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p(x)-biharmonic problem with Navier boundary conditions

Abstract. In this article, we study the following p(x)-biharmonic prob-
lem with Navier boundary conditions

{
−∆2

p(x)u = λ|u|p(x)−2u+ f(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,

where f is a Carathéodory function satisfying only a growth condition.
Using the Berkovits degree theory, we establish the existence of at least
one weak solution of this problem.

Keywords. Navier boundary conditions, variable exponent spaces,
Topological degree.
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1 - Introduction

The study of higher order elliptic equations where variable exponents appear
is a new and interesting topic. This is motivated by appearances in many ap-
plications such as: micro-electro-mechanical systems, thin film theory, surface
diffusion on solids, interface dynamics, flow in Hele-Shaw cells and phase field
models of multiphase systems (see [10,13]) and references therein. These types
of equations also appear in the mathematical modelling of non-Newtonian fluids
(electro-rheological fluids) whose viscosity is not constant and changes rapidly
with the electric field, chemical reaction-diffusion equations, etc. For more
information, the reader can refer to [11, 14, 16]. The appropriate functional
framework for the study of his problems is that of the Lebegue and Sobolev
spaces with variable exponents.
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Many authors have studied problems involving the p(x)−Laplacian operator
(see for example [4,8,15]). In this paper, we will introduce another important
operator that appears in many equations, the p(x)−biharmonic operator, for
p(x) > 1, denoted ∆2

p(x) defined as

∆2
p(x) := ∆(|∆u|p(x)−2∆u).

Consider the following p(x)-biharmonic problem with Navier boundary condi-
tions

(1.1)

{
−∆2

p(x)u = λ|u|p(x)−2u+ f(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1, λ ≤ 0,
p : Ω −→ (1,+∞) is a bounded continuous function and f : Ω × R −→ R is a
Carathéodory function satisgying a growth condition.

Using the Mountain Pass Theorem, the authors in [7] establish the exis-
tence of at least one solution of this problem. In this paper, we will study the
problem (1.1) using another method based on the theory of topological degree,
in particular the Berkovits degree for operators of class (S+). We refer the
reader to [1,2,3,4,5,15] and the references therein for more information on
this theory and its use.

This document is organised as follows. In section 2, we give a brief overview
of Berkovits topological degree, some definitions and fundamental properties of
the generalized Lebesgue and Sobolev spaces. Section 3 is reserved for proper-
ties of the p(x)-Biharmonic operator and technical lemmas. In Section 4, we
establish the existence of at least one weak solution to the problem (1.1) using
as a main tool the Berkovits degree.

2 - Preliminaries results

2.1 - Berkovits degree

Let us start with a brief recapitulation of some essential operator classes to
introduce the Berkovits topological degree.

Let X be a real separable reflexive Banach space with dual X∗ and with
continuous pairing 〈. , .〉 and let Ω be a nonempty subset of X. The symbol
→ (⇀) stands for strong (weak) convergence.
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Let Y be a real Banach space. We recall that a mapping F : Ω ⊂ X → Y
is bounded, if it takes any bounded set into a bounded set. F is said to be
demicontinuous, if for any (un) ⊂ Ω, un → u implies F (un) ⇀ F (u). F is said
to be compact if it is continuous and the image of any bounded set is relatively
compact. A mapping F : Ω ⊂ X → X∗ is said to be of class (S+), if for any
(un) ⊂ Ω with un ⇀ u and limsup〈Fun, un−u〉 ≤ 0, it follows that un → u. F
is said to be quasimonotone , if for any (un) ⊂ Ω with un ⇀ u, it follows that
limsup〈Fun, un − u〉 ≥ 0.

For any operator F : Ω ⊂ X → X and any bounded operator T : Ω1 ⊂
X → X∗ such that Ω ⊂ Ω1, we say that F satisfies condition (S+)T , if for any
(un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y and limsup〈Fun, yn − y〉 ≤ 0, we have
un → u.

Let O be the collection of all bounded open set in X. For any Ω ⊂ X, we
consider the following classes of operators:

F1(Ω) := {F : Ω → X∗ | F is bounded, demicontinuous and

satisfies condition (S+)},
FT,B(Ω) := {F : Ω → X | F is bounded, demicontinuous and

satisfies condition (S+)T },
FT (Ω) := {F : Ω → X |F is demicontinuous and satisfies condition (S+)T },
FB(X) := {F ∈ FT,B(Ḡ) | G ∈ O,T ∈ F1(Ḡ)}.

Here, T ∈ F1(Ḡ) is called an essential inner map to F .

L emma 2.1. [5, Lemma 2.2 and 2.4] Suppose that T ∈ F1(Ḡ) is continuous
and S : DS ⊂ X∗ → X is demicontinuous such that T (Ḡ) ⊂ Ds, where G is
a bounded open set in a real reflexive Banach space X. Then the following
statement are true:

(i) If S is quasimonotone, then I+SoT ∈ FT (Ḡ), where I denotes the identity
operator.

(ii) If S is of class (S+), then SoT ∈ FT (Ḡ).

De f i n i t i o n 2.2. Let G be a bounded open subset of a real reflexive Ba-
nach space X, T ∈ F1(Ḡ) be continuous and let F, S ∈ FT (Ḡ). The affine
homotopy H : [0, 1]× Ḡ → X defined by

H(t, u) := (1− t)Fu+ tSu for (t, u) ∈ [0, 1]× Ḡ

is called an admissible affine homotopy with the common continuous essential
inner map T .
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R ema r k 2.3. [5] The above affine homotopy satisfies condition (S+)T .

We introduce the topological degree for the class FB(X) due to Berkovits [5].

T h e o r em 2.4. There exists a unique degree function

d : {(F,G, h)|G ∈ O, T ∈ F1(Ḡ), F ∈ FT,B(Ḡ), h /∈ F (∂G)} → Z

that satisfies the following properties

1. (Existence) if d(F,G, h) �= 0, then the equation Fu = h has a solution
in G.

2. (Additivity) Let F ∈ FT,B(Ḡ). If G1 and G2 are two disjoint open subset
of G such that h �∈ F (Ḡ \ (G1 ∪G2)), then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h).

3. (Homotopy invariance) If H : [0, 1] × Ḡ → X is a bounded admissible
affine homotopy with a common continuous essential inner map and h :
[0, 1] → X is a continuous path in X such that h(t) /∈ H(t, ∂G) for all
t ∈ [0, 1] ,then the value of d(H(t, .), G, h(t)) is constant for all t ∈ [0, 1].

4. (Normalization) For any h ∈ G, we have d(I,G, h) = 1.

P r o p o s i t i o n 2.5. Let S : X → X∗ and T : X∗ → X be two operators
bounded and continuous such that S is quasimonotone and T is an homeomor-
phism, strictly monotone and of class (S+). If

Λ := {v ∈ X∗|v + tSoTv = 0 for some t ∈ [0, 1]}

is bounded in X∗, then the equation

v + SoTv = 0

admits at lest one solution in X∗.

P r o o f. Since Λ is bounded in X∗, there exists R > 0 such that

‖v‖X∗ < R for all v ∈ Λ.

This says that

v + tSoTv �= 0 for all v ∈ ∂BR(0) and all t ∈ [0, 1]

where BR(0) is the ball of center 0 and radius R in X∗.
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Thanks to the Minty-Browder Theorem [17, Theorem 26A], the inverse
operator L := T−1 is bounded, continuous and of type (S+).

From Lemma 2.7 it follows that

I + SoT ∈ FT (BR(0)) and I = LoT ∈ FT (BR(0)).

Since the operators I, S and T are bounded, I + SoT is also bounded. We
conclude that

I + SoT ∈ FT,B(BR(0)) and I ∈ FT,B(BR(0)).

Consider a homotopy H : [0, 1]×BR(0) → X∗ given by

H(t, v) := v + tSoTv for (t, v) ∈ [0, 1]×BR(0).

Let us apply the homotopy invariance and normalization property of the
Berkovits degree introduced in Theorem 2.4, we get

d(I + SoT,BR(0), 0) = d(I, BR(0), 0) = 1,

and hence there exists a point v ∈ BR(0) such that

v + SoTv = 0.

To study the problem (1.1), using the Berkovits degree, we need some
basic properties of variable exponent Lebesgue and Sobolev spaces and of
p(x)−Biharmonic operator.

2.2 - Variable exponent Lebesgue and Sobolev spaces

In this subsection, we recall some useful properties of variable exponent
spaces. For more details we refer the reader to [6, 9, 12], and the references
therein. Denote by M(Ω) the set of all measurable real functions on Ω and
Consider the set

C+(Ω) =
{
p ∈ C(Ω) : p(x) > 1 for all x ∈ Ω

}
.

For all p ∈ C+(Ω), we denote

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).
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and for all x ∈ Ω and k ≥ 1,

p∗(x) :=

{
Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N,

p∗k(x) :=

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N.

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space as

Lp(·)(Ω) =

{
u ∈ M(Ω) :

∫

Ω
|u(x)|p(x)dx < +∞

}
.

endowed with the Luxemburg norm, which is defined by

‖u‖p(·) = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
u(x)

λ

∣∣∣∣
p(x)

dx ≤ 1

}
.

In this paper, we suppose that p ∈ C+(Ω) such that

(2.1) 1 < p− ≤ p(x) ≤ p+ < +∞.

From Theorems 1.6 and 1.10 in [9], we obtain the following proposition:

P r o p o s i t i o n 2.6. Suppose that (2.1) is satisfied. If Ω is a bounded open
domain, then (Lp(·)(Ω), ‖u‖p(·)) is a reflexive uniformly convex and separable
Banach space.

If p(·), q(·) ∈ C+(Ω), p(·) ≤ q(·) a.e. in Ω then there exists the continuous
embedding Lq(·)(Ω) → Lq(·)(Ω).

Let p′(·) ∈ C+(Ω) be the conjugate exponent of p(·), that is, 1
p(x)+

1
p′(x) = 1.

Then we have the following Hölder-type inequality

L emma 2.7. (Hölder inequality). If u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), then

∣∣∣∣
∫

Ω
uvdx

∣∣∣∣ ≤
(

1

p−
+

1

p′−

)
‖u‖p(·)‖v‖p′(·) ≤ 2‖u‖p(·)‖v‖p′(·).

A very important role in manipulating the generalized Lebesgue spaces with
variable exponent is played by the modular of the Lp(·)(Ω) space, which de-
fined by

ρp(.) : L
p(·)(Ω) −→ R

u �−→ ρp(.)(u) =
∫
Ω |u(x)|p(x)dx.
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P r o p o s i t i o n 2.8. Let u ∈ Lp(·)(Ω), then we have

(i) ‖u‖p(·) < 1 (resp. = 1, > 1) ⇔ ρp(.)(u) < 1 (resp. = 1, > 1),

(ii) ‖u‖p(·) < 1 ⇒ ‖u‖p+p(·) ≤ ρp(.)(u) ≤ ‖u‖p−p(·),

(iii) ‖u‖p(·) > 1 ⇒ ‖u‖p−p(·) ≤ ρp(.)(u) ≤ ‖u‖p+p(·).

Co r o l l a r y 2.9. Let u ∈ Lp(·)(Ω), then we have

(i) ‖u‖p(·) ≤ ρp(.)(u) + 1,

(ii) ρp(.)(u) ≤ ‖u‖p−p(·) + ‖u‖p+p(·).

P r o p o s i t i o n 2.10. If u, uk ∈ Lp(·)(Ω) and k ∈ N, then the following
assertions are equivalent

(i) lim
k→+∞

‖uk − u‖p(·) = 0,

(ii) lim
k→+∞

ρp(.)(uk − u) = 0,

(iii) uk −→ u in measure in Ω and lim
k→+∞

ρp(.)(uk) = ρp(.)(u).

The Sobolev space with variable exponent W k,p(·)(Ω) is defined as

W k,p(·)(Ω) = {u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ k},

where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ···∂xαN

N

u, (the derivation in distributions sense) with

α = (α1, α2, · · · , αN ) is a multi-index and |α| =
∑N

i=1 αi. The space W
k,p(·)(Ω),

equipped with the norm

‖u‖k,p(·) :=
∑
|α|≤k

‖Dαu‖p(·),

also becomes a Banach, separable and reflexive space.

P r o p o s i t i o n 2.11. [9] For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all
x ∈ Ω, there is a continuous and compact embedding

W k,p(·)(Ω) ↪→ Lr(·)(Ω).

We denote by W
k,p(·)
0 (Ω)) the closure of C∞

0 (Ω) in W k,p(·)(Ω).
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3 - Properties of p(x)−Biharmonic operator and technical lemmas

By the form of the problem (1.1), the appropriate functional space for its
weak solutions is the following generalized Sobolev space

X := W 2,p(·)(Ω) ∩W
1,p(·)
0 (Ω)

equipped with the norm

‖u‖ = inf{α > 0 :

∫

Ω
(|∆u(x)

α
|p(x) − λ|u(x)

α
|p(x))dx ≤ 1}.

This norm is equivalent to the norms ‖∆.‖p(·) and ‖ · ‖2,p(·) (see [7]), so, taking
into account proposition 2.11, there is a continuous and compact embedding of
X into Lq(x)(Ω), where q(x) < p∗2(x) for all x ∈ Ω.

We consider the functional

J(u) =

∫

Ω
(|∆u|p(x) − λ|u|p(x))dx.

By a proof similar to that of [9, Theorem 1.3], we have the following funda-
mental proposition

P r o p o s i t i o n 3.1. For all u, un ∈ X we have

(i) ‖u‖ < 1 (resp. = 1, > 1) ⇔ J(u) < 1 (resp. = 1, > 1),

(ii) ‖u‖ < 1 ⇒ ‖u‖p+ ≤ J(u) ≤ ‖u‖p−,

(iii) ‖u‖ > 1 ⇒ ‖u‖p− ≤ J(u) ≤ ‖u‖p+,

(iv) lim
n→+∞

‖un − u‖ = 0 ⇔ lim
n→+∞

J(un − u) = 0,

(v) lim
n→+∞

‖un‖ = ∞ ⇔ lim
n→+∞

J(un) = ∞.

The energy functional associated to (1.1) is defined by

Ψ(u) = Φ(u)− Γ(u),

where

Φ(u) =

∫

Ω

1

p(x)
(|∆u|p(x) − λ|u|p(x))dx,

Γ(u) =

∫

Ω
F (x, u)dx and F (x, s) =

∫ s

0
f(x, t)dt.

It is well known that Φ is well defined, even and C1 in X.
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To prove the existence of weak solutions for problem (1.1), one needs some
technical lemmas and this growth condition on the Carathéodory function
f : Ω× R −→ R:

(3.1) f(x, s)| ≤ a(x) + b|s|α(x)−1

for a.e. x ∈ Ω and all s ∈ R, with a(x) ≥ 0, b is a positive constant, a(x) ∈
Lα′(·)(Ω), α ∈ C+(Ω) and α+ ≤ p−.

L emma 3.2. [7, Proposition 3.3] If f satisfies (3.1) then

(i) Γ ∈ C1(X,R) and for u, v in X, we have

〈Γ′(u), v〉 =
∫

Ω
f(x, u)vdx.

(ii) The operator Γ′ : X → X∗ is completely continuous.

Consequently, the weak solutions of (1.1) are the critical points of the func-
tional Ψ. Moreover, the operator L := Φ′ : X → X∗ defined as

〈L(u), v〉 =
∫

Ω
(|∆u|p(x)−2∆u∆v − λ|u|p(x)−2uv)dx ∀u, v ∈ X

satisfies the assertions of the following lemma

L emma 3.3. [7, Theorem 3.4]

(i) L is continuous, bounded and strictly monotone,

(ii) L is of (S+) type,

(iii) L is a homeomorphism.

4 - Main results

As we have seen before, the weak solutions of (1.1) are the critical points
of the functional Ψ. Therefore, we can consider this definition

D e f i n i t i o n 4.1. We say that u ∈ X is a weak solution of problem (1.1) if

∫

Ω
(|∆u|p(x)−2∆u∆v − λ|u|p(x)−2uv)dx−

∫

Ω
f(x, u)vdx = 0 ∀v ∈ X.

The main result of this paper is given by the following theorem



42 mustapha ait hammou [10]

T h e o r em 4.2. Let Ω be a Lipschitz bounded domain in RN , p ∈ C+(Ω)
satisfies (2.1) and f satisfies (3.1). Then, for all λ ≤ 0, problem (1.1) admits
at least one weak solution.

P r o o f. u ∈ X is a weak solution of (1.1) if and only if

(4.1) Lu− Γ′u = 0.

Thanks to the properties of operator L seen in Lemma 3.3 and in view of Minty-
Browder Theorem [17, Theorem 26A], the inverse operator T := L−1 : X∗ → X
is bounded, continuous and of type (S+). Moreover, note that, according to
Lemma 3.2 and the reflexivity of X, the operator Γ′ is bounded, continuous
and quasimonotone. Therefore, equation (4.1) is equivalent to

(4.2) u = Tv and v + SoTv = 0,

where S = −Γ′. To solve equation (4.2), we will apply the Proposition 2.5. It
is sufficient to show that the set

Λ := {v ∈ X∗|v + tSoTv = 0 for some t ∈ [0, 1]}

is bounded. Indeed, let v ∈ Λ. Set u := Tv, then ‖Tv‖ = ‖u‖.
If ‖u‖ ≤ 1, then ‖Tv‖ is bounded.

If ‖u‖ > 1, then we get by the implication (iii) in Proposition 3.1 the
estimate

‖Tv‖p−w = ‖u‖p−w
≤ J(u)

= 〈Lu, u〉
= 〈v, Tv〉
= −t〈SoTv, Tv〉

= t

∫

Ω
f(x, u)u dx

≤
∫

Ω
(a(x) + b|u|α(x)−1)u dx.

Since X ⊂ Lα(·)(Ω) and in virtu of the Hölder inequality and (ii) of Corollary
2.9, we have

‖Tv‖p−w ≤ ‖a‖α′(·)‖u‖α(·) + b‖u‖α−

α(·) + b‖u‖α+

α(·)

≤ const(‖u‖α(·) + ‖u‖α−

α(·) + ‖u‖α+

α(·)).
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From the the compact embedding X ↪→ Lα(·)(Ω) (because α(x) < p− ≤ p(x) <
p∗2), we can deduct the estimate

‖Tv‖p− ≤ const(‖Tv‖+ ‖Tv‖α+
).

It follows that {Tv|v ∈ Λ :} is bounded.
Since the operator S is bounded, it is obvious from (4.2) that the set

Λ : is bounded in X∗. Hence, in virtu of Proposition 2.5, the equation v+SoTv
have at lest one solution v̄ in X∗. We conclude that ū = T v̄ is a weak solution
of (1.1).

Ac k n ow l e d gm e n t s. The author would like to express his gratitude to
the Referees for the valuable advices to improve this paper.
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[12] O. Kováčik and J. Rákosńık, On spaces Lp(x) and W k,p(x), Czechoslovak
Math. Jour. 41(116) (1991), no. 4, 592–618.

[13] T. G. Myers, Thin films with high surface tension, SIAM Rev. 40 (1998),
no. 3, 441–462.
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