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Nonrational polytopes and fans in toric geometry

Abstract. First, we examine the notion of nonrational convex polytope
and nonrational fan in the context of toric geometry. We then discuss
and interrelate some recent developments in the subject.
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Introduction

Toric varieties are a beautiful class of geometric objects, at the intersec-
tion of convex geometry and combinatorics on one side, and of algebraic and
symplectic geometry on the other.

The study and interest for toric varieties began in algebraic geometry with
Demazure’s foundational paper [24]. Some of the classical references on the
subject are the article by Danilov [21] and the books by Fulton [25] and Cox
et al. [20]. From the symplectic perspective, the subject started with Delzant’s
classification of symplectic toric manifolds [23], which is founded on the convex-
ity theorem by Atiyah [1] and Guillemin–Sternberg [28]. Standard references
for this viewpoint are the books by Audin [2], Guillemin [27] and Cannas de
Silva [19].

The basic convex geometric objects that provide the starting point in clas-
sical toric geometry are rational convex polytopes and fans.

Our aim is to frame the notion of nonrational convex polytope and fan in the
context of toric geometry. We give an historical account and then we describe,
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in the simplest possible way, how this notion has been recently interpreted by
a number of authors who have dealt with the subject. The intent is to provide
a unitary picture, a sort of dictionary, that makes it easier to move from one
context to the other.

In Section 1, we recall the definitions of rational convex polytope and fan and
view them in the toric geometric setting. We describe the fundamental starting
convex data that are needed to extend toric geometry to the nonrational case.
In Section 2, we describe a variant of the starting convex data. In Section 3, we
illustrate the notions that were discussed in the previous sections with a number
of examples. Finally, we dedicate Section 4 to the aforementioned dictionary.

1 - What is a nonrational convex polytope/fan: the fundamental
triple

A convex polytope ∆ ⊂ (Rn)∗ is the convex hull of a finite number of points.
Equivalently, it is the bounded intersection of finitely many closed half–spaces

∆ =

d⋂
j=1

{ µ ∈ (Rn)∗ | 〈µ,Xj〉 ≥ λj },

where X1, . . . Xd ∈ Rn, λ1, . . . , λd ∈ R and d can be chosen to be exactly
the number of codimension 1 faces (facets) of ∆ (see, for example, [54, Theo-
rem 1.1]). We assume, for simplicity, that ∆ has maximal dimension n. Remark
that each vector Xj is orthogonal to a facet of ∆ and points towards its interior.
We will be calling the vectors X1, . . . Xd normals for ∆. They are not unique,
as each Xj , together with the corresponding λj , can be replaced by any positive
scalar multiple.

Convex polytopes are studied in combinatorics, but are also of fundamental
importance in symplectic and algebraic geometry. Think of the convexity the-
orem [1,28] and of geometric quantization in symplectic geometry. Or think
of toric geometry in both algebraic and symplectic geometry. It is a crucial
fact that the convex polytopes that appear in these classical geometric settings
are all rational. This means that they are always thought of together with a
lattice. The precise definition of rational convex polytope goes as follows: a
convex polytope ∆ ⊂ (Rn)∗ is rational if there exists a lattice L ⊂ Rn such
that the normals can be taken in L. Another crucial fact in toric geometry is
that, for any rational convex polytope, there is a canonical choice of normals:
each Xj is taken to be the shortest possible vector in L, also known as primitive
vector. Often, the primitive normals generate the lattice. We remark in passing
that in symplectic toric geometry it is possible and interesting to consider also
nonprimitive normals (see [38]).
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In the last few decades, there has been a growing interest in understanding
how to make sense of toric varieties when the polytope is no longer rational.

In 1999 [47,48] the second author approached this question first by replacing
the basic framework polytope–lattice–primitive normals, which was clearly no
longer suitable, with something more general. Let us explain.

The initial idea consisted in replacing the primitive vectors with any choice
of normals, and the lattice with the Z–span of these normals. The latter is
a notion that was already well–known and of fundamental importance in the
theory of quasicrystals and in the related theory of aperiodic tilings; it is called
a quasilattice [42]. By definition, a quasilattice in Rn is the Z–span of a set
of R–spanning vectors; notice that a quasilattice is a lattice if, and only if,
these vectors form a basis of Rn. Take, for example, the regular pentagon (see
Figure 1). It can be easily verified that it is not a rational polytope. Consider

Fig. 1. The regular pentagon
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Their opposites are normals for the pentagon (see Figure 2). The Z–span of
these vectors is a quasilattice, Q5, that is dense in R2. We remark that this
particular quasilattice underlies the study of two aperiodic tilings of the plane
discovered by Penrose: the rhombus tiling and the kite and dart tiling (see
Section 3).

Now, two important remarks. First of all, the quasilattice generated by the
chosen set of normals can be replaced by any other quasilattice that contains
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Fig. 2. The regular pentagon and the fifth roots of unity

those normals. Take, for example, the polytope [0, 1] ⊂ R∗. It is rational with
respect to the lattice Z ⊂ R, but also with respect to any lattice aZ, a ∈ R
(naturally isomorphic to Z). However, we may also consider any quasilattice
Q = Z + aZ, with a irrational. Notice that this allows to consider rational
convex polytopes in a nonrational setting. This turns out to be a natural
choice in certain applications, some of which are described in Subsection 3.2.
It also allows to perform symplectic cutting in an arbitrary direction [10].

Secondly, one can consider any other set of normals, provided they are
contained in the quasilattice, allowing even more freedom.

This taken into account, it became convenient to define the following no-
tion: given a quasilattice Q, a convex polytope is said to be quasirational with
respect to Q if the normals can be chosen in Q. Clearly, a convex polytope is
quasirational with respect to a lattice if, and only if, it is rational.

R ema r k 1.1. Notice that, unlike rationality, quasirationality is not at all
a restrictive requirement. In fact, a convex polytope is always quasirational
with respect to the quasilattice that is generated by any set of normals. Think
of the regular pentagon: it is not rational, however, it is quasirational with
respect to the quasilattice Q5.

We are now ready to recall the notion of fundamental triple; it is the triple
given by

(∆, Q, {X1, . . . , Xd}),

where ∆ ⊂ (Rn)∗ is any convex polytope, Q ⊂ Rn is any quasilattice with
respect to which ∆ is quasirational, and {X1, . . . , Xd} is a choice of normals
for ∆ in Q. We remark that it is not required that {X1, . . . , Xd} span the
quasilattice. The fundamental triple effectively replaces the polytope–lattice–
primitive normals triple of the rational case. Once the triple is fixed, one can
extend the classical geometric procedures for constructing toric varieties from
polytopes. For convex polytopes that are simple, that is, when each vertex is
the intersection of exactly n facets, one gets a significant class of quasifolds.
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Quasifolds are highly singular spaces that are locally the quotient of a man-
ifold modulo the action of a countable group. If the countable groups are all
finite we get orbifolds, if they are all trivial we get manifolds. As it happens
for manifolds, even for quasifolds the local models are required to be mutually
compatible and thus form an atlas. Quasifolds are naturally endowed with the
usual geometric objects such as vector fields, differental forms and in partic-
ular symplectic structures. For the formal definition of quasifold and related
notions, in the real and complex setting, we refer the reader to [47,48,7,5].

Going back to nonrational toric geometry, the real and complex tori Rn/L
and Cn/L of the rational case are naturally replaced by the quotients Rn/Q
and Cn/Q, which are abelian groups and quasifolds that are referred to as
quasitori [47,48,5]. We are now ready to recall the following basic results. Let
∆ be a simple convex polytope. From [48, Theorem 3.3] we have

Th e o r em 1.2. For each fundamental triple (∆, Q, {X1, . . . , Xd}), there ex-
ists a compact, connected 2n–dimensional quasifold M , endowed with a symplec-
tic structure and an effective Hamiltonian action of the quasitorus Rn/Q such
that, if Φ : M → (Rn)∗ is the corresponding moment mapping, then Φ(M) = ∆.

Moreover, from [5, Theorem 2.2]

T h e o r em 1.3. For each fundamental triple (∆, Q, {X1, . . . , Xd}), there
exists a compact, connected, n–dimensional complex quasifold X, endowed with
a holomorphic action of the complex quasitorus Cn/Q having a dense open
orbit.

Finally, from [5, Theorem 3.2]

T h e o r em 1.4. For each fundamental triple (∆, Q, {X1, . . . , Xd}), the sym-
plectic quasifold M of Theorem 1.2 is equivariantly diffeomorphic to the com-
plex quasifold X of Theorem 1.3. The symplectic and complex structures are
compatible and hence define a Kähler structure on M � X.

The space M � X is known as the toric quasifold associated with the triple
(∆, Q, {X1, . . . , Xd}). As in the rational case, it is explicitly constructed by
means of symplectic and complex quotients. In the proofs of Theorems 1.3 and
1.4 one sees that it is endowed with two beautiful finite atlases that generalize
the standard complex affine and symplectic toric atlases of the rational case;
their charts are modeled on Cn � R2n modulo the action of countable subgroups
of the standard torus Rn/Zn.

The case of general convex polytopes was addressed by the first author, who
showed that the resulting space M , which is naturally even more singular, is
stratified by toric quasifolds [3,4].
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We remark that, unlike what happens in the rational setting, usually we do
not have canonical choices for quasilattices and normals. Sometimes, however,
the general geometric setup suggests natural choices. Some instances are de-
scribed in Section 3. This is also the case when performing symplectic reduction
and symplectic cutting in the nonrational toric setting [10,11].

The notion of rational convex polytope can be naturally expressed in terms
of the rationality of its normal fan. The same applies also to quasirationality.
Let us first recall the definition of fan, which is the central convex object in the
theory of toric varieties in algebraic geometry. A fan Σ in Rn is a collection of
strongly convex polyhedral cones such that each nonempty face of a cone in Σ is
itself a cone in Σ and such that the intersection of any two cones in Σ is a face of
each [54]. The one–dimensional cones are said to be the generating rays of the
fan. The normal fan Σ∆ of the convex polytope ∆ is the fan whose generating
rays are inward pointing and orthogonal to the polytope facets and such that
there is an inclusion–reversing bijection between cones in Σ∆ and faces of ∆ (see
Figure 3). It is a complete fan, namely the union of its cones is Rn. Moreover,

Fig. 3. The normal fan of the regular pentagon

a fan is said to be simplicial if each of its cones is simplicial, namely spanned
by linearly independent vectors. Notice that a convex polytope is simple if,
and only if, its normal fan is simplicial. The rationality/quasirationality of the
polytope corresponds to the rationality/quasirationality of its normal fan. We
recall, in fact, that a fan in Rn is said to be rational if there exists a lattice
L ⊂ Rn which has non–empty intersection with each generating ray. Similarly,
we say that a fan in Rn is quasirational with respect to a quasilattice Q ⊂ Rn

if Q has non–empty intersection with each generating ray.
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For any fan Σ, we can still introduce the triple

(Σ, Q, {X1, . . . , Xd}),

where Q ⊂ Rn is any quasilattice with respect to which Σ is quasirational and
where the vectors {X1, . . . , Xd} are generators of the fan rays in the quasilat-
tice Q. When the fan is complete and simplicial the complex construction of
Theorem 1.3 applies verbatim. When, in addition, the fan is polytopal, namely
when Σ is the normal fan Σ∆ of a convex polytope ∆, the choice of such a ∆
endows M with the symplectic, and hence Kähler, structures of Theorems 1.2
and 1.4. We can draw the following commutative diagram

(∆, Q, {X1, . . . , Xd})

����
(Σ∆, Q, {X1, . . . , Xd}) �� M.

2 - The fundamental triple encoded in a triangulated vector con-
figuration: the augmented triple

As we have seen, toric quasifolds are constructed explicitly and share key
features with their rational counterparts. However, they are highly singular
topological spaces. It is therefore natural to ask if there exists a framework
that allows to work with smooth objects. With this motivation in mind, the
first author, jointly with Zaffran [13], introduced in 2011 the idea of viewing
toric quasifolds as leaf spaces of compact, complex, holomorphically foliated
manifolds. This development was built on, and inspired by, two previous ar-
ticles: the above–mentioned article by the second author on nonrational toric
geometry [48], and the article [44] by Meerssemann–Verjovsky. In the latter,
simplicial projective toric varieties were already viewed, in the classical ratio-
nal setting, as leaf spaces of LVM manifolds, a large class of compact, complex,
non–Kähler manifolds [41,43], admitting a holomorphic foliation [40,43]. The
viewpoint developed in [13] naturally brought a new perspective on the convex
geometric data as well: the fundamental triple was encoded in a triangulated
vector configuration, a well known and studied convex object [22]. Let us recall
from [13, Section 2] what a triangulated vector configuration is, how a triple
is encoded there and, finally, why this convex datum is instrumental in the
construction of LVMB manifolds – a generalization of LVM manifolds [16].

An odd, balanced, triangulated vector configuration is given by a pair (V, T ),
where V = (X1, . . . , Xp) is an ordered list of vectors in Rn, allowing repetitions,
that is balanced, namely

∑p
i=1Xi = 0, and odd, namely p − n = 2m + 1. A
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subset τ of {1, . . . , p} is a simplex when the vectors indexed by τ are linearly
independent. The cone generated by these vectors is called cone(τ). A triangu-
lation T of a configuration V is a collection of simplices satisfying the following
conditions:

1. If τ ∈ T and τ ′ ⊂ τ then τ ′ ∈ T

2. For all τ, τ ′ ∈ T , cone(τ) ∩ cone(τ ′) = cone(τ ∩ τ ′)

3. ∪τ∈T cone(τ) ⊃ cone(V ).

Remark that (V, T ) encodes

• a simplicial fan, not necessarily polytopal: the union of the cones indexed
by T

• ray generators (the vectors indexed by T )

• a quasilattice Q = SpanZ(X1, . . . , Xp)

• a number of ghost vectors (those which are not indexed by T ).

Viceversa, let Σ be a simplicial fan. We can construct a triangulated vector
configuration (V, T ) that encodes a given triple (Σ, Q, {X1, . . . , Xd}) as follows:
if SpanZ{X1, . . . , Xd} = Q and the vector configuration (X1, . . . , Xd) is odd and
balanced, we keep it as it is, otherwise we can add ghost vectors, so as to have a
set of generators of the quasilattice Q and a balanced, odd configuration. Notice
that there are infinitely many choices of ghost vectors that comply with these
conditions. We remark that, in the rational case, this procedure of adding
vectors so as to have a set of generators of the lattice and a balanced, odd
configuration, is already used in [44], where additional vectors correspond to
indispensable points. The fan is complete if, and only if, the vectors in V span
Rn. In conclusion, the vector configuration V takes care of the quasilattice and
the vectors in the triple, while T is determined by the fan combinatorics.

In short, we consider the augmented triple

(V, T ) = triple + ghost vectors,

where we have chosen a set of generators for the quasilattice Q that includes
a set of ray generators. The technical conditions, for the vector configuration
to be balanced and odd are not at all restrictive. They allow to obtain, from a
pair (V, T ), the exact convex datum that produces an LVMB manifold. More
precisely, Gale duality applied to V gives a configuration Λ = (Λ1, . . . ,Λp) of
points in affine space Cm (viceversa, Gale duality applied to Λ determines V
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up to automorphisms [14, Section 1.2]). On the other hand, the combinatorial
datum T yields a combinatorial datum T ∗, which is a virtual chamber of Λ.
In turn, each pair (Λ, T ∗) determines a compact, complex, holomorphically
foliated manifold (N,F), of complex dimension n+m, wherem is the dimension
of the leaves [13, Section 2.2.4]. We can draw the following diagram:

(2.1) (V, T ) ��

��

(Λ, T ∗) �� (N,F)

����
(Σ, Q, {X1, . . . , Xd})

��

�� M

Two arrows are dashed as they are not maps, in the sense that the target
object is not uniquely determined. This implies that, to a given fundamental
triple there corresponds a whole family of LVMB manifolds of different dimen-
sions. When the fan is polytopal, N is an LVM manifold and the leaf space of
each member of this family is exactly the corresponding complex toric quasifold
M (see [13, Section 2.3.1] and [14, Theorem 2.1]). Polytopality of the fan Σ
can be expressed in terms of the above–mentioned convex objects (for more
details see [13] and references therein). In terms of the corresponding LVM
manifold, polytopality implies that the foliation is transversely Kähler [40,43].
The converse is also true; the proof, by Ishida [32], is based on a convexity
theorem in this context. In the polytopal case, diagram (2.1) can be con-
structed in the symplectic setting: N turns out to be a presymplectic mani-
fold, while the symplectic quasifold M is given by N modulo the action of a
connected abelian group [14]. Taking the augmented triple ensures that the
presymplectic manifold N is even dimensional and that the group is connected.

Subsequently, other important convexity theorems were proved, for trans-
versely symplectic foliations [51,39] and for étale symplectic stacks [30].

3 - Examples

As far as examples go, two situations arise naturally. In the first, we have
examples of convex polytopes/fans that are nonrational. In the second, we
have rational convex polytopes/fans inside of a geometric context where it is
interesting, and sometimes downright necessary, to replace the lattice by a
suitable quasilattice.
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3.1 - Purely nonrational

The first example that comes to mind of a purely nonrational convex poly-
tope is the regular pentagon that we discussed in Section 1. An even simpler
example is given by the Penrose kite, which, together with the dart, has been
used by Penrose to construct aperiodic tilings of the plane [45]. The kite is the
quadrilateral pictured in Figure 4. Three of its angles equal 2π

5 , while the other

equals 4π
5 . Moreover, its long edge is φ times its short edge, where φ = 1+

√
5

2 is
the golden ratio. The regular pentagon and the Penrose kite are actually closely

Fig. 4. The Penrose kite

related; in fact, the kite can be obtained from the regular pentagon via a stan-
dard construction (see, for example, [7]). Moreover, the kite is quasirational
with respect to the same quasilattice Q5 that we introduced for the pentagon.
In fact, a natural choice of normals for the kite is given by −Y1, Y2, −Y3, Y4 (see

1

23

4

4

0

1

2

3

Fig. 5. Quasirationality of the Penrose kite

Figure 5). These vectors generate the four rays of the corresponding normal
fan. A vector configuration here is given by V = (−Y1, Y2,−Y3, Y4, Y0); it is
odd and balanced, with triangulation, in term of maximal simplices, given by
T = {{1, 4}, {4, 3}, {3, 2}, {2, 1}}.

More details on the Penrose kite from the symplectic toric viewpoint can
be found in [7].
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Other interesting and elementary examples of nonrational convex polytopes
are given by the regular dodecahedron and the regular icosahedron, only the
first of which is simple. We refer the reader to [49,9] for a suitable choice of
quasilattice and normals and for a description of the corresponding toric spaces.

All of the above are closely related to the physics of quasicrystals, see for
example [8,52].

We conclude by remarking that any simple nonrational convex polytope
can be perturbed into a combinatorially equivalent rational one. This is not
necessarily the case for nonsimple convex polytopes. See [26,55] for the first
counterexample, due to Perles.

3.2 - Rational convex polytope in a nonrational setting

We have already seen in Section 1 how the unit interval [0, 1], obviously
rational, can be viewed as quasirational. The corresponding toric quasifold is
a quasisphere [47,48,50].

We illustrate two other examples where this is natural.

Let us consider first the Penrose rhombus tiling [45]. It is another funda-
mental aperiodic tiling, whose tiles are given by two types of rhombuses, known
as thick and thin. The thick rhombus has angles equal to 2π

5 and 3π
5 , and the

long diagonal is given by φ times the edge; the thin rhombus has angles equal
to π

5 and 4π
5 , and the edge is given by φ times the short diagonal (see Figure 6).

Each of them viewed individually is actually a rational convex polytope, but

Fig. 6. The thick and thin Penrose rhombuses

it is natural to want to consider a geometric setup that takes into account the
entire tiling. In order to do so, they need to be viewed as quasirational with
respect to the same quasilattice Q5 that we have considered for the pentagon
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and the kite. In Figure 7 we see normals ±Y0, ±Y4 for the thick rhombus and
±Y1, ±Y4 for the thin one. To obtain vector configurations here we need to
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Fig. 7. Quasirationality of the Penrose rhombuses

consider more vectors than we did in the case of the kite. For example, for
the thick rhombus, we can take V = (Y0, Y4,−Y0,−Y4, Y1, Y2, Y3 + Y4 + Y0); it
is odd and balanced, with same triangulation as the kite. We refer the reader
to [6] for further details on rhombus tilings from the symplectic viewpoint.

Other interesting examples arise when generalizing Hirzebruch surfaces to
the nonrational setting. Namely, consider, for any positive real number a, the
trapezoid Ta of vertices (0, 0), (1, 0), (0, 1) and (a+ 1, 1) (see Figure 8). When

(0,1)

(0,0) (1,0)

(a+1,1)  

Fig. 8. The trapezoid Ta

a equals a positive integer n, we get the trapezoid Tn that corresponds, in
standard toric geometry, to the Hirzebruch surface Hn. We recall that this
toric variety is constructed relatively to the standard lattice Z2 and to the
primitive normals (1, 0), ±(0, 1), (−1, n). For a irrational, the trapezoid Ta,
though rational with respect to the lattice that is generated by (1, 0) and (0, a),
is not rational with respect to the standard lattice Z2. If we want to consider
a setup that yields, as a special case, the standard one for Hirzebruch surfaces,
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it is necessary to consider normals (1, 0), ±(0, 1), (−1, a) (see Figure 9), which

1 3

2

2 1

3

2

Fig. 9. Quasirationality of the trapezoid Ta

span the quasilattice Qa = Z × (Z + aZ) ⊇ Z2. Notice that, for a rational,
Qa is a lattice and that, for a = n, this lattice equals Z2, as required. The
normal fan here is the complete fan in R2 whose generating rays are spanned
by the four normals (1, 0), ±(0, 1) and (−1, a) (see Figure 10). A corresponding

Fig. 10. The normal fan of the trapezoid Ta

triangulated vector configuration is given by (Va, T ), with

Va = ((1, 0), (0, 1), (0,−1), (−1, a), (0,−a)),

T = {{1, 2}, {2, 4}, {3, 4}, {1, 3}, {1}, {2}, {3}, {4},∅}.

We refer the reader to [12] for more details, including a description of the
one–parameter family of generalized Hirzebruch surfaces corresponding to the
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fundamental triple

(Ta, Qa, {(1, 0),±(0, 1), (−1, a)}).

4 - A dictionary

In recent years, there have been a number of articles on nonrational toric
geometry from different viewpoints and new results have been obtained. A
common factor of all of these works is of course the presentation of starting
convex geometric data. A shared feature of these different approaches is the
datum of the fundamental triple. Sometimes, further data are added that are
instrumental for the constructions; we have already seen an instance of this in
Section 2, where the additional data are the ghost vectors. Some viewpoints
also consider a variant of the notion of quasitorus.

Toric quasifolds can be thought of as stacks, and some authors study nonra-
tional toric geometry within this framework. The first are Hoffman–Sjaamar in
the symplectic category [30, Examples 7.4.3, 9.2.5 and Remark 7.4.4]. In their
work, a quasilattice is a crossed Lie module ∂ : Q → V , where Q is a finitely
generated abelian group and V is a real vector space spanned by ∂(Q). There-
fore, the quasilattice Q is no longer a subgroup of V , but is surjectively mapped
onto one, namely ∂(Q). In this way, there are infinitely many ∂ : Q → V that
project onto the same pair (∂(Q), V ). Notice that the quasilattice Q contains
more information than ∂(Q); this is, in this setting, the extra datum that we
were referring to earlier. Remark also that the pair (∂(Q), V ) gives rise to the
quasitorus V/∂(Q). Here the group that generalizes the torus is called stacky
torus. The definition is quite involved; for our purposes it is sufficient to recall
that the datum of a stacky torus G is equivalent to their notion of quasilat-
tice. In [29, Section 5] Hoffman introduces the starting triple (∆, G,Λf∈Fmax),
where ∆ is a simple convex polytope, G is a stacky torus, Fmax is the set of
facets of ∆ and Λf is a free subgroup of rank 1, given by the intersection of
∂(Q) with the straight line normal to the facet f . Notice that there is a unique
inward pointing vector that generates Λf . This corresponds to the vector, in
the fundamental triple, that is associated with the facet f . We can draw the
following diagram

(∆, Q, {X1, . . . , Xd}) �� (∆, G,Λf∈Fmax),��

where Λf is generated by the normal Xi in the corresponding ray and G is

any ∂ : Q̃ → V with ∂(Q̃) = Q. The arrows have the same meaning as in dia-
gram (2.1): given a fundamental triple, there are infinitely many triples of the
kind (∆, G,Λf∈Fmax) that project onto it. Viceversa, any triple (∆, G,Λf∈Fmax)
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uniquely determines a fundamental triple. Now, let us recall the following ob-
servation in [29]: assigning the triple (∆, G,Λf∈Fmax) is equivalent to assigning
the triple (∆, G,Λf∈F ), where F is the set of all faces of ∆ and the groups Λf

are subgroups of ∂(Q̃) satisfying certain conditions. The triple (∆, G,Λf∈F ) is
said to be a decorated stacky moment polytope, for which a natural notion of iso-
morphism is given. The author defines per se symplectic toric stacks and then
proves that the moment mapping defines a bijective correspondence between the
set of isomorphism classes of decorated stacky moment polytopes and the set of
equivalence classes of symplectic toric stacks [29, Theorem 6.1]. In our under-
standing, each equivalence class of symplectic toric stacks corresponds to the
symplectic toric quasifold constructed from the associated fundamental triple.

Another article that addresses the problem of generalized toric manifolds is
that by Ishida–Krutowsky–Panov [34]. Their focus is on cohomology. In [34,
Definition 5.5] they introduce the quadruple (Ṽ , Γ̃, Σ̃, λ̃), which they callmarked
fan, where Ṽ is a finite–dimensional real vector space, Γ̃ is a quasilattice in Ṽ , Σ̃
is a fan that is quasirational with respect to Γ̃ and is additionally assumed to be
complete and simplicial. Finally, λ̃ is a function on the set of one–dimensional
cones of Σ̃, with values in the quasilattice Γ̃, such that λ̃(ρ) is a generator of ρ.
Therefore, λ̃ corresponds exactly to a set of ray generators in the fundamental
triple. The authors then consider compact, connected, complex manifolds with
maximal torus actions. These were defined by Ishida in [33] and later endowed
with a canonical foliation in [32]. In this class of manifolds, the authors define
an equivalence relation called principal equivalence. Then they prove, building
on [33], that the set of equivalence classes is in bijective correspondence with
isomorphism classes of marked fans [34, Theorem 5.7]. Using this and moment
angle manifolds, they are able to drop the hypothesis of shellability in the result
by Battaglia–Zaffran [13] on the basic cohomology ring of complete simplicial
shellable fans. Further results on the cohomology of complete simplicial fans
can be found in the recent paper by Krutowsky–Panov [37]. For the connection
between moment angle manifolds and complex manifolds with maximal torus
action see also [53]. As recalled in Section 2, by the construction in [13], we are
able to associate with a given fundamental triple a family of LVMB manifolds.
Each of these is endowed with a maximal torus action and, therefore, belongs to
the equivalence class, defined in [34], corresponding to the given fundamental
triple. We know that the leaf space of each of these LVMB manifolds is isomor-
phic to the complex toric quasifold corresponding to the fundamental triple.
We expect that the leaf space of each complex manifold with maximal torus
action in the equivalence class is isomorphic to that complex toric quasifold.

The problem of generalized toric manifolds is again addressed in the frame-
work of stacks in a recent article by Lupercio-Meersseman-Verjovsky-Katzarkov
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[36]. As starting convex data, they consider quantum fans and calibrated quan-
tum fans [36, Section 4], which correspond to fundamental triples and aug-
mented triples, respectively. More specifically, a quantum fan in a quasilattice
Γ ⊂ Rn (which they have renamed quantum lattice) is a pair (∆, v), where
∆ is a fan quasirational with respect to Γ and v is a set of rays generators
contained in Γ, one for each 1–dimensional cone of ∆. On the other hand, a
calibrated quantum fan is a quantum fan plus the additional datum of a cali-
bration. Denote by {e1, . . . , ep} the standard basis of Zp. Then a calibration is
an epimorphism h : Zp −→ Γ together with a subset J of {1, . . . , p}, with the
following property: the vectors h(ei), with i /∈ J , generate Rn and give the set
v of d rays generators, while the vectors h(ei), with i ∈ J , are the ghost vectors
described in Section 2. The complex quasitorus Cn/Γ is viewed as a quotient
stack and called quantum torus. In correspondence to a complete (calibrated)
simplicial quantum fan and to the relative quasilattice Γ, the authors construct
a (calibrated) quantum toric variety. The (calibrated) quantum toric variety is
built by suitably gluing the (calibrated) quantum affine toric stacks associated
with the maximal cones. From the viewpoint of complex toric quasifolds, this
is the affine atlas introduced in [5, Theorem 2.2]. They define a notion of mor-
phism for (calibrated) quantum fans and (calibrated) quantum toric varieties.
The map between these two categories given by the construction turns out to
be functorial, it is naturally surjective, and is proved to be an equivalence of
categories [36, Theorems 5.18, 6.24].

Finally, Boivin extends the above equivalence of categories to calibrated
nonsimplicial fans and the corresponding calibrated quantum toric varieties [15,
Theorem 4.2.2.2]. He makes use of the same starting convex data, that he
calls (calibrated) quantum fans and quantum lattices as well. But he needs
to introduce an auxiliary datum, a further calibration, in order to deal with
nonsimpliciality.

The following diagram gives a synthetic and unified picture of the various
constructions:

triple + additional data
≈
Ψ ��

��

geometric space

��

fundamental triple
Ψ ��

Ψ̃

��

toric quasifold

The box on the left represent a whole family of data projecting down to the
same fundamental triple, the box on the right represent the corresponding
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family of geometric spaces. The lower level is the mapping that associates
the fundamental triple with the toric quasifold. Notice that we can always
construct, from a given fundamental triple, an object that lies in the family
above. The articles [13,29] and, in the calibrated case, [36,15] can be viewed

as instances of the mapping
≈
Ψ, [34] can be viewed as an instance of the mapping

Ψ̃, and finally [47,48,5], and [36,15] can be viewed as instances of the mapping
Ψ. In our understanding, in each of the above–mentioned constructions relative

to the mappings
≈
Ψ and Ψ̃, there is a mapping that projects any space of the

family to the toric quasifold. An instance is given in [14, Theorem 2.1].

We conclude by briefly mentioning a number of other related works. Ratiu–
Zung [51] and Lin–Sjamaar [39] study nonrational convex polytopes in the
context of presymplectic manifolds. The first authors specialize to the toric
case, but a triple is not explicitly provided. Pir–Sottile [46] introduce the no-
tion of irrational toric variety for arbitrary fans and show that, when the fan
is the normal fan of a polytope, the irrational toric variety is homeomorphic
to that polytope. Quasifolds have been studied in the framework of diffeology
in [31]. We expect that this approach will have implications in nonrational
toric geometry. Finally, we remark that Bressler–Lunts [17,18] and Karu [35]
devised a powerful approach to the combinatorics of nonrational polytopes that
extends cohomological properties of toric varieties to general fans, without con-
structing a corresponding toric space.
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