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Typical labels of real forms

Abstract. Let X(C) ⊂ Pr(C) be an integral projective variety defined
over R. Let σ denote the complex conjugation. A point q ∈ Pr(R)
is said to have (a, b) ∈ N2 as a label if there is S ⊂ X(C) such that
σ(S) = S, S spans q, #S = 2a + b and #(S ∩ X(R)) = b. We say
that (a, b) has weight 2a + b. A label-weight t is typical for the k-
secant variety σk(X(C)) of X(C) if there is a non-empty euclidean open
subset V of σk(X(C))(R) such that all q ∈ V have a label of weight
t and no label of weight < t. The integer k is always the minimal
label-weight of σk(X(C))(R) if σk−1(X(C)) �= Pr(C). In this paper
X(C) = Xn,d(C) is the order d Veronese embedding of Pn(C). We
prove that k and k + 1 are the typical label-weights of σk(X(C))(R) if
(n, d, k) ∈ {(2, 6, 9), (3, 4, 8), (5, 3, 9), (2, 4, 5), (4, 3, 7)}. These examples
are important, because the first 3 are the ones in which generic unique-
ness for proper secant varieties fails for the k-secant variety (a theo-
rem by Chiantini, Ottaviani and Vannieuwenhoven), the fourth is in the
Mukai list (fano 3-fold V22) and the last one appears in the Alexander-
Hirschowitz list of exceptional secant varieties of Veronese embeddings.
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1 - Introduction

Let X(C) ⊂ Pr(C) be an integral and non-degenerate projective variety.
For any q ∈ Pr(C) the X(C)-rank rX(C)(q) of q is the minimal cardinality of a
set S ⊂ Pr(C) whose linear span contains q. Now assume that both X(C) and
the embedding of X(C) in Pr(C) are defined over R and that X(R) is Zariski
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dense in X(C). In this case the set X(R) spans Pr(R). For each q ∈ Pr(R) the
X(R)-rank rX(R)(q) of q is the minimal cardinality of a subset of X(R) spanning
q. Obviously rX(C)(q) ≤ rX(R)(q) for all q ∈ Pn(R). There is a Zariski dense
subset U of Pr(C) such that all q ∈ U have the same X(C)-rank, called the
generic X(C)-rank. Note that Pr(R) minus a hypersurface may have several
connected components for the euclidean topology. Thus there may be several
integers, each of them the X(R)-rank of a non-empty euclidean open of Pr(R)
( [4,5,9,10,11,12,17,18]). These integers are called the typical ranks of X(R).
The minimal typical rank is the generic rank. The set of all typical ranks of
X(R) is connected, i.e. if a < b are typical ranks of X(R), then all integers
between a and b are typical ( [9, Theorem 1.1]). Typical ranks may be quite
large. For instance, if X(R) and X(C) are the rational normal curve of the
r-dimensional space, then the generic rank is �(r + 2)/2�, while all integers
between �(r + 2)/2� and r are typical ( [10]).

A different definition of ranks for points in Pr(R) was studied in [6,7,8].
On any variety Y (C) defined over R let σ : Y (C) → Y (C) denote the complex
conjugation. Note that σ : Y (C) → Y (C) is an anti-holomorphic involution
with Y (R) as the set of its fixed point. A finite set S ⊂ X(C) is said to have a
label if σ(S) = S. We say that (a, b) is the label of S if b = #(S ∩X(R)) and
#S = b+ 2a. The integer 2a+ b is the weight of (a, b). For any q ∈ Pr we say
that the admissible rank �X(C)(q) of q is the minimal weight of a set S ⊂ X(C)
with a label and spanning q ( [8, Definition 2.2]). Obviously

rX(C)(q) ≤ �X(C)(q) ≤ rX(R)(q)

for all q ∈ Pr(R). The pair (a, b) is a typical label if there is a non-empty
euclidean open subset V of Pr(R) such that all q ∈ V have (a, b) as a label
and no label of lower weight. The typical weights or typical label-weights of
Pr(R) with respect to X(C) are the weights of all typical labels. The set of all
typical weights of X(C) is connected (see [8, Corollaries 3.9 and 3.11] for more
general results.) Under a weak assumption (not always satisfied) we prove that
no integer ≥ k+2 is a typical label-weight (Lemma 2.2). There is an important
(but very particular) example in which k + 1 is not a typical label-weight, the
rational normal curve ([8, Corollary 4.2]) and the smooth space curves of degree
d and genus g with (d − 1)(d − 2)/2 − g odd ( [8, Theorem 3.5]). There is an
example in which k + 1 is a typical label-weight, the linearly normal elliptic
curve ( [8, Theorem 3.4]).

Let σk(X(C)) ⊆ Pr(C) denote the k-th secant variety of X(C), i.e. the
closure of the union of all linear subspaces of Pr(C) spanned by k points of
X(C). Let σk(X(C))(R) := σk(X(C))∩Pr(R) denote the real part of σk(X(C)).
A label (a, b) is typical for σk(X(C))(R) if there is a non-empty euclidean open
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subset V of σk(X(C))(R) such that all q ∈ V have (a, b) as a label and no label
of weight < 2a+ b.

In this note we study the typical labels associated to the Veronese order d
embeddings νd : Pn(C) → Pr(C), r =

(
n+d
n

)
− 1. Set Xn,d := νd(X). We prove

that the typical label-weight for σk(Xn,d(C))(R) are k and k+1 in the following
cases:

(1) n = 2, d = 6, k = 9;

(2) n = 3, d = 4, k = 8;

(3) n = 5, d = 3, k = 9;

(4) n = 2, d = 4, k = 5;

(5) n = 4, d = 3, k = 7.

We looked at cases (1), (2) and (3) (Theorem 2.5), because L. Chiantini,
G. Ottaviani proved that they are the only cases (with d ≥ 3) of generic non-
uniqueness for subgeneric secant varieties of Veronese varieties ( [13]). Case (4)
is the last proper secant variety for one case in the Alexander-Hirschowitz list
of defective secant varieties of Veronese varieties ( [2,3]). Case (5) is the cubic
case in the Alexander-Hirschowitz list of defective secant varieties of Veronese
varieties, i.e. σ7(X4,3) is a hypersurface of P35 ( [2,3]).

To prove case (4) (Theorem 2.6) we use the following concepts for va-
rieties defined over an arbitrary algebraically closed field. Fix q ∈ Pr(C).
Let S(X(C), q) denote the set of all S ⊂ X(C) such that #S = rX(C)(q)
and q is contained in the linear span 〈S〉C of S. For any q ∈ Pr(C) set
E(X(C), q) := ∪S∈S(X(C),q)S ⊆ X(C) and let F (X(C), q) be the closure of
E(X(C), q) in X(C). Since S(X(C), q) is a constructible subset of X(C), a
theorem of Chevalley gives that E(X(C), q) is a constructible subset of X(C)
for the Zariski topology ( [16, Ex. II.3.18 and Ex. II.3.19]). Thus the closure of
E(X(C), q) in X(C) is the same if we take the closure for the Zariski topology
or the euclidean topology and F (X(C), q) is a projective variety, possibly re-
ducible. Seldom the algebraic set F (X(C), q) uniquely determines q, but in the
proof of Theorem 2.6 the set F (X(C), q) is a smooth conic and we were able to
see all q′ ∈ Pr(C) such that F (X(C), q′) = F (X(C), q).

We thanks a referee for several crucial observations.

2 - The proofs

On any variety Y (C) defined over R let σ : Y (C) → Y (C) denote the
complex conjugation.
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For any S ⊂ Pr(C) let 〈S〉C denote the linear span of S. If σ(S) = S, then
〈S〉C ∩ Pr(R) is an R-projective subspace of Pr(R) of dimension dimC〈S〉C.

R ema r k 2.1. Fix q ∈ Pr(R) and set x := rX(C)(q) Since σ(q) = q, σ
acts on the constructible set S(X(C), q). The point q has a label of weight x
if and only if this action of σ has at least one fixed point. Let X(C) ⊂ Pr

be a smooth curve defined over R and take r odd. Set k := (r + 1)/2. Set
d := deg(X(C)) and g := pa(X(C)). Thus k is the generic complex rank of
X(C) ( [1, Remark 1.6]). Fix a general q ∈ P2k+1. Since S(X(C), q) is a finite
set, this action of σ has a fixed point if #S(X(C), q) is odd. Now assume
d ≥ 2g + 2k + 1 and that X(C) is a general linear projection of a linearly
normal degree d embedding of X(C). Under these assumptions the integer
#S(X(C), q) is the integer deg(Σk) given in [15, part (1) of Prop. 5.10]. For
instance if g = 0 we get #S(X(C), q) =

(
d−k
k+1

)
. If k = 2 we get that #S(X(C), q)

is odd if and only if d ≡ 5 (mod 4).

The proof of the following lemma mimics the proof of [6, Theorem 1.4].

L emma 2.2. Fix an integer k ≥ 2 such that σk(X(C)) �= Pr(C) and generic
uniqueness holds for σk−1(X(C)). Then k + 2 is not a label-weight of X.

P r o o f. Set n := dimX(C). Since generic uniqueness holds for σk−1(X(C)),
the variety σk−1(X(C)) has the expected dimension (n+ 1)(k − 1)− 1. Let U
be the set of all q ∈ Pr(C) with rank k − 1 and such that #S(X(C), q) = 1.
By a theorem of Chevalley the set U is constructible ( [16, Ex. II.3.18 and Ex.
II.3.19]). By assumption the constructible set U contains a non-empty Zariski
open subset of σk−1(X(C)) and hence dimσk−1(X(C))\U ≤ (n+1)(k−1)−2.
Since the embedding of X(C) is defined over R, σ(U) = U , i.e. U is defined
over R. If q ∈ U ∩Pr(R) and S ∈ S(X(C), q), then σ(S) = S, because σ(q) = q
and S(X(C), q) = {S}. Set V := U ∩ Pr(R). Since U is constructible, the
semialgebraic set σk−1(X(C))(R)\V has real dimension ≤ (n+1)(k−1)−2. A
Zariski dense constructible subset Γ of σk(X(C)) is obtained taking the union
of all complex lines 〈{x, y}〉C with x ∈ V and y ∈ X(C) \X(R) ( [6, Claims 1
and 2 of Remark 2.2]). Since Γ is constructible and Zariski dense in σk(X(C)),
it contains a non-empty Zariski open subset of σk(X(C)). Thus we get a Zariski
dense open subset of σk(X(C))(R) taking the intersection with σk(X(C))(R)
of the union of all planes 〈{x, y, σ(y)〉C with x ∈ V and y ∈ X(C) \X(R). The
complex plane 〈{x, y, σ(y)〉C is defined over R and hence 〈{x, y, σ(y)〉C ∩ Pr(R)
is a real plane. Any q ∈ 〈{x, y, σ(y)〉C ∩ Pr(R) has a label of weight k + 1.

R ema r k 2.3. Take n = 2 and d = 7. A general q ∈ σ12(X2,7(C)) satisfies
#S(X2,7(C), q) = 5 ( [14], [20, Theorem 3.1]). Since 5 is odd, we get that
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X2,7(C) has only typical labels of weight 12 and obviously all (a, b) with 2a+b =
12 are typical labels ( [8, Proposition 3.2]).

R ema r k 2.4. Fix n ≥ 2, d ≥ 3 such that (n, d) is not in the Alexander-
Hirschowitz list and take a positive integer k such that k(n + 1) <

(
n+d
n

)
.

Set r :=
(
n+n
n

)
− 1 and X(C) := Xn,d(C). Uniqueness holds for a general

q ∈ σk(X(C)) unless (n, d, k) is in this list:

(1) n = 2, d = 6, k = 9;

(2) n = 3, d = 4, k = 8;

(3) n = 5, d = 3, k = 9.

In each of these 3 exceptional cases #S(X(C), q) = 2 for a general q ∈ σk(X(C))
( [13, Theorem 1.1]).

T h e o r em 2.5. Take (n, d, k) as in one of the 3 cases of Remark 2.4. Set
X(C) := Xn,d(C). The typical weights of σk(X(C))(R) are k and k + 1.

P r o o f. The integer k is always the minimal typical weight for a k-secant
variety. Since uniqueness holds for a general element of σk−1(X(C)), no typical
label has weight ≥ k+2 (Lemma 2.2). Thus it is sufficient to prove that we also
need some weight k + 1 label. We adapt the proof of [8, Theorem 3.4]. There
is a non-empty Zariski open subset V of σk(X(C)) such that #S(X(C), q) = 2
for all q ∈ V and (since σk(X(C)(R)) has the expected dimension k(n+1)− 1)
〈A〉C ∩ 〈B〉C = {q}, for all q ∈ V , where {A,B} = S(X(C), q). Since Pr(R)
is Zariski dense in Pr(C), there exists q ∈ V ∩ Pr(R) and the set of all such
q is Zariski dense in Pr(C). Write S(X(C), q) = {A,B}. Since σ(q) = q,
σ(S(X(C), q)) = S(X(C), q). Thus either σ(A) = A or σ(A) = B. Take q
such that σ(A) = B and hence σ(B) = A. Therefore q has no label of weight
k. Therefore it is sufficient to prove that the set of all q such that σ(A) = B
contains a non-empty euclidean open subset of Pr(R). A general S ⊂ X(C)
with cardinality k satisfies σ(S) ∩ S = ∅.

C l a im 1 : For a general S the linear space 〈S〉C ∩ 〈σ(S)〉C is a single
point, qS .

P r o o f o f C l a im 1 : Claim 1 is equivalent to 〈S ∪ σ(S)〉C = Pr(C).
For a general p ∈ X(C) we have σ(p) �= p and hence 〈{p, σ(p)〉C is a line.
Assume 〈S ∪ σ(S)〉C �= Pr(C) and call s the maximal integer < k such that
dim〈S′ ∪ σ(S′)〉C = 2s− 1 for a general S′ ⊂ X(C) with #S′ = s. Since X(C)
spans Pr(C), a general p ∈ X(C) is not contained in the complex linear space
W := 〈S′ ∪ σ(S′)〉C. The complex linear space W is defined over R. By the
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definition of s for a general p ∈ X(C) the line 〈{p, σ(p)}〉C meets W . Thus
the rational map uW from X(C) to Pr−2s(C) satisfies uW (p) = uW (σ(p)) for
a general p ∈ X(C). Set UW (C) := X(C) \ X(C) ∩ W . Since X(C) is non-
degenerate, UW (C) is a non-empty Zariski open subset of X(C) defined over
R. The rational map uW induces a morphism on UW . Let XW (C) denote
the closure of uW (UW (C)) in Pr−2s(C). Since X(C) is non-degenerate, XW (C)
spans Pr−2s. Since r > 2s, dimXW (C) > 0. Since uW (p) = uW (σ(p)) for a
general p ∈ X(C), we have XW (R) = XW (C), absurd.

Note that qS ∈ Pr(R) and that by Claim 1 and the fact that #S(X(C), qS)
= 2 for a general S ( [13, Theorem 1.1]) we have S(X(C), q) = {S, σ(S)}.

T h e o r em 2.6. Take n = 2, d = 4 and k = 5.

(i) The typical label-weights of σ5(X2,4(C))(R) are 5 and 6.

(ii) All labels of weight 5 are typical for σ5(X2,4(C))(R).

(iii) (3, 0) is a typical label of weight 6 for σ5(X2,4(C))(R).

P r o o f. We have r = 14.
Part (ii) is true for all varieties X(C) [8, Proposition 3.2].
We first check the existence of a non-empty euclidean open subset of Pr(R)

with no label of weight 5. Fix a general S ⊂ X(C) such that #S = 5 and take
any q ∈ Pr(C) such that S ∈ S(X(C), q). Then S is contained in a unique
conic, CS , and this conic is smooth. A referee observed (with a full proof) that
Claim 1 has a 2-line proof using the Apolarity Lemma.

C l a im 1 : The curve CS is the one-dimensional part of F (X(C), q).

P r o o f o f C l a im 1 : We know that dimS(X(C), q) = 1 and that its
closure is isomorphic to P1. Take any A ∈ S(X(C), q) such that A �= S. To
prove Claim 1 it is sufficient to prove that A ⊂ CS . Assume for the moment that
no 3 of the points of A are collinear. Thus A is contained in a unique smooth
conic C. Since A,S ∈ S(X(C), q) and A �= S, h1(IA∪S(4)) > 0. Assume
C �= CS . Consider the residual exact sequence of C

(1) 0 → IS\C∩S(2) → IA∪S(4) → IC∩(A∪S),C(4) → 0.

By assumption #(C ∩ (A ∪ S)) ≤ 9. Since C is a smooth conic, h1(C,
IC∩(A∪S),C(4)) = 0. Thus (1) gives S ∩ C = ∅ and h1(IA∪S(4)) = 1, i.e.
q is the only point of 〈νd(A)〉C ∩ 〈νd(S)〉C. Recall that rX(C)(q) = 5 . Take
E ∈ |OP2(3)| containing A and at least 2 points of S and set G := E ∩ (A ∪ S)
and G′ := A ∪ S \ G. Since #G′ ≤ 3 and no 3 of the point of S are collinear,
h1(IG′(1)) = 0. Thus the residual exact sequence of E gives h1(E, IG,E(4)) = 1
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and hence h1(IG(4)) > 0. Since rX(C)(q) = 5 , no proper subset of νd(A) or
νd(S) spans q. Thus G = A ∪ S. Fix A′ ⊂ A such that #A′ = 3. Since
S ∩C = ∅ and A′ is not collinear, no 5 of the points of A′ ∪S are collinear and
S ∪ A′ is not contained in a conic. Thus h1(IA′∪S(3)) = 0. Thus G �= A ∪ S,
a contradiction. At this point we have proved that F (X(C), q) is the union of
CS and all A ∈ S(X, q) containing at least 3 collinear points, concluding the
proof of Claim 1.

Ob s e r v a t i o n 1 : If q is real, then F (X(C), q) is defined over R. Thus
Claim 1 implies that if q is real, then CS is real even if σ(S) �= S.

Now we prove that (3, 0) is a typical label. It is sufficient to find a non-
empty euclidean open subset of σ5(X(C)) with no label (x, y) with y > 0 and
(3, 0) as one of its labels. Let E be the set of all real smooth conics C such
that C(R) = ∅. It is a non-empty open subset of |OP2(2)|(R). Fix C ∈ E and
take a general S ⊂ C(C) such that #S = 5. We have S ∩ σ(S) = ∅ and hence
#(S∪σ(S)) = 10. Since C(C) has genus 0, h1(C(C), IS∪σ(C),C(C)(4)) = 1. Since
conics are projectively normal, h1(P2(C), IS∪σ(C)(4)) = 1. Since S ∩ σ(S) = ∅,
the Grassmann’s formula gives that 〈νd(S)〉C ∩ 〈νd(σ(S))〉C is a single point, q.
Since {q} = 〈νd(S)〉C ∩ 〈νd(σ(S))〉C, we get q ∈ σ5(X(C))(R). Claim 1 gives
that C is uniquely determined by q. Varying C ∈ E and S we get a subset
of σ5(X(C))(R) of real dimension 14 with no label (x, y) with y > 0, because
C(R) = ∅. Taking σ-invariant subsets of C(C) with cardinality 6 we get that
(3, 0) is a typical label.

To conclude the proof of part (i) it is sufficient to prove that no label of
weight ≥ 7 is typical for σ5(X(C)). Since generic uniqueness holds for σ4(X(C))
([13, Theorem 1.1]), it is sufficient to quote [6, Theorem 1.7].

For n = 2, d = 4 and k = 6 (the generic rank) the closures of S(X(C), q) for
a general q ∈ P14(C) are exactly the Fano 3-folds V22 discovered by S. Mukai
( [19,20]).

T h e o r em 2.7. Take n = 4 and d = 3 and hence r = 34. Let σ0
7(X4,3(C))

⊂ P34 be the set all of rank 7 forms. Its typical label-weights are 7 and 8.

P r o o f. All labels with weight 7 are typical ( [8, Proposition 3.2]). Since
generic uniqueness holds for σ6(X4,3(C)) ( [13]), no integer ≥ 9 is a label-weight
(Lemma 2.2)). Thus it is sufficient to prove that 8 is a label weight. Take only
complex forms f which are sums of 7 linear forms which are in linear general
position. These are the form f such that Tf := {f = 0} is the secant variety
of a rational normal curve Cf . Note that Cf is the singular locus of Tf . Thus
is f is real, then Cf is defined over R. Since 4 is even, over R there are up to
real isomorphism 2 real rational normal curves C, the one with C(R) �= ∅ (and
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hence with C(R) topologically a circle) and the ones with C(R) = ∅. Since 7 is
odd, no Tf with Cf (R) = ∅ has a σ-invariant solution.
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