then push for more quantitative versions of some of the
implications in Theorem 1. In this vein, we are led to the following, where as
usual, (log x)τ and (s − 1)τ are taken to be 1 when τ = 0, and (log x)1−τ is
taken to be 1 when τ = 1.

Th e o r em 4. Let P be a set of prime numbers. If either

(1.27)
∑
p≤x
p∈P

1

p
= τ log log x+ cP +O

(
1

(log log x)α

)

holds for some constants cP , 0 ≤ τ ≤ 1 and α > 0 as x → ∞ or

(1.28)
∏
p≤x
p∈P

(
1− 1

p

)−1

=

(
1 +O

(
1

(log log x)α

))
aP (log x)

τ
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holds for some constants aP > 0, 0 ≤ τ ≤ 1 and α > 0 as x → ∞, then we
have

(1.29) ζP (s) =

(
1 +O

((
log

1

s− 1

)−α
))

A

(s− 1)τ

for some constant A > 0 as s ↓ 1. Conversely, if

ζP (s) ∼
A

(s− 1)τ

holds for some constants A > 0 and 0 ≤ τ ≤ 1 as s ↓ 1, and the estimate

(1.30)

∣∣∣∣
∫ ∞

x

(
P (t)

t2
− τ

t log t

)
dt

∣∣∣∣ = O

(
1

(log log x)α

)

holds as x → ∞, where P (t) is the number of primes in P not exceeding t, then
(1.27) and (1.28) both hold as x → ∞.

Finally, assuming that either

(1.31)
∑
p≤x
p∈P

1

p
= τ log log x+ cP +O

(
1

log x(log log x)2

)

holds for some constants cP and 0 < τ ≤ 1 as x → ∞ or

(1.32)
∏
p≤x
p∈P

(
1− 1

p

)−1

=

(
1 +O

(
1

log x(log log x)2

))
aP (log x)

τ

holds for some constants aP > 0 and 0 < τ ≤ 1 as x → ∞, we have

(1.33) NP (x) =
cx

(log x)1−τ
+O

(
x

(log x)1−τ log log x

)

for some constant c > 0 as x → ∞.

2 - Preliminaries

In this section we collect all of the necessary ingredients that will be used
in the proofs of our claims. Our first result serves for the equivalence of the
additive and multiplicative versions of Mertens formula under a fairly general
span of error terms.
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L emma 1. Let m(x) be a function such that m(x) = O(x) and m(x) → ∞
as x → ∞. If P is a set of prime numbers, then the asymptotic formulas

(2.1)
∑
p≤x
p∈P

1

p
= τ log log x+ cP +O

(
1

m(x)

)
,

(2.2)
∏
p≤x
p∈P

(
1− 1

p

)−1

=

(
1 +O

(
1

m(x)

))
aP (log x)

τ

are equivalent for any constants 0 ≤ τ ≤ 1, aP > 0 and cP , where aP = ec
×
P

and c×P is defined as in (1.16).

P r o o f. Taking logarithm, as aP > 0, we see that (2.2) is equivalent to

(2.3)
∑
p≤x
p∈P

1

p
+

∑
p≤x
p∈P

∑
k≥2

1

kpk
= τ log log x+ log aP +O

(
1

m(x)

)
.

Since

(2.4)
∑
p∈P

∑
k≥2

1

kpk
= −

∑
p∈P

(
log

(
1− 1

p

)
+

1

p

)

is convergent and

(2.5)
∑
p>x
p∈P

∑
k≥2

1

kpk
= O

(
1

x

)
= O

(
1

m(x)

)
,

we may deduce from (2.3)-(2.5) that (2.2) is equivalent to

(2.6)
∑
p≤x
p∈P

1

p
= τ log log x+ log aP +

∑
p∈P

(
log

(
1− 1

p

)
+

1

p

)
+O

(
1

m(x)

)
.

From (2.6), equivalence of (2.1) and (2.2) is proven with

(2.7) cP = log aP +
∑
p∈P

(
log

(
1− 1

p

)
+

1

p

)
.

Finally, (2.7) is equivalent to aP = ec
×
P , where c×P is defined as in (1.16). This

completes the proof of Lemma 1.
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We need the following classical result from Tauberian theory (see page 30
of [20]).

L emma 2. Assume that a(v) is a locally Riemann integrable function and
the improper integral

F (r) :=

∫ ∞

0
a(v)e−rv dv

exists for all r > 0. If F (r) → L as r ↓ 0, and

a(v) ≥ −C

v

holds for all sufficiently large values of v, where C is a positive constant, then
∫ ∞

0
a(v) dv = L.

Our last preliminary is an elementary but useful fact that we will require about
the prime counting function.

L emma 3. Let {xn} and {yn} be sequences of positive real numbers tending
to infinity such that xn = o(yn). Then π(xn) = o(π(yn)).

P r o o f. Given ε > 0, we know that xn ≤ εyn for all n ≥ N(ε). But then
by the monotonicity of π(x) and Chebyshev estimates, one obtains for some
constants U > 1 and 0 < V < 1 that

(2.8) π(xn) ≤ π(εyn) ≤
Uεyn

log(εyn)
≤ 2Uεyn

log(yn)
≤ 2Uε

V
π(yn)

for all large enough n, since log(εyn) ∼ log yn as as n → ∞. Result follows
from (2.8).

3 - Proof of Theorem 1

(i) ⇔ (ii) : The equivalence of (i) and (ii) for 0 ≤ τ ≤ 1 follows immediately
from Lemma 1 since we may take m(x) to satisfy m(x) → ∞ when x → ∞ in
Lemma 1 so that O(1/m(x)) = o(1) in (2.1) and (2.2).

(i) ⇒ (iii) : Let us assume that (1.12) holds for some constants cP and
0 ≤ τ ≤ 1. Consider the decomposition,

(3.1)
∑
p∈P

∑
k≥2

1

kpk
=

∑
p∈P
p≤x

∑
k≥2
pk≤x

1

kpk
+

∑
p∈P
p≤x

∑
k≥2
pk>x

1

kpk
+

∑
p∈P
p>x

∑
k≥2

1

kpk
.
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Note that

(3.2)
∑
p∈P
p≤x

∑
k≥2
pk>x

1

kpk
≤

∑
p

log p

log x

∑
k≥2

1

pk
= O

(
1

log x

∑
p

log p

p2

)
= O

(
1

log x

)
,

and clearly

(3.3)
∑
p∈P
p>x

∑
k≥2

1

kpk
= O

(∑
p>x

1

p2

)
= O

(
1

x

)
.

Combining (3.1)-(3.3) and taking into account (2.4), we have

(3.4)
∑
p∈P

∑
k≥2
pk≤x

1

kpk
= −

∑
p∈P

(
log

(
1− 1

p

)
+

1

p

)
+O

(
1

log x

)
.

Based on (1.4), let us define the von Mangoldt function associated to P as
follows.

ΛP (n) =

{
Λ(n) if n ∈ 〈P 〉

0 if n /∈ 〈P 〉 ,

where Λ(n) is the classical von Mangoldt function. Adding (1.12) to (3.4) and
using (1.16), we obtain

(3.5)
∑

1<n≤x

ΛP (n)

n log n
= τ log log x+ c×P + o(1).

We now assume that 0 < τ ≤ 1. Since

∑
n≤(log x)τ

1

n
= τ log log x+ γ + o(1),

(3.5) can be rewritten as

(3.6) SP (x) :=
∑

1<n≤x

ΛP (n)

n log n
=

∑
n≤(log x)τ

1

n
+ c×P − γ + o(1).

Note that the Mellin transform of both sides of (3.6) should coincide. It will
suffice to compare the Mellin transforms only at real arguments. First, one has

(3.7) δ

∫ ∞

1

SP (x)

xδ+1
dx =

∞∑
n=2

ΛP (n)

nδ+1 log n
= log ζP (δ + 1)
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for all δ > 0. We first deal with the case when τ = 1. Thus, coming to the sum
on the right hand side of (3.6), one computes its transform as

(3.8)

δ

∫ ∞

1
x−1−δ

∑
n≤log x

1

n
dx = δ

∞∑
n=1

1

n

∫ ∞

en
x−1−δ dx =

∞∑
n=1

e−δn

n
= − log(1− e−δ)

for δ > 0. Of course we have

(3.9) δ

∫ ∞

1

c×P − γ

xδ+1
dx = c×P − γ.

Let g(x) = o(1) be the function representing the o(1) term on the right hand
side of (3.6). The fact that this property of g(x) is preserved under the Mellin
transform deserves some justification. To this end, note that, given ε > 0,
|g(x)| < ε holds when x ≥ M for some constant M depending on ε. We may
write

(3.10) δ

∫ ∞

1

g(x)

xδ+1
dx = δ

∫ M

1

g(x)

xδ+1
dx+ δ

∫ ∞

M

g(x)

xδ+1
dx.

Next we have

(3.11)

∣∣∣∣δ
∫ ∞

M

g(x)

xδ+1
dx

∣∣∣∣ < ε.

Since g(x) = O(1),

(3.12) δ

∫ M

1

g(x)

xδ+1
dx = O

(
δ

∫ M

1

1

x
dx

)
= O(δ logM).

Assembling (3.10)-(3.12), we easily justify that

(3.13) δ

∫ ∞

1

g(x)

xδ+1
dx = o(1)

as δ ↓ 0. Observing that

− log(1− e−δ) = log

(
1

δ

)
+O(δ)

when δ ↓ 0, we may gather (3.7), (3.8), (3.9) and (3.13) to arrive at the formula

(3.14) log ζP (δ + 1) = log

(
1

δ

)
+ c×P − γ + o(1)
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when δ ↓ 0. By exponentiating (3.14), we see that (1.14) and (1.17) hold with

A = ec
×
P−γ = aP e

−γ when τ = 1. The case 0 < τ < 1 is more involved. In this
case, we are lacking the logarithmic function in (3.8) representing the Mellin
transform. Instead, we consider

(3.15) δ

∫ ∞

1
x−1−δ

∑
n≤(log x)τ

1

n
dx = δ

∞∑
n=1

1

n

∫ ∞

en
1/τ

x−1−δ dx =

∞∑
n=1

e−δn
1
τ

n
.

Motivated by (3.15), we define the function

(3.16) h(δ) :=
∞∑
n=1

e−δn
1
τ

n

for δ > 0. Because of uniform convergence of (3.16), we obtain

(3.17) h′(δ) = −
∞∑
n=1

n
1
τ

n
e−δn

1
τ .

Our task is to recover h(δ) from its derivative. As an approximation to the series
on the right hand side of (3.17), a good candidate is the improper integral

(3.18) Iδ :=

∫ ∞

0
x

1
τ
−1e−δx

1
τ dx.

On the one hand, by direct evaluation of the integral in (3.18), we know that

Iδ = τ/δ. The function v(x) = x
1
τ
−1e−δx

1
τ for x ≥ 0 has a global maximum at

the point

x =
(1− τ)τ

δτ
.

Moreover, v(x) is increasing before this point and decreasing after. It makes
sense to define a cut off parameter for the approximation of Iδ as the integer

(3.19) m =

[
(1− τ)τ

δτ

]
.

As a result of (3.19) and the monotonicity properties of v(x), we find that

(3.20)
m−1∑
n=1

n
1
τ
−1e−δn

1
τ ≤

∫ m

0
x

1
τ
−1e−δx

1
τ dx ≤

m∑
n=1

n
1
τ
−1e−δn

1
τ

and

(3.21)
∞∑

n=m+2

n
1
τ
−1e−δn

1
τ ≤

∫ ∞

m+1
x

1
τ
−1e−δx

1
τ dx ≤

∞∑
n=m+1

n
1
τ
−1e−δn

1
τ .
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Adding (3.20), (3.21) and rearranging, one obtains that

(3.22) − (v(m) + v(m+ 1)) = −m
1
τ
−1e−δm

1
τ − (m+ 1)

1
τ
−1e−δ(m+1)

1
τ

≤ Iδ −
∞∑
n=1

n
1
τ
−1e−δn

1
τ ≤

∫ m+1

m
v(x) dx.

We also know that

(3.23) v(m) + v(m+ 1) ≤ 2

∫ m+1

m
v(x) dx.

It follows from (3.22) and (3.23) that

(3.24) h′(δ) = −
∞∑
n=1

n
1
τ
−1e−δn

1
τ = −τ

δ
+O

(∫ m+1

m
v(x) dx

)
.

Next we have, by the mean value theorem, that

(3.25)

∫ m+1

m
v(x) dx = −τ

δ

(
e−δ(m+1)

1
τ − e−δm

1
τ

)
= c

1
τ
−1

0 e−δc
1
τ
0

for some m < c0 < m+ 1. Using (3.19), we have

(3.26) c0 =

(
1− τ

δ

)τ

+O(1).

Therefore, from (3.26), we infer as δ ↓ 0 that

(3.27) c
1
τ
−1

0 ∼
(
1− τ

δ

)1−τ

.

Since e−δc
1
τ
0 = O(1), gathering (3.24), (3.25) and (3.27), we finally reach the

formula

(3.28) h′(δ) = −τ

δ
+O

(
1

δ1−τ

)

when δ ↓ 0. By integration of (3.28), one gets

(3.29) h(δ)− C = τ log

(
1

δ

)
+O(δτ )

for some constant C. Thus (3.29) can be formulated as

(3.30) h(δ) = τ log

(
1

δ

)
+ C + o(1).
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Using now (3.30), (3.14) becomes

(3.31) log ζP (δ + 1) = τ log

(
1

δ

)
+ c×P − γ + C + o(1).

Thus (1.14) follows from (3.31) when 0 < τ < 1. This completes the proof that
(iii) follows from (i) when 0 < τ < 1. The above argument further gives that,

when τ = 0, (1.14) holds with A = ec
×
P = aP . This finishes the proof that (i)

implies (iii) for all 0 ≤ τ ≤ 1. However, apart from the cases τ = 0 and τ = 1,
the value of A, which is

A = ec
×
P−γ+C ,

stays unspecified due to the indeterminacy of C in the above argument. Our
next goal is to determine the exact value of C by a refined analysis. Indeed we
will show that C = γ − γτ for all 0 < τ < 1. To this end, let P be a set of
prime numbers with counting function P (x) satisfying

(3.32) P (x) =
τx

log x
+O

(
x

log x(log log x)2

)

for some 0 < τ < 1. Applying partial summation and using (3.32), it is easy to
verify that

(3.33)
∑
p≤x
p∈P

1

p
= τ log log x+ cP + o(1)

holds for some constant cP . Similarly as above, (3.33) leads to (3.31). Next
we study the asymptotic behavior of the left hand side of (3.31) in an alterna-
tive way. For this purpose, let us recall a result of Wirsing [45] who showed,
assuming (3.32), that

(3.34) NP (x) =
cx

(log x)1−τ
+O

(
x

(log x)1−τ log log x

)

holds, where c > 0 in (3.34) satisfies

(3.35) c =
aP e

−γτ

Γ(τ)
.

Note that for δ > 0, we have

(3.36) ζP (δ + 1) = (δ + 1)

∫ ∞

1

NP (x)

x2+δ
dx.
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Noting that NP (x) = 1 when 1 ≤ x < 2, and using (3.34) in (3.36), we obtain
that

(3.37)

ζP (δ + 1) = 1− 1

21+δ
+ (δ + 1)

∫ ∞

2

c

x1+δ(log x)1−τ
dx+ (δ + 1)

∫ ∞

2

E(x)

x2+δ
dx,

where

E(x) := NP (x)−
cx

(log x)1−τ

in (3.37) is subject to the estimate

E(x) = O

(
x

(log x)1−τ log log x

)

when x ≥ 3. By a change of variable, one gets

∫ ∞

2

c

x1+δ(log x)1−τ
dx =

c

δτ

∫ ∞

δ log 2
e−ttτ−1 dt(3.38)

=
c

δτ

(
Γ(τ)−

∫ δ log 2

0
e−ttτ−1 dt

)
.

When δ ↓ 0, we may write

(3.39)

∫ δ log 2

0
e−ttτ−1 dt =

∫ δ log 2

0
(1 +O(t))tτ−1 dt = (log 2)τ

δτ

τ
+O(δτ+1).

Consequently from (3.38) and (3.39), we have

(3.40) (δ+1)

∫ ∞

2

c

x1+δ(log x)1−τ
dx =

c(δ + 1)Γ(τ)

δτ
− c(δ + 1)(log 2)τ

τ
+O(δ).

Again by a change of variable, we obtain from the estimate on E(x) that

(δ + 1)

∫ ∞

2

E(x)

x2+δ
dx = O

(∫ ∞

3

1

x1+δ(log x)1−τ log log x
dx

)
(3.41)

= O

(
1

δτ

∫ ∞

δ log 3

e−ttτ−1

log(t/δ)
dt

)
.

For any ε > δ log 3, consider the decomposition

(3.42)

∫ ∞

δ log 3

e−ttτ−1

log(t/δ)
dt =

∫ ε

δ log 3

e−ttτ−1

log(t/δ)
dt+

∫ ∞

ε

e−ttτ−1

log(t/δ)
dt.
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It is plain that

(3.43)

∫ ∞

ε

e−ttτ−1

log(t/δ)
dt ≤ Γ(τ)

log(ε/δ)
= o(1)

as δ ↓ 0. Moreover, we also have

(3.44)

∫ ε

δ log 3

e−ttτ−1

log(t/δ)
dt ≤ 1

log log 3

∫ ε

0
e−ttτ−1 dt = o(1)

as ε > δ log 3 can be arbitrarily small when δ ↓ 0. Combining (3.41)-(3.44), we
justify that

(3.45) (δ + 1)

∫ ∞

2

E(x)

x2+δ
dx = o

(
1

δτ

)
.

Now from (3.37), (3.40) and (3.45), we arrive at the formula

(3.46)

ζP (δ + 1) =
c

δτ

(
δτ

c

(
1− 1

21+δ

)
+ (δ + 1)Γ(τ)− (δ + 1)(δ log 2)τ

τ
+ o(1)

)

when δ ↓ 0. Therefore, from (3.46), we verify that

(3.47) log ζP (δ + 1) = τ log

(
1

δ

)
+ log c+ log Γ(τ) + o(1).

Comparing (3.31) and (3.47), we must have

(3.48) log c+ log Γ(τ) = c×P − γ + C.

But also referring to (3.35), we have

(3.49) log c = log aP − γτ − log Γ(τ) = c×P − γτ − log Γ(τ).

From (3.48) and (3.49), we complete the demonstration of our claim that C =
γ−γτ holds for 0 < τ < 1. This completes the proof of (1.17) for all 0 ≤ τ ≤ 1.

(iii) ⇒ (ii) : First assume 0 < τ ≤ 1 and s > 1. We follow the approach
taken in [32] and [33] with some critical adjustments. Benefitting from Stieltjes
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integration, we have

log ζP (s) = −
∑
p∈P

log

(
1− 1

ps

)
= −

∫ ∞

p1

log

(
1− 1

ts

)
dP (t)

(3.50)

= s

∫ ∞

p1

P (t)

t(ts − 1)
dt

= s

∫ ∞

p1

(
P (t)− τt

log t

)
1

ts+1
dt+ τs

∫ ∞

p1

1

ts log t
dt+ s

∫ ∞

p1

P (t)

ts+1(ts − 1)
dt,

where p1 represents the least prime number in P . Since P (t) = O(t/ log t),

(3.51) s

∫ ∞

p1

P (t)

ts+1(ts − 1)
dt =

∫ ∞

p1

P (t)

t2(t− 1)
dt+ o(1)

holds when s ↓ 1. Let

Ei(x) =

∫ x

−∞

eu

u
du

be the Eulerian integral. It is known that (see page 884 of [15])

(3.52) Ei(x) = log(−x) + γ + o(1)

when x < 0 and x → 0. Using the change of variable e
u

1−s = t and applying
(3.52), we obtain as s ↓ 1 that

τs

∫ ∞

p1

1

ts log t
dt = −τsEi((1− s) log p1) = −τs log((s− 1) log p1)− γτs+ o(1)

(3.53)

= log
1

(s− 1)τ
− τ log log p1 − γτ + o(1).

Combining (3.50), (3.51) and (3.53), we infer that

(3.54) s

∫ ∞

p1

(
P (t)

t2
− τ

t log t

)
1

ts−1
dt = log((s− 1)τζP (s))

+ τ log log p1 + γτ −
∫ ∞

p1

P (t)

t2(t− 1)
dt+ o(1).

It is clear from (1.14) that

(3.55) log((s− 1)τζP (s)) = logA+ o(1).
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Using the change of variable t = ev, we may write

(3.56)∫ ∞

p1

(
P (t)

t2
− τ

t log t

)
1

ts−1
dt =

∫ ∞

log p1

(
P (ev)

ev
− τ

v

)
e−(s−1)v dv := F (r)

with r = s− 1. Note that F (r) exists for all r > 0 and

F (r) → logA+ τ log log p1 + γτ −
∫ ∞

p1

P (t)

t2(t− 1)
dt

as r ↓ 0 by (3.54) and (3.55). Since

P (ev)

ev
− τ

v
≥ −τ

v
,

we may apply Lemma 2 to F (r) in (3.56) and justify the formula

(3.57)

∫ ∞

p1

(
P (t)

t2
− τ

t log t

)
dt = logA+ τ log log p1 + γτ −

∫ ∞

p1

P (t)

t2(t− 1)
dt.

Next we have, using (3.57) and Chebyshev’s estimate, that

(3.58) log
∏
p≤x
p∈P

(
1− 1

p

)−1

=

∫ x

p1

P (t)

t(t− 1)
+O

(
P (x)

x

)

=

∫ x

p1

(
P (t)

t2
− τ

t log t

)
dt+

∫ x

p1

τ

t log t
dt+

∫ x

p1

P (t)

t2(t− 1)
dt+O

(
1

log x

)

= τ log log x− τ log log p1 +

∫ ∞

p1

P (t)

t2(t− 1)
dt+

∫ ∞

p1

(
P (t)

t2
− τ

t log t

)
dt

+O

(∣∣∣∣
∫ ∞

x

(
P (t)

t2
− τ

t log t

)
dt

∣∣∣∣
)
+O

(
1

log x

)
+O

(
1

x

)

= τ log log x+ logA+ γτ + o(1)

as x → ∞. Therefore, (1.13) is an immediate consequence of (3.58) with
aP = Aeγτ . In the case when τ = 0, we may repeat the above argument just
by removing the role of the Eulerian integral. Assuming ζP (s) ∼ A as s ↓ 1,
and using the decomposition

log ζP (s) = s

∫ ∞

p1

P (t)

t2
1

ts−1
dt+ s

∫ ∞

p1

P (t)

ts+1(ts − 1)
dt,
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we deduce from Lemma 2 that

lim
s↓1

(
s

∫ ∞

p1

P (t)

t2
1

ts−1
dt

)
= logA−

∫ ∞

p1

P (t)

t2(t− 1)
dt.

Consequently, we have

(3.59)

∫ ∞

p1

P (t)

t2
= logA−

∫ ∞

p1

P (t)

t2(t− 1)
dt.

Finally, with the help of (3.59), we obtain as above that

(3.60)

log
∏
p≤x
p∈P

(
1− 1

p

)−1

=

∫ x

p1

P (t)

t2
dt+

∫ x

p1

P (t)

t2(t− 1)
dt+O

(
1

log x

)
= logA+o(1)

when x → ∞. Thus (3.60) implies (1.13) with aP = A. Moreover, (1.17) holds
for all 0 ≤ τ ≤ 1.

(iii) ⇔ (iv) : First assume that (1.14) holds. Then

(3.61) log ζP (s) = τ log
1

s− 1
+ logA+ o(1)

follows when s ↓ 1. We also know for s > 1 that

(3.62) log ζP (s) =
∑
p∈P

1

ps
+

∑
p∈P

∑
k≥2

1

kpks
.

Comparing (3.61) and (3.62), it is plain that

(3.63)
∑
p∈P

1

ps
= τ log

1

s− 1
+ logA−

∑
p∈P

∑
k≥2

1

kpk
+ o(1)

as s ↓ 1. Clearly, (3.63) gives that (1.11) holds with

KP = logA−
∑
p∈P

∑
k≥2

1

kpk
.

Thus the Mertens density of P is τ . An inspection of the above argument
reveals that all of the steps are reversible. Thus, conversely, if the Mertens
density of P is τ , then (1.14) must hold.

(i) ⇔ (v) : First assume that 0 < τ < 1. Then Wirsing showed that
(see [45]) (1.12) and (1.15) are equivalent, where c is as in (3.35). Note that
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(1.17) and (3.35) imply that (1.18) holds when 0 < τ < 1. To complete the
proof, we have to treat the case τ = 1. If we assume (1.15) so that NP (x) ∼ cx
holds, then using Olofsson’s theorem (see [32]), (1.13) follows with τ = 1 and
aP = ceγ . Therefore, (1.12) is valid and moreover, since A = aP e

−γ by (1.17)
and Γ(1) = 1, it follows that c = A and (1.18) holds. Conversely, assume that
(1.12) holds with τ = 1. Then (1.13) holds with τ = 1 and some positive
constant aP . If Q is the complement of P in the set of all primes, then using
(M3), we deduce that

(3.64)
∏
p∈Q

(
1− 1

p

)
= aP e

−γ .

But as NP (x) corresponds to the number of unsifted integers not exceeding x
with respect to sieving by the primes in Q, quoting a fundamental principle in
sieve theory (see the concept of B-free numbers in [1] and [13]), we know from
(3.64) that

(3.65) NP (x) ∼


∏

p∈Q

(
1− 1

p

)
x.

But then (1.15) follows from (3.64) and (3.65) with c = aP e
−γ = A. Once

again (1.18) holds. Proof of Theorem 1 is now complete.

4 - Proof of Theorem 2

(i) We will construct a desired set Q of primes inductively as follows. To
get started, let x1 > 3 be a large enough real number, and we randomly pick

[
x1

(log x1)
√
log log x1

]

many prime numbers that are ≤ x1. Note that this is possible as there is a
supply of π(x1) � x1

log x1
many primes. Call this first set of primes Q1. Thus

Q(x1) = |Q1| =
[

x1

(log x1)
√
log log x1

]
.

As our inductive hypothesis, let us assume that the numbers 3 < x1 < x2 <
. . . < xk are chosen such that

(4.1) Q(xj) =

[
xj

(log xj)
√
log log xj

]
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holds for all 1 ≤ j ≤ k, and furthermore we have a monotone sequence of sets
of chosen primes Q1 ⊆ Q2 ⊆ ... ⊆ Qk with |Qj | = Q(xj) for all 1 ≤ j ≤ k. For
the inductive step of the construction, let xk+1 > xk be a large enough number
such that it is possible to choose exactly

(4.2)

[
xk+1

(log xk+1)
√
log log xk+1

]
− |Qk|

many prime numbers from the interval (xk, xk+1]. Once this is guaranteed,
then we may let Q′

k be the newly chosen set of primes from (xk, xk+1] with
size as in (4.2), and we may put Qk+1 = Qk ∪ Q′

k. This would complete the
inductive step of our construction since one obtains by the disjointness of Qk

and Q′
k together with (4.1), (4.2) that

(4.3) Q(xk+1) = |Qk+1| =

[
xk+1

(log xk+1)
√
log log xk+1

]
,

where Q1 ⊆ Q2 ⊆ ... ⊆ Qk ⊆ Qk+1. This certainly allows us to take

Q =
∞⋃
k=1

Qk.

To guarantee that it is possible to choose as many primes as promised in (4.2)
and satisfy (4.3), we only require the condition

(4.4)

[
xk+1

(log xk+1)
√
log log xk+1

]
− |Qk| ≤ π(xk+1)− π(xk).

Indeed, we aim to satisfy the following condition which is stronger than (4.4).

(4.5)

[
xk+1

(log xk+1)
√
log log xk+1

]
≤ π(xk+1)− π(xk).

We may now impose the condition that our sequence {xk} is subject to the
recursive formula

(4.6) xk+1 = xk +
4xk√

log log xk

for all k ≥ 1, where x1 can be taken as large as we wish. Using the asymptotic
behavior of the prime counting function over short intervals, it is known that

(4.7) π(x+ y)− π(x) ∼ y

log x
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holds as x → ∞, where y ≥ xθ for some θ < 1 (We owe the existence of such
a θ to a method first developed by Hoheisel [18]. The best value of θ is due
to Huxley [19] who showed that (4.7) holds for any 7/12 < θ < 1. Heath-
Brown’s [17] improvement gave that it is possible to even take

y = x7/12−ε(x)

for some function ε(x) tending to zero as x → ∞). Certainly, we are allowed
to take

y =
4x√

log log x
.

Therefore, from (4.6) and (4.7), we deduce by picking x1 large enough that

(4.8) π(xk+1)− π(xk) ≥
2xk

(log xk)
√
log log xk

.

is true for all k ≥ 1. Moreover, we may also assume that

(4.9) 1 +
4√

log log xk
≤ 2

for all k, by taking x1 large enough. It is now clear from (4.9) that for all k

(4.10)

[
xk+1

(log xk+1)
√
log log xk+1

]
=


 xk

(
1 + 4√

log log xk

)

(log xk+1)
√
log log xk+1




≤ 2xk
(log xk)

√
log log xk

.

Finally, (4.5) is achieved by combining (4.8) and (4.10). The construction of
Q is complete. Let P be the complement of Q in the set of all primes. Next
we show that P and Q have the desired properties. By partial summation, we
obtain for any m ≥ 1 that

(4.11)
∑
p≤xm
p∈Q

1

p
=

Q(xm)

xm
+

∫ xm

2

Q(t)

t2
dt.

Note that Q(xm)
xm

= o(1) as m → ∞. We may write, by taking x0 = 2,

(4.12)

∫ xm

2

Q(t)

t2
dt =

m−1∑
k=0

∫ xk+1

xk

Q(t)

t2
dt ≥

m−1∑
k=1

Q(xk)

(
1

xk
− 1

xk+1

)
+O(1).



[29] mertens type formulas based on density 141

Since xk ∼ xk+1 as k → ∞, one obtains that

(4.13) Q(xk)

(
1

xk
− 1

xk+1

)
� 1

(log xk) log log xk
.

However, by (4.9), we know that xk+1 ≤ 2xk, and consequently xk ≤ 2kx1
follows for all k. Using this observation together with (4.11)-(4.13), it is plain
that

∑
p∈Q

1

p
�

∞∑
k=1

1

(log xk) log log xk
�

∞∑
k=2

1

k log k

all diverge. Since Q(xk) = o(xk), given any δ > 0, we have

P (xk)

xk
≥ 1− δ

for all k ≥ K(δ). Thus if xk ≤ x ≤ xk+1, then (again using xk ∼ xk+1)

P (x)

x
≥ P (xk)

xk+1
=

P (xk)

xk

xk
xk+1

≥ 1− 2δ

when k is large enough in terms of δ so consequently when x is large enough in
terms of δ. This shows that P must have relative natural density 1. The proof
of (i) is complete.

(ii) From a distributional point of view, P k is a peculiar set of primes having
no relative natural density. In spite of this, the Dirichlet density of P k, denoted
by D(P k), exists, and is given by

D(P k) = log10

(
k + 1

k

)

for any 1 ≤ k ≤ 9. It turns out that the distribution of P k is strikingly related
to what is known as Benford’s law in probability and the theory surrounding it.
For justifications and further enlightening discussions on these issues, the reader
is referred to the papers of Bumby and Ellentuck [6], Raimi [36] and Cohen and
Katz [10], [11] (see also the remarks in [39] concerning Dirichlet’s theorem on
primes in progressions). Let us verify first that D(P k) is transcendental. Recall
that, according to the celebrated Gelfond-Schneider theorem, if α �= 0, 1 and β
are algebraic real numbers, and β is irrational, then αβ must be transcendental.
First

10D(P k) =
k + 1

k
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is not transcendental. Moreover, D(P k) is irrational, since otherwise

log10

(
k + 1

k

)
=

a

b

with positive integers a, b leads to 10akb = (k + 1)b which forces k = 1. Thus
we get 10a = 2b which is not possible. Therefore, D(P k) can not be algebraic.
For a contradiction, assume that a partition of the form

(4.14) P k −Qk = P1 ∪ ... ∪ Pm

exists, where each Pi is subject to (1.22). Because of (1.22), we may use The-
orem 1 to deduce that each Pi has Mertens density, and

δ(Pi) = τi = 1− ai ∈ (0, 1].

Note that, since each ai ∈ [0, 1) is algebraic, each τi is algebraic as well. More-
over, D(Pi) = τi for all i, and as a result of (1.21), again using Theorem 1,
δ(Qk) = 0. Thus D(Qk) = 0 as well. Using the fact that the Dirichlet density
is finitely additive, (4.14) leads to

(4.15) D(P k) = D(Qk) +
m∑
i=1

D(Pi) =
m∑
i=1

τi.

However, a contradiction arises, since the left hand side of (4.15) is transcen-
dental but the right hand side is not. This completes the proof of (ii).

The proof of (iii) is very similar to the proof of (ii) so will be omitted.

(iv) First using (1.23), pairwise disjointness of Pi and Pj together with
Theorem 1, we obtain that

δ(Pi ∪ Pj) = δ(Pi) + δ(Pj) = 1− aij ∈ (0, 1]

for all i �= j. It follows from this that

(4.16) τi + τj = D(Pi) +D(Pj) = 1− aij .

Since each aij is algebraic, we require from (4.16) that each τi+ τj is algebraic.
At this point, we may formulate this situation in the language of graph theory.
Consider a graph G with m vertices, where the each vertex is labeled as a Pi.
We draw an edge between Pi and Pj with i �= j when and only when τi+τj is an
algebraic number. This defines a graph G, where each unordered pair (Pi, Pj)
with i �= j can be identified with the edge joining the vertices Pi and Pj . To
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complete the proof, we need to show that the maximum number of edges in
G is at most [m2/4]. The critical observation here is the fact that our graph
G is triangle-free. Since otherwise there would exist three edges connecting
the distinct vertices Pi, Pj and Pk in G. But then each of τi + τj , τi + τk
and τj + τk would be algebraic, and this would easily imply that τi, τj , τk are
algebraic. This is not possible as each τi is transcendental. It is known from a
result originally due to Mantel [29] that the maximum number of edges of an
m-vertex triangle-free graph is

(4.17) ≤
[
m2

4

]
,

and the bound in (4.17) is sharp. This completes the proof of (iv).

(v) Using (1.24) and Theorem 1, we know that

δ(Pi) = 1− ai = τi ∈ (0, 1)

holds for all 1 ≤ i ≤ m. Since Pi’s form a partition of the set of all primes, it
follows by finite additivity that

(4.18)

m∑
i=1

τi = 1,

and from Euler products that

(4.19)

m∏
i=1

ζPi(s) = ζ(s)

for �(s) > 1. Again by Theorem 1, we have

(4.20) ζPi(s) ∼
Ai

(s− 1)τi

as s ↓ 1 for some constant Ai > 0 when 1 ≤ i ≤ m. Assembling (4.18)-(4.20)
and using (1.18), it is clear that

(4.21)

(
m∏
i=1

ci

)(
m∏
i=1

Γ(τi)

)
=

m∏
i=1

Ai = 1.

To finish the argument, let us invoke a classical relation from the theory of the
gamma function due to Dirichlet [12] and Liouville [28] given in the form

(4.22)

∫

R
f(x1+ · · ·+xm)

m∏
i=1

xτi−1
i dX =

∏m
i=1 Γ(τi)

Γ (
∑m

i=1 τi)

∫ 1

0
f(x)x(

∑m
i=1 τi)−1 dx,
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where f(x) is any continuous real valued function defined on R, dX =
∏m

i=1 dxi
and R is the region in m-space defined by the inequalities xi ≥ 0,

∑m
i=1 xi ≤ 1.

Next taking f(x) to be the constant function 1 in (4.22) and referring to (4.18),
we may write

(4.23)

m∏
i=1

Γ(τi) =

∫

R

m∏
i=1

x−ai
i dX.

Therefore, (1.25) is a consequence of (4.21) and (4.23). Specifically whenm = 2,
the above calculations reduce to

(4.24) c1c2 =
1

Γ(τ1)Γ(1− τ1)
=

1

Γ(a1)Γ(1− a1)
.

Thus (1.26) follows from (4.24) and the reflection formula

Γ(a1)Γ(1− a1) =
π

sinπa1

for the gamma function. Note that if a1 is rational, then it is clear that sinπa1
is an algebraic number. Since π is well-known to be transcendental, it follows
that c1c2 is always transcendental in this case.

5 - Proof of Theorem 3

Let P and Q be complementary sets of prime numbers as constructed in
part (i) of Theorem 2. Thus P has relative natural density 1 and

(5.1)
∑
p∈Q

1

p

diverges. For a contradiction, assume that the Mertens density of P exists. Put
δ(P ) = τ ∈ [0, 1]. Since P has relative natural density 1, the Dirichlet density
of P should also be 1, and this forces δ(P ) = 1. Using the equivalence of (i)
and (iv) in Theorem 1, we know that

(5.2)
∑
p≤x
p∈P

1

p
= log log x+ cP + o(1)

holds for some constant cP . But from (M2) and (5.2), one obtains that

(5.3)
∑
p≤x
p∈Q

1

p
= B1 − cP + o(1).
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Clearly, (5.1) and (5.3) are in contradiction. In conclusion, P is the desired set
of primes having relative natural density but no Mertens density.

Next we construct a set of primes having Mertens density but no relative
natural density. Consider the terms of the sequence xn = 2n

3
for all large

enough n. Let P be the set of all prime numbers except the ones that belong
to the intervals

In := (2

n3

1+ 1
n2 , 2n

3
] = (x

1

1+ 1
n2

n , xn]

for all large enough n. Using (M2), it is easy to verify that

(5.4)
∑
p∈In

1

p
= log

(
1 +

1

n2

)
+O

(
1

n3

)
= O

(
1

n2

)

when n is large. Consequently from (5.4), we easily infer that the contribution
of all the discarded primes belonging to the In’s is at most

(5.5)

∞∑
n=M

∑
p∈In

1

p
= O

( ∞∑
n=1

1

n2

)
= O(1),

where the positive integer M can be taken as large as we please. It follows from
(M2) and (5.5) that

(5.6)
∑
p≤x
p∈P

1

p
= log log x+ cP + o(1)

holds for some constant cP . Again using the equivalence of (i) and (iv) from
Theorem 1, (5.6) guarantees that P has Mertens density and δ(P ) = 1. Since

lim
n→∞

(
n5

n2 + 1
− (n− 1)3

)
= ∞,

In’s do not overlap when n is large enough. Moreover, we have

(5.7) xn−1 = o(x

1

1+ 1
n2

n ),

and

(5.8)
x

1

1+ 1
n2

n

xn
= x

− 1
n2+1

n = o(1).
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Since all the primes in the interval (xn−1, x

1

1+ 1
n2

n ) belong to P, (5.7) and Lemma3
imply that

(5.9) P (x

1

1+ 1
n2

n ) ∼ π(x

1

1+ 1
n2

n ).

It is plain from (5.9) that

(5.10) lim sup
P (x)

π(x)
= 1.

On the other hand, all primes in (x

1

1+ 1
n2

n , xn] are not in P so that by (5.8) and
Lemma 3,

P (xn) ≤ π(x

1

1+ 1
n2

n ) = o(π(xn))

follows, and we have

(5.11) lim inf
P (x)

π(x)
= 0.

Finally, (5.10) and (5.11) show that P has no relative natural density. This
completes the proof of Theorem 3.

6 - Proof of Theorem 4

Note that by Lemma 1, (1.27) and (1.28) are equivalent so it is enough
to assume only (1.27). It suffices to make the o(1) terms in (3.14) and (3.31)
explicit. We define a function g(x) by the formula

(6.1) SP (x) :=
∑

1<n≤x

ΛP (n)

n log n
=

∑
n≤(log x)τ

1

n
+ c×P − γ + g(x)

for x ≥ 1, where we may assume in (6.1) that

(6.2) g(x) = O

(
1

(log log x)α

)

holds when x ≥ 3. To show (1.29), we have to analyze the Mellin transform of
g(x). To this end, we have from (6.2) that

(6.3)

δ

∫ ∞

1

g(x)

x1+δ
dx = δ

∫ ∞

3

1

x1+δ(log log x)α
dx+O(δ) = δ

∫ ∞

log 3

e−δu

(log u)α
du+O(δ).



[35] mertens type formulas based on density 147

Consider the decomposition

(6.4) δ

∫ ∞

log 3

e−δu

(log u)α
du = δ

∫ 1
δ

log 3

e−δu

(log u)α
du+ δ

∫ ∞

1
δ

e−δu

(log u)α
du.

Then we have

(6.5) δ

∫ ∞

1
δ

e−δu

(log u)α
du � δ

(log(1/δ))α

∫ ∞

1
δ

e−δu du � 1

(log(1/δ))α
.

Moreover, integrating by parts, we get

(6.6) δ

∫ 1
δ

log 3

e−δu

(log u)α
du � δ

∫ 1
δ

log 3

1

(log u)α
du

=
1

(log(1/δ))α
+O(δ) + δα

∫ 1
δ

log 3

1

(log u)1+α
du.

We may further decompose

(6.7) δ

∫ 1
δ

log 3

1

(log u)1+α
du = δ

∫ 1
δ

√
1
δ

1

(log u)1+α
du+ δ

∫ √
1
δ

log 3

1

(log u)1+α
du.

Clearly,

(6.8) δ

∫ √
1
δ

log 3

1

(log u)1+α
du �

√
δ

and

(6.9) δ

∫ 1
δ

√
1
δ

1

(log u)1+α
du � 1

(log(1/δ))1+α
.

Assembling (6.3)-(6.9), we can justify that

(6.10) δ

∫ ∞

1

g(x)

x1+δ
dx = O

(
1

(log(1/δ))α

)
.

Using (6.10), (3.14) and (3.31) become

(6.11) log ζP (δ + 1) = log
1

δ
+ c×P − γ +O

(
1

(log(1/δ))α

)
.
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for τ = 1 and

(6.12) log ζP (δ + 1) = τ log
1

δ
+ c×P − γ + C +O

(
1

(log(1/δ))α

)

for 0 < τ < 1, respectively. When τ = 0, we have

(6.13) log ζP (δ + 1) = c×P +O

(
1

(log(1/δ))α

)
.

Now (1.29) easily follows from (6.11)-(6.13) for all 0 ≤ τ ≤ 1 by exponentiation.
Let us now assume that ζP (s) satisfies the given asymptotic behavior as

s ↓ 1 and (1.30) holds. Then (3.58) and (3.60) become

(6.14) log
∏
p≤x
p∈P

(
1− 1

p

)−1

= τ log log x+ logA+ γτ +O

(
1

(log log x)α

)

when 0 < τ ≤ 1 and

(6.15) log
∏
p≤x
p∈P

(
1− 1

p

)−1

= logA+O

(
1

(log log x)α

)

when τ = 0, respectively. Exponentiating (6.14) and (6.15), we obtain (1.28)
(and also (1.27)) for all 0 ≤ τ ≤ 1.

Note that (1.31) and (1.32) are equivalent by Lemma 1 so it is enough to
assume only (1.31). Then we may write

(6.16) P (x) = x
∑
p≤x
p∈P

1

p
−

∫ x

3

∑
p≤t
p∈P

1

p
dt+O(1).

From (1.31), one has

(6.17) x
∑
p≤x
p∈P

1

p
= τx log log x+ cPx+O

(
x

log x(log log x)2

)
.

Again using (1.31), one obtains that

(6.18)∫ x

3

∑
p≤t
p∈P

1

p
dt = τ

∫ x

3
log log t dt+ cP (x− 3) +O

(∫ x

3

1

log t(log log t)2
dt

)
.
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Moreover, we easily get

(6.19)

∫ x

3
log log t dt =

∫ x

2
log log t dt+O(1) = x log log x− li x+O(1),

where

li x =

∫ x

2

1

log t
dt

is the logarithmic integral. It is also plain that

(6.20)

∫ x

3

1

log t(log log t)2
dt = O

(
x

log x(log log x)2

)
.

Gathering (6.16)-(6.20), it is now clear that

(6.21) P (x) = τ li x+O

(
x

log x(log log x)2

)

holds for 0 < τ ≤ 1. However, since

li x =
x

log x
+O

(
x

(log x)2

)
,

(6.21) leads us to the formula

(6.22) P (x) =
τx

log x

(
1 +O

(
1

(log log x)2

))

when 0 < τ ≤ 1. Assuming (6.22), Wirsing [45] showed that

NP (x) =
cx

(log x)1−τ

(
1 +O

(
1

log log x

))

for some positive constant c, where (log x)1−τ is taken to be 1 when τ = 1.
This ends the proof of (1.33) and the proof of Theorem 4.

Ac k n ow l e d gm e n t s. The author is grateful to the referee for many
useful comments and suggestions that improved the presentation of the paper.
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