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1 - Introduction

The present work is motivated by [18] where the author studied contractibil-
ity properties of DF-algebras. In this paper those results are extended onto
algebras which (topologically) are countable projective limits of DF-spaces.

The paper is organized as follows. Section 2 contains a preliminary material
and some technical results of structural nature. Section 3 focuses on abstract
characterizations of general PDF-algebras. The next section deals with specific
PDF-spaces, namely Köthe-type PLB spaces and is thought of as a short intro-
duction into the final section which provides a characterization of contractible
Köthe-type PLB-algebras in terms of the defining Köthe matrix.

General references are: [19] for projective limits of countable spectra, [10,
12] for tensor products of locally convex spaces, [3] for Banach (and topological)
algebra theory and [8,9] for homological algebra.

2 - Preliminaries

All the vector spaces are assumed over C but analogous results remain true if
one considers them over R. Specific categories with their symbols are as follows:
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B – Banach spaces/algebras, F - Fréchet spaces/algebras, DF - complete DF-
spaces/algebras, PDF - complete PDF-spaces/algebras, V - vector spaces. It
will be clear from the context whether those symbols are used to indicate the
category of spaces or algebras.

If a = (aj)j∈N and b = (bj)j∈N are two sequences of non-negative numbers
then a/b ∈ �∞ means that there is a constant C > 0 such that aj � Cbj for all
j ∈ N. This notation will be used regularly in the sequel.

The main objects in the sequel are algebras which arise as countable pro-
jective limits of some locally convex spaces. This construction can be found
e.g. in [19, Definition 3.1.3] or [10, Section I.2.6] but we recall it below for con-
venience of the reader. Our construction is restricted to the category of Haus-
dorff locally convex spaces but it is also possible in more general categories,
e.g. topological vector spaces, abelian topological groups, etc. A projective
spectrum X is a sequence (Xn)n∈N of Hausdorff locally convex spaces together
with continuous linear mappings (πn

m : Xn → Xm)m�n which satisfy:

(i) πn
n = idXn (n ∈ N),

(ii) πn
k ◦ πk

m = πn
m (m � k � n).

We then write X = (Xn, π
n
m). The subspace

X :=
{
(xn)n∈N ∈

∏
n∈N

Xn : xm = πn
mxn for all m,n ∈ N, m � n

}
,

denoted by X = projnXn is called the projective limit of X . If Pn :
∏

k Xk →
Xn, n ∈ N is the sequence of canonical projections then their restrictions πn :=
Pn|Xn satisfy the relation

(1) πm = πn
m ◦ πn (m � n).

The projective limit topology on X is the weakest locally convex topology for
which all the mappings πn : X → Xn, n ∈ N are continuous. We will consider
projective limits always with their projective limit topologies. A projective limit
is reduced if πn(X) is dense in Xn for every n ∈ N. Without loss of generality
we may (and will) assume that projective limits are always reduced – [10, 2.6,
Proposition 2]. From [10, 3.4, Proposition 6] it follows that if X = projnXn

then X̃ = projn X̃n, where ˜ denotes the completion. Therefore we may (and
always will) assume that a complete projective limit arises from a projective
spectrum of complete spaces. A locally convex space is called a PDF-space if
it is topologically isomorphic to a projective limit of a sequence of some DF-
spaces (for the definition of a DF-space see [16, p. 297]). In general we do not
assume completeness. Below we list some examples of such objects.
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E x amp l e 2.1. The following are PDF-spaces:

1. Banach spaces, Fréchet spaces, DF-spaces and PLB-spaces,

2. the space A (Ω) of real analytic functions on some open subset Ω ⊂ Rd,

3. the space D ′(Ω) of distributions on some open subset Ω ⊂ Rd,

4. the multiplier algebra of the noncommutative Schwartz space.

There is an extensive literature concerning PDF-spaces, especially concern-
ing A (Ω) and D ′(Ω) – see the work of Bonet, Domański, Vogt and others.
The multiplier algebra of the noncommutative Schwartz space is considered
in [2] and for more on PLB-spaces (in particular, PLS-spaces and PLN-spaces)
– see [5] and references therein.

Before introducing PDF-algebras, we collect some hereditary properties of
PDF-spaces.

P r o p o s i t i o n 2.2. If X and Y are PDF-spaces then X⊗̂Y and X⊕C are
PDF-spaces as well.

P r o o f. Let X = projnXn and Y = projn Yn with all Xn’s and Yn’s being
DF-spaces. From [10, 15.4, Theorem 2] it follows that

X⊗̂Y = projn(Xn⊗̂Yn),

and from [10, 15.6, Theorem 2] it follows that Xn⊗̂Yn is a DF-space for every
n ∈ N. Therefore X⊗̂Y is a PDF-space. Moreover,

X ⊕ C = projn(Xn ⊕ C)

and Xn⊕C is a DF-space by [10, 12.4, Theorem 8]. The conclusion follows.

P r o p o s i t i o n 2.3. If Y is a complemented subspace of a PDF-space X
then Y is also a PDF-space.

P r o o f. Let X = projn(Xn, π
n
m) be a PDF-space and assume that X =

Y ⊕ Z topologically. Let P : X → X be a projection onto Y and denote

Yn := πn(Y )
Xn

, Zn := πn(Z)
Xn

(n ∈ N).

Clearly, Y = imP and Z = kerP . Let us now consider the projective spectra
(
Xn/Zn, ρ

n
m

)
and (Yn, ι

n
m),

where the linking maps are defined as
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ρnm : Xn/Zn → Xm/Zm, ιnm : Yn → Ym,

ρnm(x+ Zn) := πn
mx+ Zm, ιnmy := πn

my.

Clearly, the projective limits projnXn/Zn and projn Yn exist – recall that the
maps (ρnm)m�n are well-defined due to (1). We will now show that

(2) projnXn/Zn � projn Yn (topologically).

To this end, observe that from [4, Lemma 4] (the original proof works in our
case as well) it follows that for every m ∈ N there is n � m such that there is
a continuous linear mapping Pm,n : Xn → Xm and the diagram

X X

Xn Xm

πn

P

πm

Pm,n

commutes. Therefore one may define continuous and linear maps

Xn/Zn Ym Xm/Zm,
fm gm

where the mappings fm, gm, m ∈ N are defined as

fm(x+ Zn) := Pm,nx, gmy := y + Zm (m ∈ N).

Straightforward computation shows that the above maps are injective and sat-
isfy the relations

gm ◦ fm = ρnm, fn ◦ gn = ιnm (m � n).

This proves (2). From the proof of [7, Proposition 1.2] it follows that Y =
projn Yn whereas from [10, 12.4, Theorem 8] it follows that projnXn/Zn is a
PDF-space. Consequently, Y is a PDF-space as well and the proof is thereby
complete.

Let now A be a locally convex space in which one can define a multiplication
m : A×A → A. We say that A is a topological algebra if m is jointly continuous
– see [3, Definition 2.2.5]. Again we do not assume completeness. Some authors
call A a topological algebra if m is only separately continuous – see e.g. [14].
Then algebras with jointly continuous multiplication are called ⊗̂-algebras – see
e.g. [13,17]. A PDF-algebra is a topological algebra for which the underlying
locally convex space is a PDF-space. If A is a PDF-algebra then the assignment
a⊗ b �→ ab extends to a continuous linear map

πA : A⊗̂A → A,
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where A⊗̂A denotes the completed projective tensor product of A with itself.
This map is called the product map. We will omit the subscript since it will
always be clear to which algebra the product map is referred to. A unit in a
unital algebra will be denoted by 1. If A is not unital then by A1 we denote
its unitization, i.e.

A1 := A⊕C and (a, α) · (b, β) := (ab+βa+αb, αβ) (a, b ∈ A, α, β ∈ C).

By A# we will denote the conditional unitization of the algebra A, i.e. A# is
A if the algebra in question is unital and A1 elsewhere. From Proposition 2.2
it follows that if A is a PDF-algebra then so is A#.

If A is a topological algebra then a locally convex space is an A-bimodule if
it is an algebraic bimodule and the bimodule operations are jointly continuous.
We then write X ∈ A-mod-A. If A and X belong to some category C then we
write X ∈ A-mod-A(C). Similar notation applies to left and right modules. If
A is a PDF-algebra then by a PDF-A-bimodule we will mean an A-bimodule
which – topologically – is a PDF-space. Recall also that a derivation is a
linear (not necessarily continuous) map δ : A → X from an algebra A into an
A-bimodule X satisfying the so-called ‘derivation rule’, i.e.

δ(ab) = a · δ(b) + δ(a) · b (a, b ∈ A).

If there is an element x ∈ X such that

δ(a) = a · x− x · a (a ∈ A)

then δ is an inner derivation and we use the notation δ = adx.

3 - Contractible PDF-algebras

In this section we will show that several definitions of contractibility are
equivalent in PDF. We start with the language of homological algebra. All
the definitions and results are formulated for bimodules. Obvious changes lead
to respective definitions and results for left and right modules. Let A be a
PDF-algebra. Following Helemskĭı [8, Ch. III, Definition 1.13] we say that a
PDF-A-bimodule P is projective if for every admissible short exact sequence in
A-mod-A(PDF)

0 X Y Z 0i q

the sequence

0 ALA(P,X) ALA(P, Y ) ALA(P,Z) 0I Q

is exact in V.
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R ema r k 3.1. 1. The adjective ‘admissible’ in the above definition means
that i and q are bimodule maps, q is open and has a right inverse.
2. By ALA(P,X) we denote the space of all bimodule maps from P to X.

Before characterizing projective PDF-bimodules let us recall that by an
admissible epimorphism T ∈ ALA(X,Y ) between PDF-A-bimodules X,Y we
mean a bimodule map which is an open surjection and has a continuous right
inverse Q ∈ L(X,Y ). We emphasise the assumption that the map T is open.
This follows from the fact that there is no Open Mapping Theorem in PDF.

The following result is proved along the same lines as in B therefore we
omit it.

P r o p o s i t i o n 3.2 ([8, Ch. III, Proposition 1.14] (cf. [3, Definition 2.8.35])).
Let A be a PDF-algebra. A PDF-A-bimodule P is projective if and only if for
any Y, Z ∈ A-mod-A(PDF), every admissible epimorphism T ∈ ALA(Y, Z) and
every S ∈ ALA(P,Z) there exists R ∈ ALA(P, Y ) such that T ◦R = S, i.e. the
diagram

P

Y Z

R
S

T

is commutative.

From [10, 3.4, Proposition 6] and [10, 12.4, Theorem 8] it follows that
completions of PDF-spaces are again PDF. Moreover, if A is a PDF-algebra and
X is a PDF-A-bimodule then X̃ becomes a PDF-A-bimodule in the obvious
way. Therefore we get the following result.

P r o p o s i t i o n 3.3. Let Abe a PDF-algebra and let P be a PDF-A-bimodule.
Then P is projective if and only if P̃ is projective.

Following [8, Ch. IV, Definition 5.1] we say that a PDF-algebra A is bipro-
jective if A is a projective PDF-A-bimodule.

P r o p o s i t i o n 3.4. A complete PDF-algebra A is biprojective if and only if
the product map is a retraction, i.e. there exists a bimodule map σ : A → A⊗̂A
such that π ◦ σ = idA.

P r o o f. This follows from Proposition 2.2 and the proof of [3, Proposition
2.8.41].

C o r o l l a r y 3.5. If A ∈ PDF is biprojective then the product map is an
open surjection.
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P r o p o s i t i o n 3.6. If A ∈ PDF is unital then kerπ is complemented in
A⊗̂A and hence a PDF-space.

P r o o f. The operator

ρ : A⊗̂A → A⊗̂A, ρ(u) := u− π(u)⊗ 1

is a projection onto kerπ. The conclusion follows from Proposition 2.3.

Recall that if A ∈ {B,F,DF} then biprojectivity of A# can be rephrased in
the language of derivations. The following result extends it onto the category
PDF.

T h e o r em 3.7. Let A be a complete PDF-algebra. The following conditions
are equivalent:

(i) every continuous derivation from A into any complete PDF-A-bimodule
is inner,

(ii) A is unital and biprojective,

(iii) A is unital and has a projective diagonal in A⊗̂A, i.e. an element d ∈
A⊗̂A such that

π(d) = 1, a · d = d · a (a ∈ A),

(iv) A# is biprojective.

P r o o f. (i) ⇒ (ii): From Proposition 3.6 we know that kerπ is a PDF-A-
bimodule and we define a derivation

δ : A → kerπ, δ(a) := a⊗ 1− 1⊗ a (a ∈ A)

to conclude that π is a retraction. By Proposition 3.4 A is biprojective. That
A is unital is proved along the same lines as in the proof of [3, Theorem 1.9.21].
(ii) ⇒ (iii): If σ : A → A⊗̂A is a right bimodule inverse to the product map
then σ(1) is a projective diagonal.
(iii) ⇒ (i): Let δ : A → X be a continuous derivation into some X
∈ A-mod-A(PDF). Then the assignment a ⊗ b �→ a · δ(b) gives rise to a lin-
ear and continuous map D : A⊗̂A → X. Additionally, the maps

Da : A⊗̂A → X, Da(v) := D(v · a)−D(v) · a− π(v) · δ(a) (a ∈ A)

are also continuous. If now d ∈ A⊗̂A denotes a projective diagonal then for
any a ∈ A, u ∈ A⊗A we get
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(3) a ·D(d)−D(d) · a− δ(a) = Da(d− u).

Let U be a zero neighbourhood basis in X. For any U ∈ U we choose another
zero neighbourhood V ⊂ A⊗̂A such that Da(V ) ⊂ U and an element u ∈ A⊗A
so that d − u ∈ V . From (3) we get that a · D(d) − D(d) · a − δ(a) ∈ U .
Consequently,

a ·D(d)−D(d) · a− δ(a) ∈
⋂

U∈U

U = {0} = {0},

since X is a Hausdorff space. As a ∈ A was arbitrary, we get

δ(a) = a ·D(d)−D(d) · a (a ∈ A)

which shows that δ is inner.
(ii) ⇔ (iv): this is proved as in the Banach algebra case.

R ema r k 3.8. The proof of (iii) ⇒ (i) cannot rely on the representations
of arbitrary u ∈ A⊗̂A of the form u =

∑
n λn(xn ⊗ yn), where (λn)n ∈ �1

and (xn)n, (yn)n are bounded sequences in A. In the category PDF such a
decomposition is not possible in general. It is not even possible in the category
DF – see [15, Proposition 4].

We now define contractibility in the category PDF. Following [9, Defini-
tion VII.1.59] we say that a complete PDF-algebra A is contractible if A# is
biprojective. A PDF-algebra is contractible if its completion is a contractible
PDF-algebra.

C o r o l l a r y 3.9. An algebra A ∈ PDF is contractible if and only if A# is
contractible.

P r o o f. Follows from Theorem 3.7 and Proposition 3.3.

Using Theorem 3.7 and mimicking the proof of [3, Theorem 2.8.64] we can
derive another consequence.

C o r o l l a r y 3.10. Let A,B ∈ PDF be algebras and let θ : A → B be a dense
range algebra homomorphism. If A is contractible then so is B.

From Example 2.1 it follows that B,F,DF ⊂ PDF. Therefore Theorem 3.7
allows us to derive the following consequence.

C o r o l l a r y 3.11. Let A be any of the categories B,F or DF and let A ∈ A
be an algebra. ThenA is contractible in PDF if and only if it is contractible in A.



[9] contractibility and countable projective limits 9

In case A is a PDF-algebra with some additional topological properties we
can slightly simplify condition (i) of Theorem 3.7. To this end, let us introduce
three subcategories of DF:

• DFM – duals of Fréchet-Montel spaces,

• DFS – duals of Fréchet-Schwartz spaces,

• DFN – duals of nuclear Fréchet spaces.

and three subcategories of PDF:

• PDFM – countable projective limits of elements from DFM,

• PDFS – countable projective limits of elements from DFS,

• PDFN – countable projective limits of elements from DFN.

Observe that the objects in all the above categories are complete spaces and
DFN ⊂ DFS ⊂ DFM.

C o r o l l a r y 3.12. Let A ∈ {PDFM,PDFS,PDFN} and let A ∈ A be an
algebra. Then A is contractible if and only if every continuous derivation into
any bimodule X ∈ A-mod-A(A) is inner.

P r o o f. The ‘if’ part is clear. To get the ‘only if’ part it is enough to repeat
the proof of (i) ⇒ (ii) of Theorem 3.7. To guarantee this we will show that
kerπ ∈ A whenever A ∈ A. First of all we observe that from the assumption it
follows that A is unital (this is proved exactly as in the Banach algebra case – see
e.g. [3, Theorem 2.8.48]) and hence by Proposition 3.6 kerπ is complemented
in A⊗̂A. If 1 is the unit in A and if we denote A = projn(An, ι

n
m) ∈ PDF then

from the proof of Proposition 2.3 it follows that

kerπ = projn(An⊗̂An)/Ln, where Ln = ιn(imπ ⊗ 1) (n ∈ N).

Moreover, from [12, §45.3 (7)] it follows that

An⊗̂An ∈ DFM (n ∈ N)

and from [11, §29.5 (1)] it follows that

(4) ((An⊗̂An)/Ln)
′ = L⊥

n (n ∈ N)

is a Fréchet-Montel space hence reflexive by [16, Remark 24.24]. We now
distinguish three cases:
• If A ∈ PDFM then L⊥

n is a closed subspace of the Fréchet-Montel space
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(An⊗̂An)
′. Therefore Fréchet-Montel by [16, Proposition 23.23] and [10, 11.5,

Proposition 4].
• If A ∈ PDFS then An⊗̂An ∈ DFS by [10, 16.4, Corollary 3] and L⊥

n is a closed
subspace of the Fréchet-Schwartz space (An⊗̂An)

′. Therefore Fréchet-Schwartz
by [16, Proposition 24.18].
• If A ∈ PDFN then An⊗̂An ∈ DFN by [10, 18.1, Theorem 8 and 21.2, Theorem
1] (recall that nuclear spaces have the approximation property) and L⊥

n is a
closed subspace of the nuclear Fréchet space (An⊗̂An)

′. Therefore a nuclear
Fréchet space by [16, Proposition 28.6].
From (4) it now follows that (An⊗̂An)/Ln ∈ A, whenever A ∈ A. Consequently,
kerπ ∈ A whenever A ∈ A.

Let PBDF denote the category of countable projective limits of complete
barrelled DF-spaces and recall from [10, 11.3, Proposition 1 and 12.4, Theorem
8] that quotients of barrelled DF-spaces are again barrelled DF-spaces. We
therefore may derive another consequence of Theorem 3.7.

C o r o l l a r y 3.13. Let A ∈ PBDF be an algebra. Then A is contractible if
and only if every continuous derivation into any bimodule X ∈ A-mod-A(PBDF)
is inner.

We end this section with an instructive example of a natural PDF-algebra
which is not contractible.

E x amp l e 3.14. Let Ω ⊂ Rd be open and let A (Ω) be the space of real
analytic functions. It becomes a PDF-algebra with multiplication defined as

(5) (f · g)(t) := f(t)g(t) (t ∈ Ω, f, g ∈ A (Ω)).

To see it is jointly continuous, recall that

A (Ω) = projN indn H ∞(UN,n),

where (UN,n)n∈N is a fundamental sequence of neighbourhoods of IN in Cd,
(IN )N∈N is a compact exhaustion of Ω and H ∞(UN,n) is a Banach space of
bounded holomorphic functions on UN,n with the sup-norm – see [6] for details.
H ∞(UN,n) is also a Banach algebra since

‖fg‖∞,N,n := sup
z∈UN,n

|(fg)(z)| � ‖f‖∞,N,n‖g‖∞,N,n (f, g ∈ H ∞(UN,n)).

Consequently, the pointwise multiplication (5) is jointly continuous. Although
the algebra A (Ω) is unital with the constant one function as the unit, it is not
contractible since the derivation

δ : A (Ω) → A (Ω), δ(f) := f ′

is not inner (recall that by commutativity all inner derivations are trivial).
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4 - Köthe-type PLB-spaces

The best source of information on PLB-spaces is a survey article [5] which
contains also a comprehensive list of references on this topic. We therefore
restrict ourselves to recalling only basic definitions and facts. A PLB-space is a
projective limit of a sequence of LB-spaces. This means that every PLB-space
X can be viewed as

X = projN∈N indn∈NXN,n,

where all theXN,n’s are Banach spaces and all the linking maps ιN,n+1
N,n : XN,n →

XN,n+1 are continuous. If, in addition, all these linking maps are compact
(nuclear) then X is called a PLS-space (PLN-space). We also define XN :=
projn∈NXN,n and by ιN : X → XN we denote the canonical projection. Since
LB-spaces are DF-spaces, PLB-spaces are PDF-spaces. A special case of the
above general procedure realizes in the framework of sequence spaces. A se-
quence a := (aj)j∈N of non-negative numbers is called a weight. A matrix
A = (aN,n)N,n∈N of weights is called a Köthe-type PLB-matrix if the following
conditions are satisfied:

• ∀N ∈ N ∃n ∈ N ∀ j ∈ N : aN,n,j > 0,

• ∀N,n, j ∈ N : aN,n,j � aN+1,n,j ,

• ∀N,n, j ∈ N : aN,n+1,j � aN,n,j .

If 1 � p � ∞ or p = 0 and a is a weight then the weighted �p-space is defined as

�p(a) := {x = (xj)j∈N : (xjaj)j∈N ∈ �p}

with the Banach space norm

‖x‖ := ‖(xjaj)‖p (x ∈ �p(a)).

For the case p = 0 we clearly consider the respective weighted c0-spaces. The
sequence space

Λp(A) :=
{
x = (xj)j∈N ∈ CN | ∀N ∈ N ∃n ∈ N : x ∈ �p(aN,n)

}

is called the Köthe-type PLB-space associated with A. We consider it canoni-
cally with a locally convex topology τp such that

(Λp(A), τp) = projN indn �p(aN,n) (1 � p � ∞)

and
(Λ0(A), τ0) = projN indn c0(aN,n).
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It is clear from the definition that all the linking maps ιN,n+1
N,n , N, n ∈ N are

formal inclusions. If 1 � p < ∞ or p = 0 then the standard unit vectors
ej := (δij)i∈N, j ∈ N form a Schauder basis in Λp(A).

Using the notation from [1] we may write Λp(A) = projN kp(AN ), where
kp(AN ) is the so-called Köthe co-echelon space associated with the sequence
AN := (aN,n)n∈N of weights. It is known that Λp(A) is a PLS-space if and only
if

(6) ∀N ∈ N ∃M ∈ N ∀m ∈ N ∃n ∈ N : lim
j→∞

aN,n,j

aM,m,j
= 0

and a PLN-space if

(7) ∀N ∈ N ∃M ∈ N ∀m ∈ N ∃n ∈ N :

∞∑
j=1

aN,n,j

aM,m,j
< ∞.

If a Köthe-type PLB-matrix A is defined as

aN,n,j := erNαj−snβj (N,n, j ∈ N)

where

r, s ∈ R ∪ {∞}, rN ↗ r, sn ↗ s, lim
j

αj = lim
j

βj = ∞

then the Köthe-type PLB-space Λp(A) is called a power series-type PLB-space
and is denoted by Λp

r,s(α, β). It is straightforward to observe that (in the
category of locally convex spaces) one only needs to consider four pairwise
non-isomorphic cases, namely r, s ∈ {0,∞}.

R ema r k 4.1. From [10, 3.4, Proposition 6] and [1, Theorem 2.3 and Corol-
lary 2.8] it follows that if 1 � p � ∞ then Λp(A) is always complete whereas
Λ0(A) may be incomplete.

5 - Köthe-type PLB-algebras

Given a Köthe-type PLB-matrix A one can consider the point-wise multipli-
cation in Λp(A). If it is jointly continuous then Λp(A) becomes a PDF-algebra.
It turns out that this property is equivalent to a specific condition one has to
impose on the matrix A.

P r o p o s i t i o n 5.1. Let A be a Köthe-type PLB-matrix and let 1 � p � ∞
or p = 0. The space Λp(A) is a PDF-algebra if and only if

(8) ∀N ∈ N ∃M ∈ N ∀m ∈ N ∃n ∈ N : aN,n/(aM,m)2 ∈ �∞.
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P r o o f. Necessity. If Λp(A) is a PDF-algebra then the product map π is
continuous therefore for every N ∈ N there is M ∈ N such that for every m ∈ N
there is n ∈ N such that the bilinear mapping

(9) µ : �p(aM,m)× �p(aM,m) → �p(aN,n), µ(x, y) := (xjyj)j∈N

is continuous. Therefore there exists a constant C > 0 such that

‖µ(x, y)‖�p(aN,n) � C‖x‖�p(aM,m)‖y‖�p(aM,m).

Applying the above inequality to the unit basis vectors ej , j ∈ N we get the
condition (8).

Sufficiency. Condition (8) implies that the mapping (9) is well-defined
(with all the indices having the same meaning). Therefore the product map
π : Λp(A)⊗̂Λp(A) → Λp(A) is continuous implying that Λp(A) is a PDF-algebra.

C o r o l l a r y 5.2. A power series-type PLB-space Λp
r,s(α, β) is a PDF-alge-

bra if and only if (simultaneously) r � 0 (in particular r = ∞) and s � 0 or
s = ∞.

Recall that a unit in a Köthe-type PLB-algebra is the constant one sequence
1 = (1, 1, . . .). Unital PLB-algebras have an additional structural feature which
can be observed through the following result.

P r o p o s i t i o n 5.3. Let 1 � p < ∞ and let Λp(A) be a PDF-algebra. The
following assertions are equivalent:

(i) Λp(A) is unital, i.e. 1 ∈ Λ0(A),

(ii) For every N ∈ N there is n ∈ N such that aN,n ∈ �p,

(iii) For every N ∈ N there is n ∈ N such that aN,n ∈ �1,

(iv) For every N ∈ N there is n ∈ N such that aN,n ∈ �∞ and Λp(A) is a
PLN-space.

P r o o f. (i) ⇔ (ii) and (iii) ⇒ (ii): Clear.
(ii) ⇒ (iii): Let 2k > p. Applying condition (8) k times we find for every

N ∈ N a constant C > 0 and M,n ∈ N such that aN,n � C(aM,m)2
k
and

aM,m ∈ �2k . Therefore aN,n ∈ �1.
(iii) ⇒ (iv): For a fixed N ∈ N we find M ∈ N such that (8) holds. For

this M ∈ N we find by assumption m ∈ N such that aM,m ∈ �1. Consequently,

∞∑
j=1

aN,n,j

aM.m,j
� C

∞∑
j=1

aM,m,j < ∞.
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From (7) it now follows that Λp(A) is a PLN-space.
(iv) ⇒ (iii): By assumption

∞∑
j=1

aN,n,j

aM.m,j
< ∞ and aM,m ∈ �∞,

where all the indices have the meaning from (7). Therefore

∞∑
j=1

aN,n,j =
∞∑
j=1

aM,m,j
aN,n,j

aM.m,j
� C

∞∑
j=1

aN,n,j

aM.m,j
< ∞.

Consequently, aN,n ∈ �1.

A similar proof applies to the following result therefore we omit it.

P r o p o s i t i o n 5.4. Let Λ0(A) be a PDF-algebra. The following assertions
are equivalent:

(i) Λ0(A) is unital, i.e. 1 ∈ Λ0(A),

(ii) For every N ∈ N there is n ∈ N such that aN,n ∈ c0,

(iii) For every N ∈ N there is n ∈ N such that aN,n ∈ �∞, and Λ0(A) is a
PLS-space.

In particular, unital Köthe-type PLB-algebras Λ0(A) are complete.

We now proceed to the main characterization results.

T h e o r em 5.5. Let 1 � p < ∞ and let Λp(A) be a PDF-algebra. Then it
is contractible if and only if it is unital.

P r o o f. From Remark 4.1 it follows that Λp(A) is complete therefore only
sufficiency needs to be proved. The result will be a consequence of Theorem
3.7 once we find a projective diagonal. Since Λp(A) is unital, it follows from
Proposition 5.3 that for every N ∈ N there is n ∈ N such that aN,n ∈ �p. We
will now show that d :=

∑∞
j=1 ej ⊗ ej ∈ Λp(A)⊗̂Λp(A) and it is a projective

diagonal. To this end, let (rj(t))j∈N be the sequence of Rademacher functions
on the interval [0, 1]. Then for k � m we have

m∑
j=k

ej ⊗ ej =

∫ 1

0

( m∑
j=k

rj(t)ej

)
⊗

( m∑
j=k

rj(t)ej

)
dt.

Therefore
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∥∥∥
( m∑

j=k

ej ⊗ ej

)∥∥∥
�p(aN,n)⊗̂�p(aN,n)

� sup
0�t�1

∥∥∥
m∑
j=k

rj(t)ej

∥∥∥
2

�p(aN,n)
(10)

�
( m∑

j=k

(aN,n,j)
p
) 2

p
.

In particular the sequence

( m∑
j=1

ej ⊗ ej

)
m∈N

is Cauchy in �p(aN,n)⊗̂�p(aN,n) and hence convergent to d. We have thus shown
that for all 1 � p < ∞ and all N ∈ N we have d ∈ indn(�p(aN,n)⊗̂�p(aN,n)).
From [15, Theorem 7] it now follows that

kp(AN )⊗̂kp(AN ) = indn(�p(aN,n)⊗̂�p(aN,n)).

This implies that d ∈ kp(AN )⊗̂kp(AN ) for all N ∈ N whence d ∈ Λp(A)⊗̂Λp(A).
It only remains to show that d is a projective diagonal but this is straightfor-
ward.

T h e o r em 5.6. A PDF-algebra Λ0(A) is contractible if and only if its com-

pletion Λ̃0(A) is a unital PDF-algebra.

P r o o f. Necessity. Follows from Theorem 3.7.

Sufficiency. In view of Theorem 3.7 it is enough to show that Λ̃0(A) is
biprojective. To this end, recall that (ej)j∈N is a Schauder basis in Λ0(A).
Therefore, one may define a mapping

σ : Λ0(A) → Λ0(A)⊗̂Λ0(A), σ(x) :=
∞∑
j=1

xjej ⊗ ej ,

where x =
∑∞

j∈N xjej . Using (10) for every N ∈ N we obtain n ∈ N such that

‖σ(x)‖c0(aN,n)⊗̂c0(aN,n)
� ‖1‖�∞(aN,n)‖x‖c0(aN,n).

Recall that 1 ∈ Λ̃0(A) therefore ‖1‖�∞(aN,n) is finite. All this implies that the
mapping σ is continuous and one can extend it to a continouous linear mapping

σ̃ : Λ̃0(A) → Λ̃0(A)⊗̂Λ̃0(A).

It is now straightforward to check that σ̃ is a bimodule map. Consequently,

Λ̃0(A) is contractible and the proof is thereby complete.
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The case of p = ∞ is missing from the above characterization. Therefore,
we end the paper with the following conjecture.

C o n j e c t u r e 5.7. The PDF-algebra Λ∞(A) is contractible if and only if

Λ∞(A) = Λ̃0(A) if and only if 1 ∈ Λ̃0(A).

A c k n ow l e d gm e n t s. The author is grateful to the anonymous Referee,
whose comments greatly improved the presentation of this paper. Especially
for turning the author’s attention to the article [4].
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[12] G. Köthe, Topological vector spaces, II, Grundlehren der Mathematischen
Wissenschaften, 237, Springer-Verlag, New York-Berlin, 1979.

[13] Z. A. Lykova, Cyclic cohomology of certain nuclear Fréchet and DF algebras,
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