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The space of tamed almost complex structures

on symplectic 4-manifolds via symplectic spheres

Abstract. In this note, we study a fine decomposition of the space of
tamed almost complex structures for symplectic 4 manifolds via symplec-
tic spheres. We also show that every tamed almost complex structure
on a rational surface other than CP 2 is fibred.
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1 - Introduction

Now let (M,ω) be a symplectic 4-manifold, and let Sω ⊂ H2(M,Z) denote
the set of homology classes of embedded ω-symplectic spheres. Let S<n

ω ⊂ Sω

respectively) be the collection of classes whose square is less than n ∈ Z. Define
the subsets S≤n

ω , Sn
ω = S=n

ω , S>n
ω , S≥n

ω similarly.
Let (M,ω) be a closed symplectic manifold, we denote by Jw the space of

almost complex structures tamed by ω. Jw is an infinite dimensional Fréchet
space, and it is contractible. One can decompose Jw into pieces that look like
submanifolds. Gromov [14] first observed that this space, on some 4-manifolds
such as S2 × S2, has a decomposition via smooth symplectic spheres. He also
related this decomposition to the topology of the symplectomorphism group
Symp(M,ω). This approach is further probed in detail by Abreu and McDuff
on Hirzebruch surfaces, cf. [1] and [3], and later on to rational or ruled 4-
manifolds [3,4,5,7,8,9,10,17,19,20,21] etc. The stability in [6] highlights
the role of Sω. This is one of the motivations for this note.

The space Jw also appears in many other pieces of literature, for example,
in [12] and [2], the strata in Jw correspond to extremal Kähler metrics. It also
provides rich information in different contexts on toric manifolds, cf. [15,16,30],
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etc, where the strata of Jw guide the conjugacy classes of Hamiltonian torus
actions and Hamiltonian circle actions.

D e f i n i t i o n 1.1. For A ∈ Sω, let

UA := {J ∈ Jω|A has a connected embedded J-holomorphic representative

of genus 0}, and U eff
A := {J ∈ Jω|A has a J-holomorphic representative}.

(1) CodR(A) = min{0,−2A ·A− 2}.

We will often use the complex codimension of a curve or a set, denoted by
CodC(A) or simply Cod(A). We have the adjunction equalityKω·A+A·A = −2,
where Kω is the symplectic canonical class. This gives us equivalent expressions
of the codimension if A2 ≤ −2:

(2) CodC(A) = K ·A+ 1.

U eff
A is the Brill Noether locus of A when J is projective. If J ∈ U eff

A then
A =

∑
ri[Ci] where ri is a positive integer and Ci an irreducible J−holomorphic

curve.
Note that A is in the J−curve cone if we allow ri ∈ Q.

D e f i n i t i o n 1.2. For a subset C of S≤−2
ω such that any pair of classes

intersect positively.

UC := {J ∈ Jω|A has an embedded J-holomorphic representative if A ∈ C},

U eff
C := {J ∈ Jω|A ∈ H2 has a J-holomorphic representative if A ∈ C}.

CodR(C) =
∑
Ai∈C

CodR(Ai) =
∑
Ai∈C

2(−Ai ·Ai − 1).

If we set Xi := ⨿Cod(C)≥iUC we have a filtration in Jω according to the
(complex) codimension of prime submanifolds in Definition 1.1:

(3) ∅ = Xn+1 ⊂ Xn ⊂ Xn−1 . . . ⊂ X1 ⊂ X0 = Jω.

Set Xeff
i = ∪Cod(C)≥iU

eff
C . Although Xeff

i is not necessarily the closure of Xi,

the condition thatXi = Xeff
i for all i is analogous to the∞ dimensional version

of the stratification as in Definition 1.1.1 of [31], which means that the taking
closure process respects codimension.

For A ∈ S<−1
ω , we also mark the following subsets of Jω

JA := {J ∈ Jω|A ∈ S−1
ω has a J-hol embedded representative if and only if A ∈ C},
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JC := {J ∈ Jω|A ∈ H2 has a J-hol embedded representative if and only if A ∈ C}.

For M is a rational 4-manifold with χ(M) ≤ 8, any A ∈ S−2
ω and C = {Ci}

such that C is the collection of homology classes of the Gromov limit of A, we
have Cod(JC) > Cod(JA). This fact is very useful in determining the rank of
π1(Symp(M,ω)).

In this note, we compare U eff
A with UA. In particular, we ask the following

question.

Qu e s t i o n 1.3. Let (M,ω) be a symplectic 4-manifold and A ∈ Sω. When

do we have that U eff
A − UA is covered by UC with Cod(C) > Cod(A)?

This question is actually subtle to answer due to the possible presence of
multiple covers of curves with negative self-intersection. For M = CP 2#10CP 2

and any symplectic form ω on M with ω ·Kω < 0, consider the class A = −2Kω.
Note that UA is non-empty by [13] and UA has codimension 3 since A ·A = −4.

On the other hand, for any such ω, U eff
A − UA contains a nonempty set Z of

tamed almost complex structures for which −Kω is represented by a smooth
J−holomorphic torus by [13]. Note that Z has codimension 1 and Z ∩ UC = ∅
for any C since (−Kω) · (−Kω) = −1.

A simple observation is that we can use the diffeomorphism group action to
probe this question. Namely, if ϕ is a diffeomorphism of M , then the question
for (M,ω,A) has the same answer for (M,ϕ∗ω, ϕ∗A). By [34], [22], [16, and
its Math Review], any symplectic form on a rational surface is diffeomorphic
to a reduced symplectic form.

D e f i n i t i o n 1.4. Suppose M = CP 2#kCP 2 and H,Ei is a standard basis.
A class νH −

∑
ciEi is called reduced (with respect to the basis) if

c1 ≥ c2 ≥ · · · ≥ ck > 0 and ν ≥ c1 + c2 + c3.

Since diffeomorphic symplectic forms have homeomorphic symplectomor-
phism groups, one can also focus on reduced symplectic forms for applications
of UA to the topology of Symp(M,ω).

In this note, we present 3 positive results in different flavors. They are
stated for a general symplectic form, and by the above discussion, we are going
to present their proof for reduced symplectic forms in Section 3. To state the
first result we introduce

D e f i n i t i o n 1.5. A is said to be J−nef if it pairs non-negatively with any
irreducible J−holomorphic curve.

A is said to be ω−nef if it pairs non-negatively with any irreducible J−holo-
morphic curve for any J ∈ Jω.
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If J ∈ U eff
A and A is J−nef, then by [26, Theorem 1.5], there is a smooth

J−holomorphic representative. Moreover, by Zhang [33, Theorem 4.4], the
moduli space of J−holomorphic curves in the class A is homeomorphic to a
projective space if A is primitive.

L emma 1.6. For A ∈ Sω, UA = U eff
A if only if A is ω−nef.

P r o o f. Clearly, UA = U eff
A only if A is ω−nef. Since A ∈ Sω, the converse

is also true by [33, Theorem 2.3], which states that a J-nef spherical class has a
non-empty irreducible moduli space and hence has a smooth representative.

It is observed in [33, Prop. 3.2] that, for an irrational ruled surface, the
unique class in S0

ω is ω−nef. On the other hand, it is also shown there that
every class represented by a smooth embedded sphere is not ω−nef for some
symplectic form ω. We will show that such a class is ω−nef for a large family
of symplectic forms as long as the self-intersection is non-negative.

T h e o r em 1.7. Let M = CP 2#kCP 2 with k ≥ 1 and H,Ei is a standard
basis. Let ω be a reduced symplectic form. Then following classes in Sω are
ω−nef:

� H − E1;

� Al = lH − (l − 1)E1, l ≥ 1 when ω(A−l) < 0;

� Bl = lH − (l − 1)E1 − E2, l ≥ 2 when ω(B−l+1) < 0;

� 2H when ω(A−1) < 0.

Consequently, for any symplectic form τ (not necessarily reduced) and A ∈ Sτ ,
if ϕ is a diffeomorphism such that ϕ∗(ω) is reduced (such ϕ always exists) and
ϕ∗(A) is on the list above with respect to ϕ∗(τ), then

UA = U eff
A = Jω.

In particular, any tamed J on a rational surface with χ ≥ 4, i.e. other than
CP 2, is fibred.

This theorem essentially follows from Proposition 3.4. Theorem 1.7 also
motivates a characterization of minimal ω−area classes in S0

ω in Proposition 3.5.

T h e o r em 1.8. Let (M,ω) be a symplectic rational surface and A ∈ Sω.
Suppose F ∈ S0

ω has minimal area in S0
ω and A · F = 0 or 1. If A ∈ S<0, then

U eff
A is the union of UA and a collection of UC with Cod(C) > Cod(A).
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Theorem 1.8 follows from Proposition 3.5 and Proposition 3.7.

By the example of −2Kω on (M,ω) = (CP 2#10CP 2, ω), Question 1.3 can
have a positive answers for all classes only if χ(M) ≤ 12. The next result settles
Question 1.3 up to χ = 11.

Th e o r em 1.9. Let (M,ω) be a symplectic rational surface with χ(M) ≤ 11

and A ∈ S<0
ω . Then U eff

A − UA is covered by UC with Cod(C) > Cod(A).

Theorem 1.9 follows from Proposition 3.11.

2 - General properties of UA, Ueff
A

2.1 - Pseudo-holomorphic curves

We review some general facts on J-holomorphic rational curves and sym-
plectic spheres in symplectic 4-manifolds. The presentation is similar to [1]
and [7].

Let (X,ω) be a symplectic 4-manifold and J ∈ Jω. A parametrized J-
holomorphic curve in X is a J-holomorphic map u : (Σ, j) → (X, J), where
(Σ, j) is a smooth, connected Riemann surface. We will always assume that u
is simple, i.e. it is non-constant and not a multiple covering. In this case, we
say that C = u(Σ) is an (unparameterized) J-holomorphic curve and denote
by [C] the homology class. Notice that the pairing ω([C]) is positive.

T h e o r em 2.1 (Positivity of Intersection, [14,28,29]). For an almost com-
plex 4-manifold (X, J), two distinct irreducible J−holomorphic curves C,C ′

have only finitely many intersection points. Each such point p contributes
kp ≥ 1 to the homological intersection number [C] · [C ′], and kp = 1 if and
only if C and C ′ meet transversally at p.

Th e o r em 2.2 (Adjunction Inequality, [27]). Let (X, J) be an almost com-
plex 4-manifold with first Chern class c1(X, J) and u : (Σ, j) → X an irreducible
J−holomorphic curve. Then the virtual genus of the image C = u(Σ), defined
as gv(C) = ([C] · [C] − c1(X, J)([C]))/2 + 1, is a integer no less than g(Σ).
Moreover, gv(C) = g(Σ) if and only if u is an embedding.

Th e o r em 2.3 ([28, Theor. 4.1.1 for immersion] [23, Prop. 2.1 for embedding]).
For a symplectic form ω and an ω−tamed almost complex structure J , an
irreducible J−holomorphic curve can be smoothed out to a connected, embedded
symplectic surface.

We are primarily interested in rational curves.
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2.2 - Symplectic spheres

2.2.1 - Properties of UA

We next list various facts about representing a class in Sω by irreducible or
stable J-holomorphic rational curves.

For classes with self-intersection at least −1 we have the following well-
known fact from the Gromov-Witten theory.

P r o p o s i t i o n 2.4. Let (X,ω) be a symplectic 4-manifold and A a class
in Sω.

� By the adjunction inequality, any irreducible J-holomorphic curve in the
class A is embedded.

� For A ∈ S≥−1
ω , A has non-trivial Gromov-Witten invariant, by

[24, Prop. 3.2], UA is path connected, open, dense in Jω, and U eff
A = Jω.

For classes with self-intersections at most −2 we have the following fact
in [7, Appendix B.1]:

P r o p o s i t i o n 2.5. Let (X,ω) be a symplectic 4-manifold. Suppose UC ⊂
Jω is a subset characterized by the existence of a configuration of embedded
J-holomorphic rational curves C1 ∪ C2 ∪ · · · ∪ CN of negative self-intersection
with {[C1], [C2], · · · , [CN ]} = C. Then UC is a co-oriented Fréchet submanifold
of Jω of (real) codimension 2N − 2c1([C1] + · · ·+ [CN ]).

2.2.2 - A few Conditions

To ensure nice properties of the decomposition into prime subsets we intro-
duce the following conditions for symplectic surfaces in (X,ω).

D e f i n i t i o n 2.6. Let (X,ω) be a symplectic 4−manifold.

Condition 1 : Any embedded symplectic surface S with S · S < 0 is a sym-
plectic sphere.

Condition 2 : Any embedded symplectic surface S with S · S ≤ 0 is a sym-
plectic sphere.

Condition 3 : Any symplectic surface S with S · S ≥ 0 has Kω · S < 0.

Condition 4 : Any symplectic surface S with S · S ≥ 0 has Kω · S ≤ 0.

Now we show that on small rational 4 manifolds and K3 surfaces, such
Conditions hold:
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L emma 2.7. Condition 1 in Definition 2.6 holds for a symplectic rational
surface (X,ω) with χ(X) ≤ 12 or a K3 surface.

Condition 2 and Condition 3 holds hold for a symplectic rational surface
(X,ω) with χ(X) ≤ 11.

Condition 4 holds for a symplectic rational surface (X,ω) with χ(X) ≤ 12.

P r o o f. For rational surfaces, Conditions 1 and 2 follow from [32, Prop. 4.2].
Then conditions 3 and 4 follow directly from adjunction equality since the sur-
faces are embedded.

For Condition 1 on K3, we just need the adjunction inequality 2g − 2 ≤
Kω ·A+A ·A. Note g ≥ 0, Kω ·A = 0, and A ·A < 0. Hence the only possibility
is g = 0 and A ·A = −2. This means any negative square irreducible curves are
embedded (-2) spheres. Hence Condition 1 holds.

The Conditions in 2.6 are useful in investigating the relation between UA

and U eff
A toward Question 1.3, particularly when Cod(C) is small.

We now construct a cover of U eff
A \UA by UC with codimension as large as

possible. First note if J ∈ U eff
A \UA, we have a non-trivial decomposition of A:

(4) A =
∑
α

rαCα +
∑

rβCβ +
∑

rγCγ ,

where Cα, Cβ , Cγ are irreducible J-holomrophic curves with C2
α ≤ −2, C2

β = −1,
and Cγ · Cγ ≥ 0. Note that we will not distinguish the curve representative
with their homology class if it is clear form context.

We take C to be the collection of embedded components among Cα. Ap-
parently, J ∈ UC . Note that our choice of C is maximal in the sense that any
subset C′ ⊂ C has the property J ∈ UC′ . We call such C admissible.

L emma 2.8. Suppose Conditions 1 and 3 are satisfied. If A2 = −2 and C
an admissible set constructed as above, then Cod(C) > Cod(A) = 1.

Suppose Conditions 1 and 4 are satisfied. If A2 = −3 and C an admissible
set constructed as above, then Cod(C) ≥ Cod(A). The equality holds only if C
is a single element subset of S−3

ω , with multiplicity at least 2 in equation (4).

P r o o f. By Theorem 2.3, the curves Cα and Cβ are represented by em-
bedded sympletic surfaces. Hence Condition 1 tells us that Cα and Cβ are
embedded sphere classes, i.e. Cα ∈ S<−1

ω and Cβ ∈ S−1
ω . Note C being admis-

sible means that all Cα ∈ C.
Pairing with K on both sides of equation (4),

Kω ·A =
∑
α

rαKω · Cα +
∑

rβKω · Cβ +
∑

rγKω · Cγ ≤
∑
α

rαKω · Cα.
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Since Cα ∈ S≤−2
ω and Cβ ∈ S−1

ω , Kω · Cβ = −1, Kω · Cα = −C2
α − 2. By

Condition 3, Kω · Cγ < 0.

When A2 = −2, Kω ·A = 0. If there is at least one Cα with C2
α ≤ −3 then

we are done. Otherwise, each C2
α = −2 and there are no Cβ or Cγ . If there is

only one Cα, then rα = 1. So there are at least two such Cα.

When A2 = −3, Kω · A = 1. Then there is at least one Cα with C2
α ≤ −3

And equality holds only if there is only one Cα term, and C2
α = −3, rα ≥ 2.

Consequently, we have the following (lower-level) stratification result for
small rational surfaces, generalizing [19, Theorem 3.8]:

P r o p o s i t i o n 2.9. If (M,ω) satisfies Conditions 1 and 3, then Xeff
1 = X1

and Xeff
2 = X2.

P r o o f. Then case Xeff
1 = X1 is covered by Lemma 2.8 the first statement.

Both X1 and Xeff
1 are the collections of J ∈ Jω such that there is at least one

embedded -2 curve. Hence they are the same.

For the second statement, notice that the case UC where C = {C} with
C ∈ S≤−3

ω is covered by the second statement of 2.8.

We just need to deal with the case that C contains at least two classes in
S−2
ω . In any U eff

C \ UC , there is a curve in class A ∈ S−2
ω that has a homology

decomposition A = c′A′ +
∑

ciAi with {Ai} ⊂ S−1
ω

∐
S0
ω, c

′ ≥ 0, ci ≥ 1. Here
A′ is another class in C ∩S−2

ω . We claim that the set {Ai} is not empty. This is
true because A ̸= A′ and c′A′ is not in S−2

ω for any c′ ̸= 1. Now pair the cusp
curve decompositions with Kω. We again get a contradiction since Kω ·A = 0
while Kω ·A′ = 0 and Kω ·Ai < 0.

Hence Both X2 and Xeff
2 are the collections of J ∈ Jω such that the

codimension is at least 4.

3 - Rational surfaces

Notice that a rational 4-manifold is diffeomorphic to either S2 × S2, CP 2

or a blowup of it. For the case of S2 ×S2, the stratification is relatively simple
and is fully understood in [1].

For M = CP 2#kCP 2, k ∈ Z≥0, let {H,E1, · · · , Ek} be a standard basis
of H2(CP 2#nCP 2;Z) where H is the line class and Ei’s are the exceptional
classes.
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3.1 - Reduced symplectic forms

Recall that a class νH −
∑

ciEi is called reduced (with respect to the
basis) if

c1 ≥ c2 ≥ · · · ≥ ck > 0 and ν ≥ c1 + c2 + c3.

Reduced cohomology classes are defined as the Poincaré dual of reduced ho-
mology classes. A symplectic form ω on X is called reduced if [ω] is reduced.
A reduced symplectic class is the class of a reduced symplectic form.

3.1.1 - Irreducible pseudo-holomorphic curves for a reduced form

We have the following results from Chen [11] on connected embedded sym-
plectic surfaces for a reduced symplectic form. Note that any irreducible
J−holomorphic curve can be smoothed out to such a symplectic surface. So
these results also apply to irreducible J−holomorphic curves.

L emma 3.1 (Lemma 3.2 of Chen [11], see also Lemma 4.1 in [32]). Let
X = CP 2#kCP 2 with a reduced symplectic form. If C is a connected, embedded
symplectic surface with C · H < 0, then C = −nH + (n + 1)E1 −

∑
kj>1Ekj .

In particular, C2 ≤ −3 and C is a symplectic sphere.

On the other hand, we can also characterize the curve classes with a non-
negative coefficient on H.

L emma 3.2. For a reduced form ω, let A = aH −
∑

biEi be represented
by a connected, embedded symplectic surface with a ≥ 0.

1. If a > 0, then a ≥ A · (−Ei) = bi ≥ 0 for each i.

2. If a = A · (−Ei) = bi for some i, then a = 1 or 0.

3. If a = 1 then bi = 0 or 1.

4. If a = 0, then A = Ei −
∑

qj>iEqj for some i.

P r o o f. All the statements, except qj > i in (4), follow from the adjunction
inequality with Kω = −3H +

∑
Ei of the reduced form ω.

The condition qj > i in (4) comes from ω(A) > 0 and ci ≥ ci+1.

Using the smoothing result in Theorem 2.3, we are able to translate the
above classification of symplectic surfaces to irreducible pseodoholomorphic
curves.
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P r o p o s i t i o n 3.3. Suppose J is tamed. Then any irreducible J−holo-
morphic curve satisfies the conditions in Lemmas 3.1 and 3.2.

P r o o f. Any irreducible J−holomorphic curve can be smoothed out to be
an embedded, connected ω−symplectic surface.

3.1.2 - Theorem 1.7 for ω−nef classes in Sω

Now let us focus on the ω-nef classes and give a sufficient condition. Those
classes will be useful in the discussion of Fiber/section type classes in 3.1.3.

P r o p o s i t i o n 3.4. Let ω be a reduced form on a rational surface M =
CP 2#kCP 2 with k ≥ 1. The following classes in Sω are ω−nef:

� H − E1;

� Al = lH − (l − 1)E1, l ≥ 1 when ω(A−l) < 0;

� Bl = lH − (l − 1)E1 − E2, l ≥ 2 when ω(B−l+1) < 0;

� 2H when ω(A−1) < 0.

Consequently, in these cases, UA = U eff
A = Jω.

P r o o f. By Proposition 3.3, all irreducible curves for an ω-tame J are
classified by Lemma 3.1 and Lemma 3.2. It is straightforward to check that all
the possible classes pair non-negatively with H − E1.

Now we establish the ω−nef property of Al when ω(A−l) < 0. Al pairs
positively on positive H coefficient curve since b1 ≤ a−1 for such a curve class.
Al is positive on zero H coefficient curve since b1 ≥ 0.

Al ·A−p = l(−p) + (l − 1)(p+ 1) = l − p− 1 ≥ 0

for p ≤ l − 1. If ω(A−l) < 0, then any negative H coefficient curve is of the
form A−p −

∑
Eu with 1 ≤ p ≤ l − 1.

The case of Bl is similar. Bl pairs positively on positive H coefficient curve
since b1 ≤ a−1 for such a curve class. Bl is positive on zero H coefficient curve
since b1 ≥ 0. And Bl · B−p = l(−p) + (l − 1)(p + 1) − 1 = l − p − 2 ≥ 0 for
p ≤ l − 2.

As for the case of 2H it is the same as A1 = H.
The last statement follows from Lemma 1.6.

Except for the last statement, Theorem 1.7 is now a consequence of Propo-
sition 3.4 and the facts that (i) any symplectic form on a rational surface is dif-

feomorphic to a reduced symplectic form and (ii) the equality UA = U eff
A = Jω

is preserved under a diffeomorphism ϕ.
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To establish the last statement of Theorem 1.7 that any tamed J on a
rational surface with χ ≥ 4, i.e. other than CP 2, is fibred, by [25], it suffices
to show that there is always a J−nef fiber class for any tamed J . For S2 × S2,
the factor with a smaller area provides such a fiber class. For CP 2#kCP 2 with
k ≥ 1, the desired fiber class if H − E1 if J is tamed by a reduced symplectic
form, or ϕ∗(H − E1) if J is tamed by a symplectic form ω such that ϕ∗ω is
reduced.

We next turn to Theorem 1.8.

3.1.3 - Theorem 1.8 for fiber/section type classes

Let us start with the classH−E1. The next proposition is one of the reasons
that it is special from our perspective. We will further define fiber/section type
classes according to the pairing with H − E1.

P r o p o s i t i o n 3.5. Let ω be a reduced form on a rational surface X =
CP 2#kCP 2 with k ≥ 1. H − E1 has minimal ω−area in S0

ω. Furthermore, if
A ∈ S0

ω and ω(A) = ω(H − E1), then there is symplectomorphism taking A to
H − E1.

P r o o f. Suppose A = aH−
∑k

i=1 biEi is in S0
ω. By the adjunction formula,

Kω ·A = −2 and hence

3a = 2 +

n∑
i=1

bi.

By Theorem 3.2, b1 + 1 ≤ a and b2 + 1 ≤ a. In particular, b1 + b2 ≤ 2a− 2.

The key observation is that we can express A as

(5) A = U1 + · · ·+ Ua−1 + V,

where each Ua is of the form H − Ep − Eq − Er with no repeated E1 or E2,
and V is of the form H − Ei. Notice that ω(V ) ≥ ω(H − E1) by the reduced
condition.

Now we prove that we are able to find a symplectomorphism sending A to
H − E1 if A has minimal area. Notice that for a = 1, A can only be H − Ei;
for a = 2, A can only be 2H −

∑
j=1,2,3,4Eij .

Let’s assume a ≥ 2 now, and show that when A = aH −
∑

biEi, at least
three bi’s are positive. By adjunction, 3a = 2+

∑
bi. Assume by contradiction

that only two bi’s are positive, say 3a = 2 + x + y. Because A has non-trivial
Gromov-Witten, it pairs non-negative with exceptional classes. Hence we have
x+ y ≤ a, and hence x+ y + 2 ≤ a+ 2 < 3a, contradiction.
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Now if A is reduced, by [18] or [34, Theorem 1.1], there is a unique reduced
representative in S0

ω and A = H − E1.

Now we assume A is not reduced. Note that we can assume a ≥ 2, because
any H − Ei is symplectomorphic to H − E1 if they have the same area.

Now we take the largest three bi’s, denote them by bi1 , bi2 , bi3 . By the non-
reduced assumpsion, bi1 + bi2 + bi3 > a. Now in the decomposition (5), we can
write Ua−1 as H−Ei1 −Ei2 −Ei3 and V = H−Ej . And we can still distribute
other Ek’s into Ui’s with i < a − 1 and obtain a decomposition of type (5).
Hence H − Ei1 − Ei2 − Ei3 is Lagrangian.

Now by [24, Theorem 4.14], we are able to reflect along Ua−1 to obtain
Wa−1. Note that Wa−1 is still in S0

ω, and it has the same area as A.

By induction, we are able to repeat the above process if A is not reduced,
and obtain W1 which has a = 1, i.e. H − E1. Notice W1 has the same area as
A. Then we are able to find a symplectomorphism reflecting along Lagrangian
E1 − Ej , sending W1 to H − E1.

When the pairing of a class A with H −E1 is 0 or 1, we have an affirmative
answer to Question 1.3. Let us make the following definition:

D e f i n i t i o n 3.6. We call A an (H−E1)-fiber type class if A·(H−E1) = 0,
and A an (H − E1)-section type class if A · (H − E1) = 1.

Note that the next proposition is a special version of Theorem 1.8, after
pulling an arbitrary symplectic form to a reduced form.

P r o p o s i t i o n 3.7. Let (M,ω) be a symplectic rational surface and A ∈ Sω.
Suppose ω is a reduced symplectic form and A · (H − E1) = 0, 1. If A ∈ S<0,

then U eff
A is the union of UA and a collection of UC with Cod(C) > Cod(A).

For the proof, we further separate it into fiber type classes (Proposition 3.9)
and section type classes (Proposition 3.10). By Theorem 3.4 we have

L emma 3.8. Let A = aH−
∑

biEi be an (H−E1)−fiber class represented
by a connected, embedded symplectic surface. Then A ∈ Sω and A is of the form:

� (H − E1)−
∑

Eij , ij > 1

� El −
∑

Eik , ik > l, l ≥ 2.

If A =
∑

i≥1 riCi, then each Ci is also an (H−E1)−fiber type class. Moreover,
there is a principle class that has the same leading term as A. If we call this
class C1 then r1 = 1.

Consequently, U eff
A is a union of UA and admissible UC.
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P r o o f. For the classification statement, note that a = b1 since A · (H −
E1) = 0. Thus a ≥ 0 by Lemma 3.1. Further, a = 0 or 1 by Lemma 3.2 (2).

The second statement follows from the fact that H − E1 is J-nef and 0 =
(H −E1) ·A = (H −E1) · (r1C1 +

∑
i≥2 riCi) ≥ 0. Hence all Ci’s are (H −E1)-

fibered. For the principal component, we discuss two cases:

� If A = (H − E1) −
∑

Eij , ij > 1: First note that there are no Ci with
negative H coefficient, because all curves in Lemma 3.1 are of H − E1-
section type. It immediately follows that Ci ·H = 0, 1, and there is exactly
one such Ci pairing H being 1. We will call this one C1.

� If A = El −
∑

Eik , ik > l, l ≥ 2: By clasification in Lemma 3.2, all Ci

has to be Ei−
∑

Eil , il > i, i ≥ l. Notice that there has to be exactly one
class with El−

∑
Eil , because there is a leading El in A. The multiplicity

of such class has to be 1 since there is no class with −El.

For the last statement, it suffices to prove for any admissible C we take to
cover U eff

A , UC ⊂ U eff
A . Take a J ∈ U eff

A with a decomposition A =
∑

riCi =∑
rαCα +

∑
rγCγ with C2

α < −1 and C2
γ ≥ −1.

If A is H − E1, we are done because UA = U eff
A = Jω by Proposition 3.4.

Assume A is not H − E1, then we have A2 ≤ −1. Note that there must be at
least one Cα class. The reason is the following: assuming Ci’s all have square
at least −1, then Ci · K < 0 for each Ci and this is a contradiction because
−1 ≤ A ·K = K · (

∑
riCi) ≤ −2 because there are at least two terms on the

right hand side. By the above disscusion, Cα ∈ S<−1
ω and Cγ ∈ S≥−1

ω . Hence
Cγ all have non-trivial Gromov-Witten invariant by Lemma 2.4, and one can
find J-representatives in each class Cγ for any J . Now we take C := {Cα} as

the admissible, and we have UC ⊂ U eff
A .

Running the above argument for every J ∈ U eff
A , we conclude that U eff

A is
a union of UA and admissible UC .

Now we present the (complex) codimension estimate for (H−E1)-fiber type
classes:

P r o p o s i t i o n 3.9. Let M = CP 2#kCP 2 with a reduced symplectic form.
Let A be an (H − E1)−fiber type class and A ̸= H − E1. If UC ⊂ U eff

A and
C ̸= {A} then Cod(C) > Cod(A).

P r o o f. Take a set C = {Cα} such that UC ⊂ U eff
A , then we have A =∑

rαCα+
∑

rγCγ . Then we know each Ci is also an (H−E1)−fiber type class.
By the preceding lemma, A = H −E1 −

∑
u∈U Eu or A = Ep −

∑
u∈U Eu with
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p ≥ 2. Moreover, the preceding lemma also tells us that there is a principal
class C1 with r1 = 1 (see the two bullets in the proof).

Assume first A = Ep−
∑

u∈U Eu for some p ≥ 2 and a collection of integers
u > p. Then the principal class

C1 = Ep −
∑
v∈V

Ev

for a collection of integers v > p.
Then

(6)
∑
i≥2

riCi = Em1 + · · ·+ EmM − En1 − · · · − EnN ,

where {Emi} = {Ev} − {Ev} ∩ {Eu}, {Eni} = {Eu} − {Eu} ∩ {Ev}, and 0 ≤
M < N . Note that N −M = |V | − |U |.

Since Cod(A) = −A2 − 1 = 2 + |U | and Cod(C1) = 2 + |V |, we have

Cod(C1)− Cod(A) = |V | − |U |.

So the assumption Cod(C1) ≤ Cod(A) means that

N −M = |V | − |U | ≥ 0.

Each Emi term could appear alone so could contribute 0 to
∑

i≥2Cod(Ci).
On the other hand, each −Enj appears in a class of the form Eq−Enj −

∑
sEs,

so it at least contributes to
∑

i≥2Cod(Ci) by 1. Since Ci ∈ Sω for all i we have
Cod(C) =

∑
Cod(Ci). Now Cod(C)− Cod(A) is given by

Cod(C1)− Cod(A) +
∑
i≥2

Cod(Ci) ≥ −(N −M) +N = M

Note that equality occurs only if 0 = M . This implies that
∑

i≥2 riCi =
−En1 − · · ·−EnN and hence the zero class due to positivity of area. Of course,
this just means that A = C1.

The case A = H − E1 −
∑

Eu is similar. If we write C1 = H − E1 −
∑

Ev

we still get the expression of
∑

i≥2 riCi as in (6).

For section type classes, we have a similar but slightly more complicated
proof:

P r o p o s i t i o n 3.10. Let M = CP 2#kCP 2 with a reduced symplectic form.
Assume A ∈ Sω is an (H−E1)−section class, i.e. A = −lH+(l+1)E1−

∑
Eu

for some integer l. If A =
∑

i≥1 riCi, then there is exactly one (H−E1)−section
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type class C1 with r1 = 1, and all other Ci’s are (H − E1)−fiber type class.
Furthermore, we also have Ci ∈ Sω.

Consequently, if A2 ≤ −1, U eff
A is a union of UA and admissible UC with

Cod(C) > Cod(A).

P r o o f. The proof of the first statement is similar to the fiber type class
situation. Write

C1 = (−l − d)H + (l + 1 + d)E1 −
∑

kvEv

with d ≥ 0 and kv ̸= 0. By Theorem 2.2, kv = 1 and C1 ∈ Sω. Again C1

cannot be multiply covered by Lemma 3.2 statement 1). Other Ci’s belongs to
Sω follows fom Lemma 3.8. This completes the first statement.

For the statement U eff
A is a union of UA and admissible UC , it is the same

as the proof of the last statement in Lemma 3.8: We are able to find a de-
composition A =

∑
rαCα +

∑
rγCγ . We take C = {Cα} ̸= and Cγ all have

J-representative. Hence UC ⊂ U eff
A .

Now we finish the codimension comparison: Denote the cardinality of {Eu}
by U and the cardinality of {Ev} by V. The statement is to say when

∑
i≥2

riCi = dH − dE1 + Em1 + · · ·+ EmM − En1 − · · · − EnN ,

where {Emi} = {Ev} − {Ev} ∩ {Eu}, {Eni} = {Eu} − {Eu} ∩ {Ev}, and 0 ≤
M < N . Note that N −M = U − V. Since Cod(A) = −A2 − 1 = 2l − U and
Cod(C1) = 2(l + d)− V , we have

Cod(C1)− Cod(A) = 2d− (U − V ).

So the assumption Cod(C1) ≤ Cod(A) means that

N −M = U − V ≥ 2d.

Each Ci, i ≥ 2, is in classes H − E1 −
∑

klEl, kl ∈ {0, 1} or Ep −
∑

Eq.
The strategy is still to inspect each −Enj , nj ≥ 2. Such a term at least

appears in some component of Ep −
∑

Eq or H − E1 −
∑

klEl, kl ∈ {0, 1}.
This means each −Enj at least contributes to

∑
i≥2Cod(Ci) by 1 except that

it appears in the −1 curve class H − E1 − Enj . Let Z be the number of such
nj . Then

0 ≤ Z ≤ d

and ∑
i≥2

Cod(Ci) ≥ N − Z.
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Since Ci ∈ Sω for all i we have Cod(C) =
∑

Cod(Ci). Now Cod(C) − Cod(A)
is given by

Cod(C1)−Cod(A)+
∑
i≥2

Cod(Ci) ≥ 2d−(N−M)+(N−Z) = 2d+M−Z ≥ d+M.

Note that equality occurs only if 0 = d = M = d − Z. This implies that∑
i≥2 riCi = −En1 − · · · − EnN and hence the zero class due to positivity of

area. Of course, this just means that A = C1, which is not allowed by our
assumption.

Proposition 3.7 follows from Lemma 3.8, Proposition 3.9 and Proposition
3.10. Theorem 1.8 follows from Proposition 3.5 and Proposition 3.7.

Notice that the conclusion of Theorem 1.8 does not hold for an arbitrary
class on an arbitrary rational surface. Let us recall the example in the in-
troduction, where (M,ω) = (CP 2#10CP 2, ω) and A = −2Kω. Here UA has

codimension 3 but U eff
A − UA contains a set of K−effective almost complex

structures which has codimension 1 and not in any UC .

We next prove Theorem 1.9 for a symplectic rational surface with χ ≤ 11.

3.1.4 - When χ ≤ 11

P r o p o s i t i o n 3.11. For M = CP 2#kCP 2, k ≤ 8 with a reduced symplec-
tic form and A ∈ S<0

ω , Cod(C) > Cod(A) if C is an admissible set as defined in
Lemma 2.8.

P r o o f. When A ·H ≤ 0, A is a section or fiber type class by Propositions
3.10, 3.9. If A2 = −2, we can apply Lemma 2.8.

So we only need to consider the case A · H > 0 and A2 ≤ −3. From [32,
Prop. 4.6], the only such class is A = 2H −

∑8
i=2Ei, which is a 2−section class

A2 = −3. By Lemma 2.8, we have 2 = Cod(A) ≤ Cod(C) and = holds only if
C is a single element subset of S−3

ω . We will call this element C0, and it has
multiplicity at least 2.

Assume that C0 is a section type class. Then r0 = 2 and other curves are
fiber type with square at least −1. There are only 3 cases for C0: H − E2 −
E3−E4−E5, E1−E2−E3, −H +2E1. We then deal with each case as below:

� If C0 = H −E2 −E3 −E4 −E5: the fiber terms have no H or E1 terms,
so they are of the form Ei, i ≥ 2. Also, there are no curves contain
−E6,−E7,−E8 terms.
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� If C0 = E1 −E2 −E3 −E4: there are at most two fiber terms containing
−Ei, they are of the form H − E1 − Ei.

� If C0 = −H + 2E1: there are at most four fiber terms containing −Ei, of
the form H − E1 − Ei.

It is straightforward to check that those cases all have Cod(C) > Cod(A).

Assume that C0 is a fiber type class. Then C0 = E2 − E3 − E4 and it
contains two −Ei terms. We will consider the distribution of −Ei terms among
Ci’s. The possible (unique) section class can be H, H − E5, H − E5 − E6,
2H − E1 − E5 − E6 − E7 − E8. The fiber terms can be Ei, i ≥ 2, H − E1,
H − E1 − Ei. Notice that there are no negative H terms. If there is a unique
2H term, then it contains at most four −Ei terms so at least one −Ei term is
not accounted. If there are two H terms, then they contain together at most
four −Ei terms so at least one −Ei term is not accounted for. Hence this case
is not possible, and we finished our proof.

Note that this Proposition generalizes a result in [19, Theorem 3.8], where
A is only allowed to be a −2 sphere, and the manifold is chosen to be
CP 2#kCP 2,k ≤ 5. Theorem 1.9 follows from Proposition 3.11.

3.2 - The sets Xi

For the sets Xi, we can prove the following result when the Euler number
is very small:

P r o p o s i t i o n 3.12. For CP 2#kCP 2, k ≤ 4, Xeff
i = Xi for each i.

The proof involves a detailed case-by-case analysis which we omit here. It
might be possible to extend this to k = 5, 6 using the classification of configu-
rations in [32, Prop. 4.6].

Notice that in Proposition 3.12, it is necessary to assume the number of
blowup points (or equivalently the Euler number ) is small. We have the fol-
lowing example for 9 times blowup of CP 2. Note CP 2#9CP 2 is diffeomorphic
to S2 × S2#8CP 2, with basis B,F,E1 · · ·E8, where B,F are the base classes
in S2 × S2.

On S2 × S2#8CP 2, let C = {B − F,B + F − E1 − E2 − E3 − E4,

B + F − E1 − E2 − E5 − E6, B + F − E1 − E2 − E7 − E8},

and
C′ = {B − F − E1 − E2}.
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Meanwhile,
cod(C) = 4× (2− 1) = 4 > cod(C′) = 3.

Notice that we have

B + F − E1 − E2 − E3 − E4 = B − F − E1 − E2 + (F − E3) + (F − E4),

B + F − E1 − E2 − E5 − E6 = B − F − E1 − E2 + (F − E5) + (F − E6),

B + F − E1 − E2 − E7 − E8 = B − F − E1 − E2 + (F − E7) + (F − E8),

B − F = (B − F − E1 − E2) + E1 + E2.

It is not hard to show that U eff
C ∩UC′ contains an open subset of UC′ . This

implies that Xeff
8 ̸= X8.

Also, note that for any k ≥ 8 blowup of S2 × S2, this counterexample
is always there, as long as one endows the manifold with a symplectic form
obtained by blowing up points on a pencil of curves in class B + F in S2 × S2

such that those classes have positive symplectic area.
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