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On Davenport expansions, Popov’s formula and Fine’s query

Abstract. We establish an explicit connection between a Davenport
expansion and the Popov sum. Asymptotic analysis follows as a result
of these formulas. New solutions to a query of N. J. Fine are offered, and
a proof of Davenport expansions is detailed.
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1 - Introduction and Main formulas

Let Λ(n) denote the von Mangoldt function, ζ(s) the Riemann zeta function,
and ρ the non-trivial (complex) zeros of the Riemann zeta function [5, p. 43].
In a recent paper [11] we established a proof of Popov’s formula [12]:
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for x > 1. Here {x} is the fractional part of x, sometimes written as {x} =
x−�x�, where �x� is the floor function. The proof relied on the Mellin transform
formula
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which is valid for x > 0, −1 < b < 0. This can be observed by noting (1.2) is
known [15, p. 14, eq. (2.1.4)] for x > 1, and by [10, pg.405] for 0 < x < 1,
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From (1.2) it is easy to see that for 1 < c < 2,
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We apply the Cauchy residue theorem to a rectangle with vertices at with
vertices at (c,±iT ), (−N,±iT ). The horizontals tend to 0 and the vertical
one also tends to 0 as N → ∞. Hence the integral on the right side is the
sum of residues at poles in the strip −N < ρ < c. At non-trivial zeros ρ, the
denominator ζ(s) is of the form ζ ′(ρ)(s− ρ) + · · · , whence the convergent sum∑

ρ
xρ−2

ρ(ρ−1) arises. The sum of residues at trivial zeros gives rise to the third
term.

Let f(n) be a suitable arithmetic function such that L(s) =
∑

n≥1 f(n)n
−s is

absolutely convergent, whence analytic for �(s) > 1, and let S(x) =
∑

n≤x f(n).
Examining the right hand side of (1.2), it is not difficult to see that
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If we replace s by 1− s in the first integral in (1.3) and apply Fubini’s theorem
to interchange the integrals, we see that this integral is equal to
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by the Mellin-Perron formula. If we generalize the formula of Segal [14, eq. (5)],
we can see that the second integral on the right side of (1.3) is

(1.5)

1
x∫

0


∑

n≥1

f(n)

n
({ny} − 1

2
)


 dy =

1
x∫

0


− 1

π

∑
n≥1

F (n)

n
sin(2πny)


 dy

=
1

2π2

∑
n≥1

F (n)

n2

(
cos

(
2πn

x

)
− 1

)
,



[3] davenport expansions, popov’s formula, fine’s query 61

assuming uniform convergence where F (n) =
∑

d|n f(d). Collecting (1.3), (1.4),
and (1.5), we obtain the following theorem upon noting that Davenport’s proof
of uniform convergence is dependent on a special estimate [4].

T h e o r em 1.1. Let f(n) be chosen such that L(s) is analytic for �(s) > 1,
and that

∑
n≤N f(n)e2πinx = O(N(log(N))−h), for any fixed h. We have for

x > 1,
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We have therefore proven the connection between Popov’s formula and the
integral

∫ x
0

S(y)dy
y2

alluded to in [11] (see also [4, p. 69]). Perhaps even more

fascinating is the connection to Davenport expansions [3,8] through the sum
on the far right hand side of (1.5). This Fourier series is known to be connected
to the periodic Bernoulli polynomial B2({x}) − B2 = ({x}2 − {x}). For rel-
evant material on Davenport expansions connected to Bernoulli polynomials,
see [2,9].

Recall that h(x) ∼ g(x) means that limx→∞
h(x)
g(x) = 1. Letting x → ∞ and

applying L’Hôpital’s rule to Theorem 1, and the Residue Theorem to (1.3)–
(1.4), we have the following.

C o r o l l a r y 1.1.1. Let f(n) be chosen such that L(s) is analytic for �(s)>1.
Suppose that S(x) ∼ ∆(x) as x → ∞. Then
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as x → ∞.

Notice that the sum on the left hand side of (1.1) is ∼ 1
x , which corresponds

to the Prime Number theorem
∑

n≤x Λ(n) ∼ x when coupled with our corollary.

The integral
∫ x
0

S(y)dy
y2

has appeared in many recent works in the analytic

theory of numbers. Namely, in the case of the von Mangoldt function S(x) =
ψ(x) =

∑
n≤x Λ(n), see [13], where we find a study of the function

∑
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Λ(n)

n
−

∑
n≤x Λ(n)

x
=

x∫

1

ψ(y)dy
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.

For the case of the Möbius function (i.e. S(x) = M(x) the Mertens function [15,
p. 370]), Inoue [7, Corollary 3, k = 2] gave, under the assumption of the weak
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Mertens Hypothesis,

x∫

1

M(y)dy
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Here A(2) is a constant, and g(x) = O(h(x)) means |g(x)| ≤ c1h(x), c1 > 0 a
constant.

We mention there is another form of the Fourier series on the far right side
of Theorem 1.1. Note that [15, p. 14, eq. (2.1.5)]

(1.6) {x} = − 1

2πi
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xsds,

where x > 0, and 0 < c < 1. Integrating, we have that
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We apply the Cauchy residue theorem to the rectangle with vertices at (c,±iT ),
(M,±iT ), M, T > 0, to shift the line of integration, whereby by the known
estimates, the horizontal integrals go to 0 as T → ∞. Dividing by x, computing
the residue at the pole s = 0, and inverting the desired series in (1.7), we have
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Here we used the fact that ζ(0) = −1
2 . Hence, after comparing with our com-

putation (1.5), we have proven the following result.

T h e o r em 1.2. For x > 0,
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2 - Solution to The N. J. Fine query

In [1], a positive answer was presented to a query of N. J. Fine, who asked
for a continuous function ϕ(x) on R, with period 1, ϕ(x) �= −ϕ(−x), and

(2.1)
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N
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Namely, they gave the solutions

(2.2)
∑
n≥1

f(n)

n
cos(2πnx),

where f(n) is chosen as the Möbius function µ(n) and the Liouville function
λ(n), [14]. Their proof utilizes a Ramanujan sum [15, p. 10]

(2.3)
∑
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N
),

which is N if n ≡ 0 (mod N) and 0 otherwise. It is also dependent on∑
n≥1 f(n)/n = 0. In fact, it is possible to further generalize their result using

these properties, which we offer in the following.

E x amp l e . Suppose f(n) is a multiplicative arithmetic function chosen
such that

∑
n≥1 f(n)/n = 0. Then
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for each positive integer m satisfy the properties in Fine’s query.

P r o o f. We will use [6, p. 31, section 1.320, no. 5 and 7] for (2.4) and (2.5)
to obtain our ϕ(x). Namely
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Putting x = 2πln
N , and summing over N ≥ l ≥ 1 we see that the sum is a linear

combination of zeros and N ’s depending on weather n(m − k)|N. In the case
where n(m − k)|N, we are left with a linear combination of terms which are
independent of n. The last term is simply N 1

22m

(
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)
. Therefore, summing over

n gives the result upon invoking
∑

n≥1 f(n)/n = 0. Similar arguments apply to
(2.7). Since (2.5) follows in the same way using another formula from [6, p. 31,
section 1.320, no. 1], we leave the details to the reader.
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We were interested finding more solutions to Fine’s query by constructing a
special arithmetic function with the possible property

∑
n≥1 f(n)/n �= 0. Define

(2.8) χ±
m,l(n) :=

{
±(ml ∓ 1), if n = 0 (mod m),

1, if n �= 0 (mod m).

If f(n) is completely multiplicative, this tells us that
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ns
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De f i n i t i o n . A function is said to be of the class ℵ if: (i) it is continuous
on R, (ii) is 1-periodic (iii) is not odd, and (iv) satisfies (2.1) for each N coprime
to m.

Th e o r em 2.1. Suppose that L(s) is analytic for �(s) > 1. For natural
numbers m > 1, l > 1, and N is coprime to m, we have D1(x) ∈ ℵ where
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for a completely multiplicative function with the property f(m) = −1, and
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for a completely multiplicative function with the property f(m) = 1.

P r o o f. First we consider (2.9). Note that because χ±
m,l(n) is not completely

multiplicative, we need to restrict N to be coprime to m, since then χ±
m,l(Nn) =

χ±
m,l(n). That is to say that Nn ≡ 0 (mod m) is solved by n ≡ 0 (mod m)

provided thatN is coprime tom. The same argument applies in the caseNn �≡ 0
(mod m). Using (2.3) and the method applied in [1] we compute that
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The computation for (2.10) is similar, and so we leave the details for the reader.

An example for D2(x) is if f(n) = λ(n), and m = 4, l > 1, since λ(4) = 1.
One for D1(x) is if f(n) = µ(n), and m = 5, l > 1, since µ(5) = −1.
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