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1 - Introduction

In this paper, we focus our attention on low-dimensional intrinsic Lipschitz
graphs in Carnot groups of step 2. They are important in order to study the
notion of rectifiable set in Carnot groups.

More precisely, rectifiability, introduced by Besicovich in the plane, is a
key notion in Geometric Measure Theory and Calculus of Variations. The
classical definition was given by Federer: in Euclidean spaces, rectifiable sets
are defined as being essentially contained in the countable union of Lipschitz
graphs. In Carnot groups, the corresponding notion of Lipschitz graphs is
intrinsic Lipschitz graphs (iLG).

iLG were introduced by Franchi, Serapioni, and Serra Cassano in [13] in
the context of Heisenberg groups Hn which are the most important examples of
Carnot groups of step 2. The definition of iLG makes perfect sense also for low
dimensions, but there are fewer works that study specifically low-dimensional
iLG. Recently, they have appeared in [3, 4, 10, 12]. In [10], in Hn, we used
this notion in order to obtain an easy proof about the extension of intrinsic
Lipschitz maps. A first step of the proof is to show their equivalence with the
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so-called tame maps (see Definition 2.13). Hence, it is natural to ask if it is
possible to have the same equivalence in a more general case, i.e., for instance,
in Carnot groups of step 2. In this paper, we give a positive answer about this
question. More precisely, our main result proves that

φ is an intrinsic Lipschitz map ⇐⇒ ψ is a tame map

where there is an explicit link between φ and ψ : they have the same horizontal
components and their vertical components are equal up to the sign. We de-
fer the definitions to Section 2 and more precise statements to Section 3, see
especially Theorems 3.4 and 3.7.

Regarding the extension of intrinsic Lipschitz maps in Carnot groups of
step 2, the proof in [10, Theorem 1.1], in Hn, where the vertical component
is just one, is not applicable. The reason is purely algebraic and is due to the
fact that in Carnot groups of step 2 the vertical components are more than
one. However, in [18, Theorem 1.1] and [18, Theorem 4.5] the author provides
a characterization of (locally) Lipschitz functions from (geodesically convex)
subsets of Riemannian manifolds into graded groups through a system of first
order PDEs known as weak contact equations. Here the target space belongs to
a special class of Carnot groups of step 2, called Allcock groups which includes
Heisenberg groups. Finally, we want to recall a negative answer about the
extension in step 3 proved in [5].

2 - Preliminaries

2.1 - Carnot groups of step 2

We here introduce Carnot groups of step 2 in exponential coordinates. We
adopt as a general reference [6, Chapter 3], but the interested reader could also
read [1,2]. For a general introduction of Carnot groups we recall [17]. In this
subsection G will always be an arbitrary Carnot group of step 2.

We denote with m the rank of G and we identify G with (Rm+h, ·) by means
of exponential coordinates associated with an adapted basis (X1, . . . , Xm,
Y1, . . . , Yh) of the Lie algebra g. In this coordinates, we will identify any point
q ∈ G with q ≡ (x1, . . . , xm, y1, . . . , yh). The group operation · between two
elements q = (x, y) and q′ = (x′, y′) is given by

(2.1) q · q′ = qq′ =

(
x+ x′, y + y′ − 1

2
〈Bx, x′〉

)
,

where 〈Bx, x′〉 := (〈B(1)x, x′〉, . . . , 〈B(h)x, x′〉) and B(�) are linearly independent
and skew-symmetric matrices in Rm×m, for � = 1, . . . , h. For any � = 1, . . . , h
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and any j, i = 1, . . . ,m, we set (B(�))j� =: (b
(�)
ji ), and we stress that 〈B(�)x, x′〉 :=∑m

j,i=1 b
(�)
ji x

′
jxi.

Moreover the dilation δλ : Rm+h → Rm+h defined as

δλ(x, y) := (λx, λ2y), for all (x, y) ∈ Rm+h,

is an automorphism of (Rm+h, ·), for all λ > 0.
The identity of G is the origin of Rm+h and (x, y)−1 = (−x,−y). For any

p ∈ G the intrinsic left translation τp : G → G is defined as

q �→ τpq := pq.

It is standard to observe that in these coordinates we can write

Xj(p) = ∂xj −
1

2

h∑
�=1

m∑
i=1

b
(�)
ji xi ∂y� , for j = 1, . . . ,m,

Y�(p) = ∂y� , for � = 1, . . . , h.

Moreover,

(2.2)
[Xj , Xi] =

h∑
�=1

b
(�)
ji Y�, and

[Xj , Y�] = 0, ∀j, i = 1, . . . ,m, and ∀� = 1, . . . , h.

Rema r k 2.3. Note that the above arguments show that there exist step 2
Carnot groups of any dimension m ∈ N of the first layer and any dimension

h ≤ m(m− 1)

2
,

of the second layer: it suffices to choose h linearly independent matrices B(1), . . . ,
B(h) in the vector space of the skew-symmetric m × m matrices (which has
dimension m(m− 1)/2) and then define the composition law as in (2.1).

A homogeneous norm on G is a nonnegative function p �→ ‖p‖ such that for
all p, q ∈ G and for all λ ≥ 0

‖p‖ = 0 if and only if p = 0

‖δλp‖ = λ‖p‖, ‖pq‖ ≤ ‖p‖+ ‖q‖.

We make the following choice of the homogeneous norm in G:

(2.4) ‖(x, y)‖ := max{|x|Rm , ε|y|1/2Rh },
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for a suitable ε ∈ (0, 1] (for the existence of such an ε > 0 see Theorem 5.1
in [14]). From now on, with a bit abuse of notation, we will write the norm of
Rs for every s ∈ N with the same symbol | · |.

However, given any homogeneous norm ‖ · ‖, it is possible to introduce a
distance in G given by

d(p, q) = d(p−1q, 0) = ‖p−1q‖ for all p, q ∈ G.

The metric d is well behaved with respect to left translations and dilations,
i.e. for all p, q, q′ ∈ G and λ > 0,

d(pq, pq′) = d(q, q′), d(δλq, δλq
′) = λd(q, q′)

Moreover, for any bounded subset Ω ⊂ G there exist positive constants c1 =
c1(Ω), c2 = c2(Ω) such that for all p, q ∈ Ω

c1|p− q| ≤ d(p, q) ≤ c2|p− q|1/2,

and, in particular, the topology induced on G by d is the Euclidean topology.
Moreover, the metric dimension is different w.r.t. the Euclidean one; more
precisely, it is equal to the integer

∑
i=1,2 i dimGi = m+2h, called homogeneous

dimension of G.

2.2 - Complementary subgroups

A homogeneous subgroup W of G is a Lie subgroup such that δλx ∈ W for
every x ∈ W and for all λ > 0. Homogeneous subgroups are linear subspaces
of Rm+h, when G is identified with Rm+h.

D e f i n i t i o n 2.5. We say that V and W are complementary subgroups in
G if V and W are homogeneous subgroups of G such that W ∩ V = {0} and

G = VW.

By this we mean that for every p ∈ G there are pW ∈ W and pV ∈ V such that
p = pVpW.

If V and W are complementary subgroups of G and one of them is a normal
subgroup then G is said to be the semi-direct product of V and W. If both
V and W are normal subgroups then G is said to be the direct product of V
and W.
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The elements pW ∈ W and pV ∈ V such that p = pVpW are unique because
of V∩W = {0} and are denoted components of p along V and W or projections
of p on V and W. The projection maps PW : G → W and PV : G → V defined

PW(p) = pW, PV(p) = pV, for all p ∈ G,

are polynomial functions (see Proposition 2.2.14 in [16]) if we identify G with
Rm+h, hence are C∞. Nevertheless in general they are not Lipschitz maps,
when V and W are endowed with the restriction of the left invariant distance
d of G (see Example 2.2.15 in [16]).

The stratification of G induces a stratifications on the complementary sub-
groups V and W. If G = G1 ⊕G2 then also V = V1 ⊕ V2, W = W1 ⊕W2 and
Gi = Vi ⊕Wi. A subgroup is horizontal if it is contained in the first layer G1.
If V is horizontal then the complementary subgroup W is normal. Moreover,

G = VW = WV,

but, obviously, the projections of any point are different.

In this paper, we choose the splitting G = VW.

P r o p o s i t i o n 2.6 ( [16]). If V and W are complementary subgroups in G
there is c0 = c0(V,W) ∈ (0, 1) such that for every p ∈ G, it holds

(2.7) c0(‖pW‖+ ‖pV‖) ≤ ‖pVpW‖ ≤ ‖pW‖+ ‖pV‖.

In the sequel, we denote by V and W two arbitrary complementary sub-
groups of G with V horizontal and k-dimensional. Up to choosing a proper
adapted basis of the Lie algebra g, we may suppose that V = exp(span{X1, . . . ,
Xk}) and W = exp(span{Xk+1, . . . , Xm, Y1, . . . , Yh}). Thus, by means of expo-
nential coordinates we can identify W and V with Rm+h−k and Rk, respectively,
as follows

(2.8)

V ≡ {(x1, , . . . , xk, 0 . . . , 0) : xi ∈ R for i = 1, . . . , k},

W ≡ {(0, . . . , 0, xk+1, . . . , xm, y1, . . . , yh) :

xi, y� ∈ R for i = k + 1, . . . ,m; � = 1, . . . h}.

Once complementary subgroups as in (2.8) have been fixed, it is convenient
to identify φ : E ⊂ V → W with a function φ : E ⊂ Rk → Rm+h−k in the
obvious way. This identification applied to intrinsic Lipschitz functions leads
to the notion of tame maps which we discuss in the next section, see especially
Theorems 3.4 and 3.7.
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2.3 - Intrinsic graphs

This concept was introduced by Franchi, Serapioni and Serra Cassano. The
reader can see [8,11,13,15].

D e f i n i t i o n 2.9. We say that S ⊂ G is a left intrinsic graph or more
simply an intrinsic graph if there are complementary subgroups W and V in G
and φ : E ⊂ V → W such that

S = graph(φ) := {aφ(a) : a ∈ E}.

Observe that, by uniqueness of the components along V and W, if S =
graph(φ) then φ is uniquely determined among all functions from V to W.

We call graph map of φ, the function Φ : E → G defined as

(2.10) Φ(a) := aφ(a) for all a ∈ E.

Hence S = Φ(E) is equivalent to S = graph(φ).
The concept of intrinsic graph is preserved by translation and dilation, i.e.

P r o p o s i t i o n 2.11 ([16]). If S is an intrinsic graph then, for all λ > 0 and
for all q ∈ G, q · S and δλS are intrinsic graphs. In particular, if S = graph(φ)
with φ : E ⊂ V → W, then

(1) For all λ > 0,
δλ (graph(φ)) = graph(φλ)

where φλ : δλE ⊂ V → W and φλ(a) := δλφ(δ1/λa), for a ∈ δλE.

(2) For any q ∈ G,
q graph(φ) = graph(φq)

where φq : Eq ⊂ V → W is defined as φq(a) := (PW(q−1a))−1φ(PV(q
−1a)),

for all a ∈ Eq := {a : PV(q
−1a) ∈ E}.

We conclude this section with the definition of intrinsic Lipschitz maps.
Regarding their properties, the reader can see [7,9,19,20].

D e f i n i t i o n 2.12. Assume that V and W are homogeneous subgroups of
G as above. A map φ : E ⊂ V → W is said to be intrinsic L-Lipschitz for a
constant L ≥ 0 if

‖PW(Φ(v′)−1Φ(v))‖ ≤ L‖PV(Φ(v
′)−1Φ(v))‖, v, v′ ∈ E,

where Φ : E ⊂ V → G is the graph map defined as (2.10).
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2.4 - Tame maps

The notion of tame maps is studied in [10,12], when G is the Heisenberg
group Hn. Here we extend this definition to Carnot groups of step 2.

D e f i n i t i o n 2.13. Let m,h, k ∈ N with k < m and h ≤ m(m−1)
2 , B(1), . . . ,

B(h) be linearly independent and skew-symmetric matrices in Rm×m, E ⊂ Rk,
and Li ≥ 0 for i ∈ {k + 1, . . . ,m+ h}.

We say that a map φ = (φk+1, . . . , φm+h) : E → Rm+h−k is (Lk+1, . . . ,
Lm+h)-tame if

(1) φi is Euclidean Li-Lipschitz for i = k + 1, . . . ,m;

(2) It holds

∣∣∣φm+�(y)− φm+�(x) +
1

2

m∑
i,j=k+1

b
(�)
ij φj(y)φi(x)−

m∑
i=k+1

k∑
j=1

b
(�)
ji φi(y)(yj − xj)

∣∣∣

+
∣∣∣φm+�(y)− φm+�(x) +

1

2

m∑
i,j=k+1

b
(�)
ij φj(y)φi(x)−

m∑
i=k+1

k∑
j=1

b
(�)
ji φi(x)(yj − xj)

∣∣∣

≤ Lm+�|y − x|2,

for � = 1, . . . , h and for all x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ E.

Rema r k 2.14. It is possible to replace the condition (2) in Definition 2.13
(with different constant Lm+� which depends on Lk+1, . . . , Lm, Lm+�,B(1), . . . ,
B(h)) by its one-sided version:

(2.15)
∣∣∣φm+�(y)− φm+�(x) +

1

2

m∑
i,j=k+1

b
(�)
ij φj(y)φi(x)−

m∑
i=k+1

k∑
j=1

b
(�)
ji φi(y)(yj − xj)

∣∣∣

≤ Km+�|y − x|2,

for � = 1, . . . , h and for all x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ E. Indeed, it is
trivial fact that the condition (2) in Definition 2.13 implies (2.15). Moreover,
the other implication follows using the condition (1) in Definition 2.13 and
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recalling that the matrices B(1), . . . ,B(h) are skew-symmetric, i.e.,

∣∣∣φm+�(y)− φm+�(x) +
1

2

m∑
i,j=k+1

b
(�)
ij φj(y)φi(x)−

m∑
i=k+1

k∑
j=1

b
(�)
ji φi(y)(yj − xj)

∣∣∣

+
∣∣∣φm+�(y)− φm+�(x) +

1

2

m∑
i,j=k+1

b
(�)
ij φj(y)φi(x)−

m∑
i=k+1

k∑
j=1

b
(�)
ji φi(x)(yj − xj)

∣∣∣

≤ Lm+�|y − x|2

+
∣∣∣φm+�(y)− φm+�(x) +

1

2

m∑
i,j=k+1

b
(�)
ij φj(y)φi(x)

−
m∑

i=k+1

k∑
j=1

b
(�)
ji (φi(x)± φi(y))(yj − xj)

∣∣∣

≤ 2Lm+�|y − x|2 +
∣∣∣

m∑
i=k+1

k∑
j=1

b
(�)
ji (φi(x)− φi(y))(yj − xj)

∣∣∣

≤

(
2Lm+� + max

j,i=1,...,m
b
(�)
ji

m∑
i=k+1

Li

)
|y − x|2,

as desired.

R ema r k 2.16. For all 1 ≤ k ≤ m, Definition 2.13 implies that φm+� is
locally Lipschitz. This fact follows noting that

m∑
i,j=k+1

b
(�)
ij φj(y)φi(x)

=

m∑
i=k+1

∑
j=k+1,...,m

j>i

b
(�)
ij (φj(x)φi(y)− φj(y)φi(x))(2.17)

=

m∑
i=k+1

∑
j=k+1,...,m

j>i

b
(�)
ij

(
φj(x)(φi(y)− φi(x))− φi(x)(φj(y)− φj(x))

)
,

where, in the first equality, we used the skew-symmetry of the matrices B(1), . . . ,
B(h). However, to require that φm+1, . . . , φm+h is locally Lipschitz does not
implies that φ = (φk+1, . . . , φm+h) is a tame map because if E is an unbounded
set and φm+� does not a globally Lipschitz map the condition (2) in Definition
2.13 does not work (you can choose any map φm+� with unlimited derivative).
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3 - Link between tame maps and intrinsic lipschitz functions

In this section, we explore the connection between intrinsic Lipschitz func-
tions (as in Definition 2.12) and tame maps (as in Definition 2.13). This con-
nection is motivated by [10,12] where the authors prove their equivalence in
the context of Heisenberg groups. Throughout this section, we assume that
1 ≤ k ≤ m, 1 ≤ h ≤ m(m−1)

2 and V is a k-dimensional horizontal subgroup of
G with complementary normal subgroup W with coordinate expressions as in
(2.8). Slightly abusing notation, we identify a set E ⊂ V with E ⊂ Rk, and
φ : E → W with φ : E → Rm+h−k.

L emma 3.1. A function (φk+1, . . . , φm+h) : E ⊂ V → W is intrinsic
L-Lipschitz if and only if

‖(0, . . . , 0, φk+1(v
′)− φk+1(v), . . . , φm(v′)− φm(v), H(v, v′))‖

≤ L|v′ − v|, v, v′ ∈ E,

where
H(v, v′) := (Hm+1(v, v

′), . . . , Hm+h(v, v
′))

is defined as

Hm+�(v, v
′) := φm+�(v

′)− φm+�(v)−
1

2

m∑
i,j=k+1

b
(�)
ij φj(v

′)φi(v)

+

m∑
i=k+1

k∑
j=1

b
(�)
ji φi(v)(v

′
j − vj),

for � = 1, . . . , h and v = (v1, . . . , vk, 0, . . . , 0), v
′ = (v′1, . . . , v

′
k, 0, . . . , 0) ∈ E.

P r o o f. We recall from Definition 2.12 that φ is intrinsic L-Lipschitz if and
only if

(3.2) ‖PW(Φ(v)−1Φ(v′))‖ ≤ L‖PV(Φ(v)
−1Φ(v′))‖, v, v′ ∈ E.

Moreover, because W is a normal subgroup, we get

(3.3)

PV(Φ(v)
−1Φ(v′)) = PV(φ(v)

−1v−1v′φ(v′)) = PV(φ(v)
−1v−1v′)

= PV((v
−1v′)(v−1v′)−1φ(v)−1v−1v′)

= v−1v′,

PW(Φ(v)−1Φ(v′)) = PW(φ(v)−1v−1v′φ(v′)) = PW(φ(v)−1v−1v′)φ(v′)

= PW((v−1v′)(v−1v′)−1φ(v)−1v−1v′)φ(v′)

= (v−1v′)−1φ(v)−1v−1v′φ(v′),
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where we used the simply fact (v−1v′)−1φ(v′)(v−1v′) ∈ W (because W is nor-
mal) and v−1v′ ∈ V.

Consequently, the right-hand side of (3.2) is equal to L|v′−v|. On the other
hand, for v = (v1, . . . , vk, 0, . . . , 0), v

′ = (v′1, . . . , v
′
k, 0, . . . , 0) ∈ E, it follows

(v−1v′)−1φ(v)−1 =

(
v − v′,−φk+1(v), . . . ,−φm(v),

− φm+1(v) +
1

2

m∑
i=k+1

k∑
j=1

b
(1)
ij φi(v)(vj − v′j), . . . ,

− φm+h(v) +
1

2

m∑
i=k+1

k∑
j=1

b
(h)
ij φi(v)(vj − v′j)

)
,

and, recall that (x, y)−1 = (−x,−y), we also obtain the explicit form of
v−1v′φ(v′). Then, by an easy computation, we have that the left-hand side
of (3.2) can be written as

‖PW(Φ(v)−1Φ(v′))‖
= ‖(0, . . . , 0, φk+1(v

′)− φk+1(v), . . . , φm(v′)− φm(v), H(v, v′))‖,

for v, v′ ∈ E, where H(v, v′) is defined as in the statement of the lemma.

Lemma 3.1 provides a link between intrinsic Lipschitz and tame maps. We
formulate this in two separate statements because, as we will see, the Lipschitz
constants change.

T h e o r em 3.4. If φ = (φk+1, . . . , φm+h) : E ⊂ V → W is intrinsic L-Lip-
schitz, then (φk+1, . . . , φm,−φm+1, . . . ,−φm+h) is an (Lk+1, . . . , Lm+h)-tame
map from E ⊂ Rk to Rm+h−k with

(3.5) Li =





L, for i = k + 1, . . . ,m,

2

ε2
L2, for i = m+ 1, . . . ,m+ h,

where ε ∈ (0, 1] is given by (2.4).

P r o o f. Let φ be an intrinsic L-Lipschitz function. According to Lemma 3.1
this means that

(3.6) ‖(0, . . . , 0, φk+1(v
′)− φk+1(v), . . . , φm(v′)− φm(v), H(v, v′))‖

≤ L|v′ − v|, v, v′ ∈ E,
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where H(v, v′) := (Hm+1(v, v
′), . . . , Hm+h(v, v

′)) is defined as

Hm+�(v, v
′) := φm+�(v

′)− φm+�(v)−
1

2

m∑
i,j=k+1

b
(�)
ij φj(v

′)φi(v)

+

m∑
i=k+1

k∑
j=1

b
(�)
ji φi(v)(v

′
j − vj),

for � = 1, . . . , h and v, v′ ∈ E.

Recalling that ‖(x, y)‖ = max{|x|, ε
√
|y|} for (x, y) ∈ Rm×Rh and ε ∈ (0, 1],

inequality (3.6) implies first that φi is a Euclidean L-Lipschitz function for
i = k+1, . . . ,m, which is part (1) of the tameness condition in Definition 2.13.
Second, we deduce from (3.6) that

∣∣∣∣∣∣
φm+�(v

′)− φm+�(v)−
1

2

m∑
i,j=k+1

b
(�)
ij φj(v

′)φi(v) +

m∑
i=k+1

k∑
j=1

b
(�)
ji φi(v)(v

′
j − vj)

∣∣∣∣∣∣

1/2

≤ L

ε
|v′ − v|,

for � = 1, . . . , h and v = (v1, . . . , vk, 0, . . . , 0), v = (v′1, . . . , v
′
k, 0, . . . , 0) ∈ E.

Hence, recall Remark 2.14, (φ2, . . . , φm,−φm+1, . . . ,−φm+h) is (L, . . . L,
2
ε2
L2, . . . , 2

ε2
L2)-tame in both cases and the proof of the statement is com-

plete.

We now consider the converse implication.

T h e o r em 3.7. If (φk+1, . . . , φm,−φm+1, . . . ,−φm+h) : E ⊂ Rk → Rm+h−k

is an (Lk+1, . . . , Lm+h)-tame map, then φ = (φk+1, . . . , φm+h) : E ⊂ V → W is
intrinsic L-Lipschitz with

L := max
{
|(Lk+1, . . . , Lm)|, ε

√
|(Lm+1, . . . , Lm+h)|

}
,

where ε ∈ (0, 1] is given by (2.4).

P r o o f. If (φk+1, . . . , φm,−φm+1, . . . ,−φm+h) is (Lk+1, . . . , Lm+h)-tame,
we find by the first condition in Definition 2.13 that for i = k + 1, . . . ,m,
the function φi is Euclidean Li-Lipschitz on E. Moreover, the second condition
in the tameness definition for
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(φk+1, . . . , φm,−φm+1, . . . ,−φm+h) reads as follows:

∣∣∣φm+�(v
′)− φm+�(v) +

1

2

m∑
i,j=k+1

b
(�)
ij φj(v

′)φi(v)−
m∑

i=k+1

k∑
j=1

b
(�)
ji φi(v

′)(v′j − vj)
∣∣∣

+
∣∣∣φm+�(v

′)− φm+�(x) +
1

2

m∑
i,j=k+1

b
(�)
ij φj(v

′)φi(v)−
m∑

i=k+1

k∑
j=1

b
(�)
ji φi(v)(v

′
j − vj)

∣∣∣

≤ Lm+�|v′ − v|2,

for every � = 1, . . . , h and for all v = (v1, . . . , vk, 0, . . . , 0), v = (v′1, . . . , v
′
k, 0, . . . ,

0) ∈ E.
Using Lemma 3.1 and in particular (3.3), we conclude that φ := (φk+1, . . . ,

φm+h) : E ⊂ V → W is an intrinsic L-Lipschitz function since its graph map
satisfies

‖PW(Φ(v′)−1Φ(v))‖ ≤ max
{
|(Lk+1, . . . , Lm)|, ε

√
|Lm+1, . . . , Lm+h|

}
|v − v′|

= L|v − v′| = L‖PV(Φ(v)
−1Φ(v′))‖, v, v′ ∈ E,

as desired.

4 - Infinitesimal condition for tame maps on open sets

There is an equivalent condition of tame maps in terms of an infinitesimal
one where the ”vertical” constants depend on the structure of the group (see
(4.3)).

In this section, we consider the case k = 1.

P r o p o s i t i o n 4.1. Let I ⊂ R be an open interval, and let φ = (φ2, . . . ,
φm+h) : I → Rm+h−1.

(1) If φ is (L2, . . . , Lm+h)-tame, then φi is Li-Lipschitz for i = 2, . . . ,m, and
φm+1, . . . , φm+h are differentiable almost everywhere on I, φ̇m+� ∈ L∞

loc(I)
for � = 1, . . . , h, and

(4.2) φ̇m+� =
m∑
i=2

b
(�)
1i φi −

1

2

m∑
i=2

∑
j>i

b
(�)
ij (φjφ̇i − φiφ̇j), a.e. on I,

for � = 1, . . . , h.

(2) Conversely, if φi is Li-Lipschitz for i = 2, . . . ,m, φm+� is locally Lips-
chitz for � = 1, . . . , h, and (4.2) holds for every � = 1, . . . , h, then φ is
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(L′
2, . . . , L

′
m+h)-tame with

(4.3)

L′
i := Li for i = 2, . . . ,m,

L′
m+� := 2BM




m∑
i=2

Li +

m∑
i=2

∑
j>i

LiLj


 , for � = 1, . . . , h,

where BM = max{b(�)ij : i, j = 1, . . . ,m, � = 1, . . . , h}.

Rema r k 4.4.We underline that BM > 0 because the matrices B(1), . . . ,B(h)

are skew-symmetric.

P r o o f. We assume first that φ is (L2, . . . , Lm+h)-tame, in particular, φi is
a Lipschitz function on I for i = 2, . . . ,m. Rademacher’s theorem implies that
φi is differentiable almost everywhere on I with bounded derivative. Condition
(2) in Definition 2.13 reads

(4.5)∣∣∣∣∣∣
φm+�(y)− φm+�(x)

y − x
−

m∑
i=2

b
(�)
1i φi(y) +

1

2

m∑
i=2

∑
j>i

b
(�)
ij

φi(y)φj(x)− φi(x)φj(y)

y − x

∣∣∣∣∣∣

+

∣∣∣∣∣∣
φm+�(y)− φm+�(x)

y − x
−

m∑
i=2

b
(�)
1i φi(x) +

1

2

m∑
i=2

∑
j>i

b
(�)
ij

φi(y)φj(x)− φi(x)φj(y)

y − x

∣∣∣∣∣∣

≤ Lm+�|y − x|,

for � = 1, . . . , h and for all x, y ∈ I with x �= y. By

(4.6) φi(y)φj(x)− φi(x)φj(y) = φi(y)(φj(x)− φj(y))− φj(y)(φi(x)− φi(y)),

it is easy to see that φ̇m+� exists almost everywhere on I for � = 1, . . . , h, and
(4.2) holds. In particular, φ̇m+� ∈ L∞

loc(I) for � = 1, . . . , h, as desired.

Conversely, assume that φi is an Li−Lipschitz function for i = 2, . . . ,m
and φm+� is a locally Lipschitz function satisfying (4.2) for every � = 1, . . . , h.
Then, the corresponding one-sided version of (4.5) is satisfied for

“2BM




m∑
i=2

Li +
m∑
i=2

∑
j>i

LiLj


 ” instead of “Lm+�”.
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Indeed, for x, y ∈ I with x < y, the expression (4.6) can be rewritten as

φi(y)φj(x)− φi(x)φj(y) = −φi(y)

ˆ y

x
φ̇j(s) ds+ φj(y)

ˆ y

x
φ̇i(s) ds,

and, according to Remark 2.14, it suffices to verify the one-sided version of
(4.5) (without the constant ”2”). Hence,
∣∣∣∣∣φm+�(y)− φm+�(x)−

m∑
i=2

b
(�)
1i φi(y)(y − x)

+
1

2

m∑
i=2

∑
j>i

b
(�)
ij (φi(y)φj(x)− φi(x)φj(y))

∣∣∣∣∣∣

(4.6)
=

∣∣∣∣∣
ˆ y

x
φ̇m+�(s) ds−

m∑
i=2

b
(�)
1i

ˆ y

x
φi(y) ds

+1
2

m∑
i=2

b
(�)
ij φj(y)

ˆ y

x
φ̇i(s) ds− b

(�)
ij φi(y)

ˆ y

x
φ̇j(s) ds

∣∣∣∣∣

(4.2)
=

∣∣∣∣∣
ˆ y

x

m∑
i=2

b
(�)
1i (φi(s)− φi(y))

+1
2

m∑
i=2

∑
j>i

b
(�)
ij

(
φ̇i(s)[φj(y)− φj(s)] + φ̇j(s)[φi(s)− φi(y)] ds

)
∣∣∣∣∣∣

≤ BM




m∑
i=2

Li +

m∑
i=2

∑
j>i

LiLj


 |y − x|2,

where in the last inequality we used the fact that φi is Li−Lipschitz for every
i = 2, . . . ,m. As a consequence, the proof is complete.

Ac k n ow l e d gm e n t s. We would like to thank Andrea Pinamonti and
the anonymous referee for helpful suggestions.
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