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On Davenport expansions, Popov’s formula and Fine’s query

Abstract. We establish an explicit connection between a Davenport
expansion and the Popov sum. Asymptotic analysis follows as a result
of these formulas. New solutions to a query of N. J. Fine are offered, and
a proof of Davenport expansions is detailed.
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1 - Introduction and Main formulas

Let A(n) denote the von Mangoldt function, {(s) the Riemann zeta function,
and p the non-trivial (complex) zeros of the Riemann zeta function [5, p.43].
In a recent paper [11] we established a proof of Popov’s formula [12]:
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for x > 1. Here {z} is the fractional part of x, sometimes written as {z} =

— |z, where |z] is the floor function. The proof relied on the Mellin transform
formula
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which is valid for z > 0, —1 < b < 0. This can be observed by noting (1.2) is
known [15, p. 14, eq. (2.1.4)] for x > 1, and by [10, pg.405] for 0 < x < 1,
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From (1.2) it is easy to see that for 1 < ¢ < 2,
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We apply the Cauchy residue theorem to a rectangle with vertices at with
vertices at (¢, £iT"), (—N,=+iT). The horizontals tend to 0 and the vertical
one also tends to 0 as N — oo. Hence the integral on the right side is the
sum of residues at poles in the strip —N < p < ¢. At non-trivial zeros p, the
denominator ¢(s) is of the form ¢’(p)(s — p) + - -- , whence the convergent sum
> o % arises. The sum of residues at trivial zeros gives rise to the third

term.

Let f(n) be a suitable arithmetic function such that L(s) = >, 5 f(n)n™° is
absolutely convergent, whence analytic for %8(s) > 1, and let S(z) = _, . f(n).
Examining the right hand side of (1.2), it is not difficult to see that
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If we replace s by 1 — s in the first integral in (1.3) and apply Fubini’s theorem
to interchange the integrals, we see that this integral is equal to
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by the Mellin-Perron formula. If we generalize the formula of Segal [14, eq. (5)],
we can see that the second integral on the right side of (1.3) is
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assuming uniform convergence where Fi(n) =3_;,, f(d). Collecting (1.3), (1.4),
and (1.5), we obtain the following theorem upon noting that Davenport’s proof
of uniform convergence is dependent on a special estimate [4].

Theorem 1.1. Let f(n) be chosen such that L(s) is analytic for R(s) > 1,
and that 3, -y f(n)e? e = O(N(log(N))™"), for any fived h. We have for

x> 1,
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We have therefore proven the connection between Popov’s formula and the
integral [ % alluded to in [11] (see also [4, p.69]). Perhaps even more
fascinating is the connection to Davenport expansions [3, 8] through the sum
on the far right hand side of (1.5). This Fourier series is known to be connected
to the periodic Bernoulli polynomial By({z}) — By = ({x}? — {z}). For rel-
evant material on Davenport expansions connected to Bernoulli polynomials,
see [2,9].

Recall that h(z) ~ g(z) means that limg_, % = 1. Letting  — oo and
applying L’Hépital’s rule to Theorem 1, and the Residue Theorem to (1.3)-
(1.4), we have the following.

Corollary 1.1.1. Let f(n) be chosen such that L(s) is analytic for R(s) > 1.
Suppose that S(x) ~ A(x) as x — oo. Then
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n>1

as r — oQ.

Notice that the sum on the left hand side of (1.1) is ~ 1, which corresponds
to the Prime Number theorem > __A(n) ~ x when coupled with our corollary.

The integral fom % has appeared in many recent works in the analytic

n<z

theory of numbers. Namely, in the case of the von Mangoldt function S(z) =
Y(x) = <, A(n), see [13], where we find a study of the function

A(n TL<.7,’
Z 2)_ ¢

n<x

For the case of the Mébius function (i.e. S(x) = M (x) the Mertens function [15,
p.370]), Inoue [7, Corollary 3, k = 2] gave, under the assumption of the weak
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Mertens Hypothesis,
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Here A(2) is a constant, and g(z) = O(h(z)) means |g(x)| < c1h(z), c1 > 0 a
constant.

We mention there is another form of the Fourier series on the far right side
of Theorem 1.1. Note that [15, p. 14, eq. (2.1.5)]

(1.6) {z} = _QLm' C(SS):BSd
()

where x > 0, and 0 < ¢ < 1. Integrating, we have that

1 2 _ 1 C(s) s
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We apply the Cauchy residue theorem to the rectangle with vertices at (¢, £iT),
(M, +iT), M, T > 0, to shift the line of integration, whereby by the known
estimates, the horizontal integrals go to 0 as T' — oco. Dividing by x, computing
the residue at the pole s = 0, and inverting the desired series in (1.7), we have

f(n 1y _ 1 ¢(s) s
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Here we used the fact that ((0) = —%. Hence, after comparing with our com-
putation (1.5), we have proven the following result.

Theorem 1.2. Forx > 0,

Zf < {”m}Q + [n J)—> 2$F2 (cos(2mnz) — 1).

n>1

2 - Solution to The N. J. Fine query

In [1], a positive answer was presented to a query of N.J. Fine, who asked
for a continuous function ¢(z) on R, with period 1, p(z) # —¢(—x), and

(2.1) > elh)=o.
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Namely, they gave the solutions

(2.2) Z f(:) cos(2mnzx),

n>1

where f(n) is chosen as the M&bius function p(n) and the Liouville function
A(n), [14]. Their proof utilizes a Ramanujan sum [15, p. 10]

(2.3) Z cos(27;\]:n),

N>k>1

which is N if n = 0 (mod N) and 0 otherwise. It is also dependent on
> n>1 f(n)/n = 0. In fact, it is possible to further generalize their result using
these properties, which we offer in the following.

Example. Suppose f(n) is a multiplicative arithmetic function chosen

such that 3, <, f(n)/n = 0. Then

(2.4) 3y IO osm (),

n>1 n

and

(2.5) > f;”) sin®™ (mn),
n>1

or each positive integer m satisfy the properties in Fine’s query.
f p g y the prop query

Proof. We will use [6, p. 31, section 1.320, no.5 and 7] for (2.4) and (2.5)
to obtain our ¢(z). Namely

(2.6) cos2m(x):22im 3 2(?) cos(2(m—k:)x)+<2m> ,

m
m—1>k>0

(2.7) cos® 1 (x) = 22T1—2 Z <2;n) cos((2m — 2k — 1)x).

m—1>k>0

Putting x = %, and summing over N > [ > 1 we see that the sum is a linear
combination of zeros and N’s depending on weather n(m — k)|N. In the case
where n(m — k)|N, we are left with a linear combination of terms which are
independent of n. The last term is simply NV 22% (2;1") Therefore, summing over
n gives the result upon invoking > -, f(n)/n = 0. Similar arguments apply to
(2.7). Since (2.5) follows in the same way using another formula from [6, p. 31,

section 1.320, no. 1], we leave the details to the reader. ]
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We were interested finding more solutions to Fine’s query by constructing a
special arithmetic function with the possible property > -, f(n)/n # 0. Define

+ | E(m!F1), ifn=0 (modm),
(2.8) X (1) = {1’ fr 20

If f(n) is completely multiplicative, this tells us that
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n>1 n=0 (mod m)

Definition. A function is said to be of the class N if: (i) it is continuous
on R, (ii) is 1-periodic (iii) is not odd, and (iv) satisfies (2.1) for each N coprime
to m.

Theorem 2.1. Suppose that L(s) is analytic for R(s) > 1. For natural
numbers m > 1,1 > 1, and N is coprime to m, we have Di(z) € X where

+ n n
(2.9) Dia) =Y X’"l(nl)f() cos(2mn),

n>1
for a completely multiplicative function with the property f(m) = —1, and
Dy(z) € N where
X (1) f (1
(2.10) Dy(x) = Z ml(nl)() cos(2mnx),
n>1

for a completely multiplicative function with the property f(m) = 1.

Proof. First we consider (2.9). Note that because Xi ,(n) is not completely
multiplicative, we need to restrict /N to be coprime to m, since then Xi [(Nn) =

Xil(n). That is to say that Nn = 0 (mod m) is solved by n = 0 (mod m)
provided that IV is coprime to m. The same argument applies in the case Nn % 0
(mod m). Using (2.3) and the method applied in [1] we compute that

T (n)f(n ™m ; n)f(n
3 me,l(ngf( )cos(2Nk)—N 3 X1 (n) f (1)

N>k>1n>1 n=0 mod N
JIN) - -
= N1 }glg}(l —m'~%)L(s) = 0.
The computation for (2.10) is similar, and so we leave the details for the reader.
O

An example for Do(z) is if f(n) = A(n), and m =4, [ > 1, since A(4) = 1.
One for Dy(x) is if f(n) = p(n), and m =5, 1 > 1, since u(5) = —1.
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