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Abstract. Motivated by a kind of Penrose correspondence, we inves-
tigate the space of hyperplane sections of Segre quartic surfaces which
have an ordinary cusp. We show that the space of such hyperplane sec-
tions is empty for two kinds of Segre surfaces, and it is a connected
surface for all other kinds of Segre surfaces. We also show that when it
is non-empty, the closure of the space is either birational to the surface
itself or birational to a double covering of the surface, whose branch di-
visor consists of some specific lines on the surface.
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1 - Introduction

The so-called Penrose correspondence gives a relationship between confor-
mal differential geometry and complex geometry, and typically it means that
the parameter space of smooth rational curves on a complex manifold (i.e. a
twistor space) is equipped with a special geometric structure, if the normal
bundles of the rational curves are of a particular form. The most famous one
would be the case where the rational curve is in a complex 3-manifold with the
normal bundle being isomorphic to O(1)⊕2, and under this situation the space
of rational curves is a 4-dimensional manifold, equipped with a self-dual confor-
mal structure [1,8]. Another interesting instance is established by Hitchin [4],
in which case the rational curve is in a complex surface with normal bundle
O(2). The space of rational curves is a 3-dimensional manifold equipped with
an Einstein-Weyl structure, which may be regarded as a conformal version
of Einstein metrics. The complex surface in which the rational curves move
is called the minitwistor space, and the rational curves are called minitwistor
lines.

In the article [6], we showed that the same result about the presence of
Einstein-Weyl structure still holds even when the rational curves on a complex
surface have ordinary nodes, as long as the complete family of such nodal ra-
tional curves on the surface is 3-dimensional. These nodal rational curves are
still called minitwistor lines, and the number of nodes is called the genus of a
minitwistor space. In [7], we showed that, under a natural minimality condi-
tion, compact minitwistor spaces with genus one are exactly a special kind of
algebraic surfaces, classically called Segre surfaces. In modern language, these
surfaces are nothing but the anti-canonical models of weak del-Pezzo surfaces
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of degree four, and all of them are complete intersections of two quadrics in
CP4. The nodal rational curves in a Segre surface are sections by hyperplanes
which are tangent to the surface at one smooth point. This means that the
space of minitwistor lines, namely the Einstein-Weyl space associated to the
minitwistor space, is a Zariski-open subset of the projectively dual variety of
the Segre surface. Here, an interesting point is that the Zariski-open subset can
never be the entire dual variety, because nodal curves can always be deformed
in the surface, into a reducible curve or a curve with an ordinary cusp. This
means that, the Einstein-Weyl space is always non-compact and admits a nat-
ural compactification as a projective variety. As in [7], we call 2-dimensional
components of the added locus in the compactification as divisors at infinity
of the Einstein-Weyl space. Note that degeneration into a cuspidal curve can
happen only when the genus of a minitwistor space is positive.

In the article [7], for any Segre surface, we studied divisors at infinity which
parameterize reducible hyperplane sections of the surface. In particular we de-
termined all components of such divisors, and showed that they are isomorphic
to either a projective plane or a smooth quadratic surface. Also, we showed
that the dual variety of a Segre surface intersects itself along these components
in such a way that the dual variety has ordinary nodes along generic points of
these components.

A purpose of the present article is to investigate the space of hyperplane
sections of any Segre surface, which have an ordinary cusp at a smooth point
of the surface. The closure of this space constitutes a subvariety in the dual
variety of the Segre surface, and we call it the cuspidal locus in the dual variety
of the surface. The details on the cuspidal locus will be discussed in Section
2.1 for general surfaces embedded in projective spaces. In Section 2.2, by using
deformation theory of curves with singularities, we show that the cuspidal locus
in the dual variety of any Segre surface is reduced and 2-dimensional if it is
non-empty (Theorem 2.2), and that the dual variety has ordinary cusps along
the cuspidal locus (Theorem 2.3). Thus, the cuspidal locus always constitutes
a divisor at infinity of the Einstein-Weyl space.

In Section 3.1, we prove some basic properties on Segre surfaces that will
be needed in the rest of this article. In Section 3.2, we determine the structure
of certain divisor in the incidence variety of the Segre surface, which is closely
related to the cuspidal locus. In Section 3.3, we identify hyperplanes which
cut out cuspidal curves from Segre surfaces, by using the incidence variety.
Consequently, we find that the cuspidal locus can have three kinds of structures,
depending on the number of such pencils on the Segre surfaces. Subsequently
in Section 3.4, we express the number of pencils of double conics in terms of
Segre symbols for Segre surfaces. As a result, it turns out that the cuspidal
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locus for two kinds of Segre surfaces are empty (Corollary 3.19). Also we see
that among sixteen kinds of Segre surfaces, the cuspidal locus for seven kinds
of Segre surfaces are naturally birational to the surfaces themselves (Corollary
3.20).

For the remaining seven kinds of Segre surfaces, the cuspidal locus turns
out to be birational to a double covering over the surfaces whose branch divisor
consist of some lines on the surfaces. In Section 4.1, we show that every line on
a Segre surface which does not pass any singularities of the surface is a simple
branch divisor of the double covering (Proposition 4.3). In Sections 4.2 and
4.3, we obtain similar results for any other lines on Segre surfaces.

In Section 5.1, by using the results in Section 4.1, we show that the cuspidal
locus in the dual variety of any Segre surface is an irreducible surface if it is not
empty (Corollary 5.2). This is the main result in this article. Next we determine
which lines on Segre surfaces are really branch divisors of the above structure
of double covering (Proposition 5.3). By using these results, we construct a
surface which is birational to the cuspidal locus in the dual variety of a smooth
Segre surface, and find that the cuspidal locus is a surface of general type
(Proposition 5.4). In Section 5.2, we investigate singularities of the cuspidal
locus in the dual varieties of Segre surfaces, which arise from the above double
covering structure, and show that the cuspidal locus always has ordinary cusps
along some conic in the dual variety (Proposition 5.9).

In the Appendix, we investigate structure of the cuspidal locus for some
Segre surfaces, by using explicit equations of the surfaces. As a result, we
can precisely identify some divisor in the incidence variety which is studied in
Section 3.2. Also, we identify all lines on Segre surfaces which are not branch
divisor of the above double covering. This completes identification of the branch
divisor of the above double covering which was postponed in Section 5.1.

In general, the singular locus of the dual variety of a projective variety
is known to be highly singular, but they are far from being well-understood.
See [11, Section 10] for information about this topic. Because Segre surfaces
are varieties of low degree and are of small codimension, they seem to be a
nice class of varieties to investigate the singular locus of the dual variety in
detail. Indeed, the fact that Segre surfaces are of degree four is essential in
our investigation in many places. Combined with the results in [7], the present
results would give a fairly complete understanding of the singular locus of the
dual varieties of Segre surfaces.
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2 - Cuspidal locus

2.1 - Some generalities on the cuspidal locus in the dual variety

First we briefly recall basic facts on projectively dual varieties. For more
details, see Tevelev’s book [11] for example. Let X ⊂ CPn be a non-degenerate
irreducible projective variety, and write Xreg for the locus of smooth points of
X. We say that a hyperplane H ⊂ CPn is tangent to X if H includes the
tangent space TpX at some point p ∈ Xreg. This condition implies that the
hyperplane section H|X has a singularity at the point p. The dual variety of X,
which is denoted by X∗, is defined as the closure of the set of hyperplanes in
CPn which are tangent to X, where the closure is taken in the dual projective
space CP∗

n. The dual variety X∗ is a subvariety in CP∗
n and it is a hypersurface

if the variety X is not ruled, namely when there is some point of X which is
not passed by a line in X [11, Theorem 1.18]. If X is not ruled, for a generic
hyperplane H ∈ X∗, the section H|X has exactly one ordinary node as its all
singularity [12, Section 2.1.1].

It is also useful to introduce the incidence variety I(X) ⊂ CPn×CP∗
n. This

is by definition the closure of the locus in CPn × CP∗
n formed by a pair (p,H)

of a point p ∈ Xreg and a hyperplane H containing TpX. This is a subvariety
in CPn × CP∗

n. Then the dual variety is nothing but the image of I(X) under
the projection to CP∗

n, and there is a diagram

I(X)
π1

��

π2

��

X X∗

(2.1)

where π1 and π2 are restrictions to I(X) of the projections from CPn × CP∗
n

to the two factors respectively. Over the smooth locus Xreg, the projection π1
is a projective space bundle. The other projection π2 is birational as long as
dimX∗ = n− 1.

Next, in order to define the cuspidal locus for a non-degenerate irreducible
projective variety X ⊂ CPn, we consider the following locally closed subset of
I(X):

{
(p,H) ∈ I(X)

∣∣ p ∈ Xreg,

and the singularity of H|X at p is not an ordinary node
}
.

Taking the closure in I(X) of this subset, we obtain a subvariety in I(X).
In [11, �10.2.4], the image of this subvariety under the projection π2 to X∗ is
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denoted by X∗
cusp when X is smooth (in that case one does not need to take the

closure), and for the moment we use this notation. From the definition, for any
hyperplane H ∈ X∗

cusp, the section H|X has a non-nodal singularity at a smooth
point of X, or perhaps a singularity at a singular point of X. The variety X∗

cusp

is not necessarily irreducible. Moreover, even when dimX = 2, a generic point
of an irreducible component of X∗

cusp can correspond to a hyperplane section
whose singularity is not an ordinary cusp. So in this article, when dimX = 2,
we call the cuspidal locus in the dual variety X∗ the union of all components of
the subvariety X∗

cusp whose generic point corresponds to a hyperplane section
which has an ordinary cusp at a smooth point ofX. So under this definition, the
cuspidal locus really parameterizes hyperplane sections which have an ordinary
cusp.

Next, we give a description of the cuspidal locus in terms of local coordinates
when X is a surface in CP4. It will be used to investigate the structure of
the cuspidal locus of Segre surfaces. We remark that it is not difficult to
generalize the following description to the case where no constraint is supposed
on dimension and codimension of the subvariety X.

Let S ⊂ CP4 be a non-degenerate irreducible projective surface, and pick
any p ∈ Sreg. By choosing suitable non-homogeneous coordinates (x, y, z, w),
we may suppose that, in a neighborhood of the point p, the pair (x, y) works
as holomorphic coordinates on S in a neighborhood of p, and that there exist
two holomorphic functions

F = F (x, y) and G = G(x, y),

defined in a neighborhood of p, such that, around p, the surface S is defined by
the equations

z = F (x, y), w = G(x, y).

Under these choices, for a point q = (a, b) ∈ Sreg in the neighborhood, any
hyperplane which contains the tangent plane TqS is of the form

(2.2) λ {z − F (q)− Fx(q)(x− a)− Fy(q)(y − b)}
+ µ {w −G(q)−Gx(q)(x− a)−Gy(q)(y − b)} = 0

for some (λ, µ) ∈ C2\{(0, 0)}. The pair (λ, µ) can be regarded as homogeneous
coordinates on the fiber of the projection π1 : I(S) → S, which is a projective
line CP1. Substituting the equations z = F (x, y) and w = G(x, y) into (2.2),
we obtain a defining function of the intersection of the hyperplane (2.2) with
S. This intersection has a non-nodal singularity at the point q iff the Hessian
(i.e. the determinant of the Hessian matrix) of the defining function vanishes at
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q. It is immediate to see from (2.2) that this Hessian is equal to the Hessian

H := Hess (λF + µG) .

Thus, to each (λ, µ) ∈ C2\{(0, 0)}, the section of S by the hyperplane (2.2) has
a non-nodal singularity at q ∈ Sreg if and only if H(q) = 0.

Since the Hessian matrix is of size 2 × 2, as a homogeneous equation in
(λ, µ), the function H is quadratic in λ and µ. More explicitly, we easily have

H = Hess (F )λ2 +
(
FxxGyy +GxxFyy − 2FxyGxy

)
λµ+Hess (G)µ2.(2.3)

The condition H = 0 is independent of a choice of the coordinates (x, y, z, w).
Therefore, the equation H = 0 defines a locally closed subset in the incidence
variety I(S). Throughout this paper, we denote the closure of it by the bold
letter D. This is a divisor in I(S). If the equations

Hess (F ) = Hess (G) = FxxGyy +GxxFyy − 2FxyGxy = 0(2.4)

hold at some point q ∈ Sreg, then whole the fiber π−1
1 (q) = CP1 is included in

the divisor D. So, if there exists a curve on S along which (2.4) holds, then the
fibers over the curve constitute a component of the divisor D. This component
can have a multiplicity greater than one in general. Throughout this article, we
denote D1 for the sum of all these components. These components are mapped
to curves by the projection π1 : I(S) → S. Of course, D1 might be the zero
divisor. We write DS := D −D1, so that

D = D1 +DS

holds. We always have DS ̸= 0, and since the equation (2.3) is quadratic in
λ and µ, the restriction of the projection π1 : I(S) → S to DS is of degree
two. But this restriction is still not necessarily a finite morphism, because
there might exist an isolated point q ∈ Sreg such that the degeneracy condition
(2.4) holds, and also because DS might include a curve in a fiber over some
singular point of S. Thus, what we can say in general is that the projection
π1|DS

: DS → S is a generically finite double covering over S. The divisor DS

can be reducible, and in that case, each of the two components is birational to S
by the projection π1. Regardless of whether DS is irreducible or not, we think
DS as a double covering over S. If D1 = 0, then the branch divisor of DS → S
is the zero divisor of the discriminant of the quadratic polynomial (2.3). If
D1 ̸= 0, in order to obtain the equation of the branch divisor of DS → S, we
have to divide the quadratic polynomial (2.3) by a defining equation of D1,
before taking the discriminant.
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Mapping the divisor D = D1 +DS in I(S) to the dual variety S∗ by the
projection π2 : I(S) → S∗, we obtain a subvariety in S∗. This is nothing but
S∗
cusp in the notation of [11] we have mentioned above. This subvariety can be

reducible in general, and the cuspidal locus in S∗ under our current definition is
some component of this subvariety when it is non-empty. A component of the
image π2(D) is not necessarily a component of the cuspidal locus in S∗ because
a generic point of the component can correspond to a non-cuspidal hyperplane
section.

We end this subsection by showing that a straight-line on a surface S in
CP4 is always a candidate of a branch divisor of the generically finite double
covering DS → S:

P r o p o s i t i o n 2.1. If a non-degenerate irreducible surface S ⊂ CP4 con-
tains a straight-line l which is not contained in the singular locus of S, then the
discriminant of the quadratic polynomial (2.3) vanishes along l.

P r o o f. The discriminant of the polynomial H in (2.3) can be easily calcu-
lated, and it can be written as

(
FxxGyy −GxxFyy

)2
+ 4

(
FxxGxy − FxyGxx

)(
FyyGxy − FxyGyy

)
.(2.5)

If l is a line as in the proposition and p ∈ l ∩ Sreg, then we can always take the
non-homogeneous linear coordinates (x, y, z, w) in such a way that TpS = {z =
w = 0} and l = {y = z = w = 0} hold. These imply F |l = G|l = 0, which mean

∂kF

∂xk
(x, 0, 0, 0) =

∂kG

∂xk
(x, 0, 0, 0) = 0 for any k ≥ 0.

From these, the discriminant (2.5) vanishes along the line l. □

From the above relationship between the branch divisor of the generically
finite double coveringDS → S and the discriminant of the quadratic polynomial
(2.3), a line l ⊂ S is a branch divisor of DS → S, provided that some of the
three coefficient functions of (2.3) do not vanish identically on the line l. If all
the three functions vanish along the line l, and m (> 0) is the minimal vanishing
order of these functions along l, then π−1

1 (l) is included in the divisor D1 with
multiplicity precisely m. Then the line l is really a branch divisor of DS → S if
and only if the discriminant of the quadratic polynomial H/ym vanishes along
l in the coordinates of the previous proof. In Sections 4 and 6, we will use these
to determine whether lines on Segre surfaces are really branch divisors of the
covering DS → S.
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2.2 - Cuspidal locus in the dual variety of a Segre surface

A non-degenerate irreducible 2-dimensional subvariety S ⊂ CP4 is called a
Segre quartic surface or simply a Segre surface if it is of degree four in CP4, and
is not a cone over a quartic curve in CP3 nor a projection of a quartic surface
in CP5. All of them are complete intersections of two quadrics. The normal
forms of a pair of quadratic equations on CP4 are known, and by using them,
Segre surfaces can be classified into 16 types. Any Segre surface has at most a
finite number of singularities, and all of them are rational double points. Any
Segre surface has a finite number of straight-lines on it. For more details on
Segre surfaces, see [5, ChapterXIII, Section 10] and [3, Section 8.6]. For a brief
account, see [7].

In this subsection, we prove two basic properties on the cuspidal locus in
the dual varieties of Segre surfaces. The first one concerns smoothness and
dimension:

T h e o r em 2.2. Let S ⊂ CP4 be any Segre surface, and H a hyperplane not
passing any singularity of S. If H belongs to the cuspidal locus in S∗ and H|S
indeed has a single ordinary cusp as its all singularity, then H|S is a rational
curve and the cuspidal locus in S∗ is smooth and 2-dimensional at the point
H ∈ S∗.

Note that the existence of a hyperplane section as in the theorem is not
obvious at all. Indeed, we will see in Section 3.4 that some Segre surfaces do
not have such a hyperplane H.

The second property is about singularity the dual variety has along the
cuspidal locus. By Theorem 2.2, the cuspidal locus itself is smooth at points
formed by hyperplane sections H|S as in the theorem. (We note that this
does not mean that S∗ is smooth along this locus.) The next result is about
singularities of S∗ along this smooth locus of the cuspidal locus.

T h e o r em 2.3. The dual variety S∗ of any Segre surface S has ordinary
cusps along smooth locus in the cuspidal locus formed by hyperplanes appearing
in Theorem 2.2.

This is similar to the property that the dual variety S∗ of a Segre surface S has
ordinary nodes along the locus whose points correspond to hyperplane sections
of S which have two ordinary nodes [7, Proposition 3.15].

P r o o f o f T h e o r em 2.2. Let H be as in the theorem and put C = H|S .
By Lefshetz theorem, the curve C is connected. Let p ∈ C be the ordinary
cusp of C. By assumption, the curve C is smooth except p, and hence C
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is irreducible. Since the arithmetic genus of C is easily seen to be one, the
presence of a single cusp means that C is a rational curve.

We denote ΩS and ΩC for the sheaves of Kähler differentials on S and C
respectively, and IC for the ideal sheaf of C in OS . Associated to the embedding
C ⊂ S, there is a standard exact sequence

0 −→ IC/I
2
C −→ ΩS |C −→ ΩC −→ 0.(2.6)

By applying HomOC
( · ,OC) to this sequence, noting that E xt1(ΩS |C ,OC) = 0

since the surface S is supposed to be smooth at points on C and it implies that
ΩS |C is locally free, we obtain an exact sequence

0 −→ ΘC −→ ΘS |C −→ NC −→ T 1
C −→ 0,

where Θ is the tangent sheaf HomO(Ω,O), NC means the normal sheaf [C]|C of
C in S, and T 1

C = E xt1(ΩC ,OC). Then the equi-singular normal sheaf N ′
C of C

in S is defined as the kernel sheaf of the surjective homomorphism NC −→ T 1
C

in this exact sequence. In particular, we have a short exact sequence

0 −→ N ′
C −→ NC −→ T 1

C −→ 0.(2.7)

In the following, for simplicity, we write N and N ′ for NC and N ′
C respec-

tively. By [13] (see also [9, Proposition 1.1.9] and [10, Section 1]), equi-singular
displacements of C in S are governed by the cohomology groups of the sheaf N ′.
More precisely, the Zariski tangent space at the point C of the space of such
displacements is identified with H0(N ′), and an obstruction for smoothness of
the last space at the point C is in H1(N ′). In particular, if H1(N ′) = 0, the
space of such displacements is smooth at the point C, with the dimension being
equal to h0(N ′).

Let J be the ideal sheaf on S which is locally generated by the derivatives
∂f/∂x and ∂f/∂y, where (x, y) are local coordinates on S and f = f(x, y) is
a local defining function of the cuspidal curve C. Note that we are assuming
C ∩ SingS = ∅. Further, we put JC := J ⊗OC

OC . These are called the
Jacobian ideal sheaves of the singular curve C. As in [10, p. 111] and [9, �4.7.1],
the equi-singular normal sheaf satisfies

N ′ ≃ N ⊗OC
JC .(2.8)

The way for calculating cohomology groups Hq(N ′) using (2.8) as well as the
normalization of C is briefly described in [9, �4.7.1] for plane curves with or-
dinary nodes or cusps, but we write it here with some detail since in Section
3.3 we will need to calculate Hq(N ′) for a curve which has an A3-singularity
(tacnode).
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To be explicit, let µ : S′ → S be the blowup of S at the cusp p of C. Then
the restriction of µ to the strict transform C̃ of C gives the normalization ν :
C̃ −→ C. As seen above, C̃ ≃ CP1. Take coordinates (x, y) in a neighborhood
of the cusp p such that C is locally defined by the equation y2 − x3 = 0.
Putting y = ux for a new coordinate u on the exceptional curve of µ, the map
µ is locally given by (x, u) → (x, ux), while C̃ is defined by x = u2. We also
have Jp = (x2, y) for the germ at p of the Jacobian ideal sheaf, and therefore
(µ∗J )p̃ = (x2, ux) for the germ at the point p̃ := ν−1(p). Restricting µ∗J to
C̃ means a substitution of x = u2, so we obtain

(
ν∗JC

)
p̃
≃

((
µ∗J

)
⊗OS′ OC̃

)
p̃
≃ (u4, u3) = (u3).

This means

ν∗JC ≃ OC̃(−3p̃).(2.9)

Therefore, from (2.8) and C2 = 4, we obtain

ν∗N ′ ≃ ν∗N ⊗OC̃
ν∗JC(2.10)

≃ ν∗N ⊗OC̃
OC̃(−3p̃)

≃ OC̃(1).(2.11)

Taking the direct image of the isomorphism (2.10), from projection formula
(which is available since the sheaf N is invertible), we obtain ν∗ν

∗N ′ ≃ N ⊗
ν∗ν

∗JC . On the other hand, since the cusp has a single branch at p, we have
ν∗ν

∗JC ≃ JC . From these, we obtain ν∗ν
∗N ′ ≃ N ⊗ JC ≃ N ′. By Leray

spectral sequence, since we have Rqν∗(ν
∗N ′) = 0 for any q > 0 as ν∗N ′ is

invertible, it holds Hq(C̃, ν∗N ′) ≃ Hq(C, ν∗ν
∗N ′) for any q ≥ 0. Thus we

obtain Hq(C̃, ν∗N ′) ≃ Hq(C,N ′) for any q ≥ 0. Hence from (2.11), we obtain
Hq(C,N ′) ≃ Hq(C̃,O(1)) for any q ≥ 0. This implies H1(C,N ′) = 0 and
h0(C,N ′) = 2. These mean that equi-singular displacements of the cuspidal
curve C in S are parameterized by a smooth complex surface, and this is what
we need to show. □

For the proof Theorem 2.3, we recall basic results about deformations of
An-singularity of a curve. As is well-known, the versal family of An-singularity
is smooth, n-dimensional, and if we express the singularity by the equation
y2 = xn+1 in C2, the versal family is concretely given by

y2 = xn+1 + s1x
n−1 + s2x

n−2 + · · ·+ sn, s1, . . . , sn ∈ C.(2.12)

If C denotes the singular curve y2 = xn+1 for the moment, the tangent space
of the parameter space Cn of this family at the origin (s1, . . . , sn) = (0, . . . , 0)
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is naturally identified with the space H0(T 1
C). If we take a Galois cover of the

parameter space Cn by introducing new parameters t1, . . . , tn+1 by putting

s1 =
∑

1≤i<j≤n+1

titj , s2 =
∑

1≤i<j<k≤n+1

titjtk, . . . , sn = t1t2 · · · tn+1(2.13)

and imposing the condition t1 + · · · + tn+1 = 0, then as a base change of the
family (2.12), we obtain another n-dimensional family

y2 = (x− t1)(x− t2) · · · (x− tn+1), (t1, . . . , tn+1) ∈ Cn+1,
∑

1≤i≤n+1

ti = 0.(2.14)

If k is an integer satisfying 0 < k < n, the locus of points whose fibers have an
Ak-singularity as their all singularity is concretely given by the conditions that
exactly k among t1, . . . , tn+1 are equal and that the remaining parameters are
not equal. In particular, when n = 2, the fiber over the point (t1, t2, t3) with
t1 + t2 + t3 = 0 of the family (2.14) has an A1-singularity iff (t1, t2, t3) is of the
form (t, t,−2t), (t,−2t, t) or (−2t, t, t) for some t ̸= 0. Hence, from (2.13), the
fiber over the point (s1, s2) of the versal family (2.12) has an A1-singularity iff
(s1, s2) = (−3t2,−2t3) for some t ̸= 0. We denote the locus formed by these
points in C2 by A1. Then A1 is locally closed, smooth, 1-dimensional, and its
closure in C2 has an A2-singularity at the origin. With these preliminaries, we
provide:

P r o o f o f T h e o r em 2.3. We keep notations in the proof of Theorem 2.2.
We first show H1(N) = 0 and H0(N) ≃ C4. Let C be any hyperplane section of
the Segre surface S which has a single ordinary cusp at a smooth point of S as
its all singularity. By using that the surface S ⊂ CP4 is a complete intersection
of two quadrics, we readily obtain that C belongs to the anti-canonical class
on S. This means that there is an exact sequence

0 −→ OS −→ K−1
S −→ N −→ 0.(2.15)

This time we mean by µ : S̃ → S the minimal resolution of all singularities
of S. Since all the singularities of S are rational double points ( [3, Theorem
8.1.11]), we have KS̃ ≃ µ∗KS . Further, K−1

S̃
is nef and big ( [3, p. 355]).

Furthermore, by Leray spectral sequence, for any invertible sheaf L on S,
we have Hq(S̃, µ∗L ) ≃ Hq(S,L ) for any q ≥ 0. From these and Kodaira-
Ramanujan vanishing theorem, it readily follows that Hq(K−1

S ) = Hq(OS) = 0
for any q > 0. Hence from the cohomology exact sequence of (2.15), we obtain
H1(N) = 0. Also, as showed in the proof of [7, Lemma 3.8], the restriction
homomorphism

H0
(
CP4,O(1)

)
−→ H0

(
K−1

S

)
(2.16)
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is isomorphic, and hence h0(K−1
S ) = 5. So again from the cohomology exact

sequence of (2.15), we obtain h0(N) = 4.

The fact H1(N) = 0 means that any first order displacement of C in the
surface S (without any constraint for displacements this time) is unobstructed,
and the tangent space at the point C of the parameter space of the versal family
of displacements of C in S is identified with H0(N) ≃ C4.

From the short exact sequence (2.7), since H1(N ′) = 0 as we have shown
in the proof of Theorem 2.2, we obtain an exact sequence

0 −→ H0
(
N ′) −→ H0

(
N
)
−→ H0

(
T 1
C

)
−→ 0.(2.17)

LetH ⊂ CP4 be the hyperplane which satisfiesH|S = C, and B a neighborhood
of the point H in the dual space CP∗

4. To each point of B, we can naturally
associate a hyperplane section of S, so B can be regarded as a parameter
space of displacements of C in S. As above, we have a natural isomorphism
THB ≃ H0(N). By versality, after shrinking B if necessary, there is an induced
holomorphic map f : B → C2 from B to the parameter space of the versal
family of an A2-singularity, while the differential df : THB → T0C2 is identified
with the map H0

(
N
)
−→ H0

(
T 1
C

)
in (2.17). Writing A1 ⊂ C2 for the locus

formed by points whose fibers have A1-singularity as presented right before the
present proof, because a generic point of the dual variety S∗ corresponds to a
hyperplane section which has an A1-singularity, we have

S∗ ∩B = f−1
(
A1 ∪ {H}

)
.

Since the map H0
(
N
)
−→ H0

(
T 1
C

)
in (2.17) is surjective, again shrinking the

neighborhood B if necessary, there are coordinates (z1, z2, z3, z4) on B such that
f takes the form (z1, z2, z3, z4) −→ (z1, z2). As seen right before the present
proof, the locus A1∪{H} is 1-dimensional and has an ordinary cusp at the point
H as its only singularity. These imply that the dual variety S∗ has ordinary
cusps along the smooth surface f−1(0, 0) = {z1 = z2 = 0} in B, formed by
hyperplane sections which have ordinary cusp as its all singularity. □

3 - The structure of the cuspidal locus

3.1 - Some general properties of Segre surfaces

In this subsection, we prove a few basic properties of Segre surfaces that
will be used throughout the rest of this article. We begin with an easy but
useful property about curves with low degree on Segre surfaces.
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P r o p o s i t i o n 3.1. Let S ⊂ CP4 be a Segre surface, and µ : S̃ → S the
minimal resolution of all singularities of S. The self-intersection number in
S̃ of the strict transform of a line, an irreducible conic, or a rational normal
curve of degree three, lying on S, is (−1), 0 and 1 respectively.

Of course, when the curve (a line, a conic, or a rational normal curve of
degree three) does not pass any singularity of S, this implies that the self-
intersection number of the curve in S is (−1), 0 and 1 respectively.

R ema r k 3.2. From Proposition 3.1, we obtain that an irreducible conic
on any Segre surface S is always a member of a pencil of conics on S, and the
pencil can have a base point only at a singularity of S.

P r o o f o f P r o p o s i t i o n 3.1. We write C for the curve in S and C̃ for
the strict transform of C into S̃. As remarked in the proof of Theorem 2.3. if H
is the hyperplane class on CP4, we have H|S = K−1

S and KS̃ ≃ µ∗KS . Noting

that the restriction µ|C̃ gives an isomorphism C̃ ≃ C as C is smooth, we have

KC̃ ≃ KS̃ |C̃ ⊗NC̃/S̃

≃ (µ∗KS)|C̃ ⊗NC̃/S̃

≃ µ∗(KS |C
)
⊗NC̃/S̃

≃ (µ|C̃)
∗(−H|C

)
⊗NC̃/S̃ .

Hence, since C̃ is a smooth rational curve in the present situation, comparing
the degrees of both sides, we obtain

−2 = −H.C + C̃2.

From this we readily obtain the assertions of the proposition. □

We also have

P r o p o s i t i o n 3.3. Any Segre surface S does not have a reduced cubic
curve which is contained in a 2-plane in CP4.

P r o o f. Let C ⊂ S be such a cubic curve, and P the 2-plane containing
C. Then for any hyperplane H containing P , we have H|S = C + l for a line
l. Since we have an isomorphism (2.16), the line l moves as H moves. This
contradicts finiteness of lines on S. Hence, such a curve C does not exist. □

In the following, by a tangent space of a Segre surface at a smooth point,
we always mean a closed linear subspace in the projective space CP4. So it is
a projective 2-plane, not just a vector space. In general, if l is a line lying on a
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subvariety, then clearly the tangent space at any smooth point belonging to l
contains l. The next lemma says that for any Segre surface S, lines on S are all
the curves on S which are contained in a tangent plane at some smooth point
of S.

L emma 3.4. Let S ⊂ CP4 be a Segre surface, p a smooth point of S, and
TpS the tangent plane in the above sense. If the intersection S ∩ TpS contains
a curve, then any of its irreducible component is a line through the point p.

For the proof of this lemma, it is convenient to introduce the following
notations. They will be used throughout the rest of this article.

D e f i n i t i o n 3.5. For a smooth point p of a Segre surface S ⊂ CP4, we
denote (TpS)

∗ for the pencil of hyperplanes in CP4 which contain the tangent
plane TpS. Also, we write (TpS)

∗|S for the pencil on S whose members are of
the form H|S for some H ∈ (TpS)

∗.

P r o o f o f L emma 3.4. Since degS = 4, the intersection S ∩ TpS can
contain a curve whose degree is at most four. If S∩TpS contains an irreducible
quartic curve C, then by the same reason, any hyperplane H ∈ (TpS)

∗ satisfies
S ∩H = C. In particular, the intersection S ∩H is independent of a choice of
such a hyperplane H. This contradicts the basic isomorphism (2.16). Hence,
S∩TpS does not contain an irreducible quartic curve. Next, if S∩TpS contains
an irreducible cubic curve C, for any hyperplane H containing TpS, we have
S ∩H = C + l for some line l. Again from the isomorphism (2.16), if we move
H in the pencil (TpS)

∗, the line l also really moves. This contradicts finiteness
of the number of lines on any Segre surfaces. Hence S ∩ TpS does not contain
an irreducible cubic curve.

Next, suppose that S ∩ TpS contains an irreducible conic C. Then for any
H ∈ (TpS)

∗, H|S is of the form C + D for some conic D which is possibly
reducible or non-reduced. Again from the isomorphism (2.16), this conic D has
to move as H moves in (TpS)

∗. Hence, again from the finiteness of lines, the
conic D has to be irreducible for a generic H ∈ (TpS)

∗. But then D would also
be smooth, and therefore D has to pass the point p since the curve C + D is
singular at p as H ∈ (TpS)

∗. This means that there is a pencil of conics on S
which has a base point belonging to Sreg. This contradicts Remark 3.2. Thus,
the intersection S ∩ TpS does not contain an irreducible conic.

Therefore, any curve in S ∩ TpS is a line. Let l be such a line and suppose
that p ̸∈ l. If H ∈ (TpS)

∗, then H|S = l+D for some cubic D which is possibly
reducible or non-reduced. Since p ̸∈ l, the curve D has to have at least a double
point at p. We show that the pencil

(TpS)
∗|S − l = {H|S − l |H ∈ (TpS)

∗}
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formed by the residual cubic curves has no fixed component. Suppose not and
let F be the fixed component. Then F is a curve on the 2-plane TpS, so it
has to be a line as above. Moreover, F goes through p, since otherwise the
movable part of the pencil (TpS)

∗|S − l − F consists of conics whose general
members are irreducible, and this contradicts that any member of the pencil
(TpS)

∗|S is singular at p. Thus, under the assumption on the presence of the
fixed component F , a generic member of (TpS)

∗|S can be written as l+F +C,
where F is a line through p and C is an irreducible conic through p. This again
contradicts Remark 3.2, and we obtain that the residual pencil (TpS)

∗|S − l has
no fixed component. From the finiteness of lines on S, this means that a generic
memberD of this pencil is an irreducible cubic curve. Because we are supposing
p ̸∈ l, the cubic curve D itself is singular at p. Since D is an irreducible cubic
curve, this implies that D lies on some 2-plane P since otherwise D would be
a rational normal curve, which is smooth. This contradicts Proposition 3.3.
Therefore, the point p belongs to l, as desired. □

By using this lemma, we next show that there is no point p ∈ Sreg such that
any member of the pencil (TpS)

∗|S has a triple point at p.

L emma 3.6. Let S ⊂ CP4 be a Segre surface and p a smooth point of S.
Then the multiplicity in p of a generic member of the pencil (TpS)

∗|S is precisely
two.

P r o o f. First we show that if all members of the pencil (TpS)
∗|S have a

triple point at p, then there has to exist a line on S through p. Let µ : S′ → S
be a blowup at p, and E the exceptional curve. If the hyperplane section H|S
would have a triple point at p for any H ∈ (TpS)

∗, then the linear system
|µ∗H − 3E| on S′ is also a pencil. Then since (µ∗H − 3E)2 = 4− 9 = −5 < 0,
the pencil |µ∗H − 3E| would have a fixed component. If E would be a fixed
component, then the system |µ∗H − 4E| is a pencil, and again from the self-
intersection number, this has to have a fixed component. This process cannot
continue infinitely many times. So there exists some m > 2 such that the
system |µ∗H −mE| is a pencil and has a fixed component other than E. If we
take the image of this component to S by µ, we obtain a curve on S, and it has
to be contained in the 2-plane TpS since it has to be a base curve of the pencil
(TpS)

∗|S . By Lemma 3.4, the last curve is a line through p.
Hence, if any member of the pencil (TpS)

∗|S has a triple point at p, a generic
member of the pencil is of the form l+D for some line l through p and a cubic
curveD which may be reducible or non-reduced. The curveD has to be singular
at p since l +D is assumed to have a triple point at p. If a generic member of
the residual pencil (TpS)

∗|S− l of cubic curves would be reducible, by finiteness
of lines on S, the pencil has to have another line l′ as a fixed component. If
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p ̸∈ l′, then any member of the pencil (TpS)
∗|S − l − l′ of conics has to have a

double point at p, and this cannot happen by finiteness of lines on S. Hence
p ∈ l′. But still the pencil (TpS)

∗|S − l − l′ of conics has p as a base point,
which again contradicts Remark 3.2. Hence a generic member of the pencil
(TpS)

∗|S − l is irreducible. So there exists an irreducible cubic curve D on S
which is singular at p. The curve D has to lie on a 2-plane, and this contradicts
Proposition 3.3. Therefore, a generic member of the pencil (TpS)

∗|S does not
have a triple point at p. □

3.2 - Structure of the divisor D1

As before, let S ⊂ CP4 be a Segre surface. In this subsection, by using the
results in the previous subsection, we describe the structure of the divisor D1

in the incidence variety I(S). (See Section 2.1 for the definition of the divisor
D1.)

Let p be a smooth point of S, µ : S′ → S a blowup at p, and E the
exceptional curve. Then there is the following natural isomorphism between
pencils:

(TpS)
∗|S ≃ |µ∗H − 2E|.(3.1)

If the point p is on a line l ⊂ S, then the strict transform l′ of l into S′ is
obviously a fixed component of the pencil |µ∗H−2E|. The following proposition
can be thought of as a kind of its converse.

L emma 3.7. Let S ⊂ CP4 be a Segre surface and p a smooth point of S.
If the pencil |µ∗H−2E| on the blowup has a base point, then there exists a line
lying on S which passes the point p.

P r o o f. It is enough to show that the pencil |µ∗H − 2E| has a fixed com-
ponent which is different from E, since the image of such a component to S by
µ is a fixed component of the pencil (TpS)

∗|S , and therefore it is contained in
the tangent plane TpS, which has to be a line through p by Lemma 3.4.

First, by Lemma 3.6, the exceptional curve E of µ cannot be a base curve of
the pencil |µ∗H − 2E| because if so, any member of the pencil (TpS)

∗|S would
have a triple point at p. So assume that the pencil |µ∗H − 2E| has no fixed
component and derive a contradiction. Since we are supposing Bs |µ∗H−2E| ≠
∅, this assumption means that the pencil |µ∗H−2E| has an isolated fixed point.
Suppose that some (and hence a generic) member of the pencil |µ∗H − 2E| is
irreducible. Since the arithmetic genus of the line bundle µ∗H − 2E is readily
seen to be zero, this implies that the irreducible member of |µ∗H − 2E| is
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smooth and rational. We also obtain that the self-intersection number of the
rational curve is zero. These mean that Bs |µ∗H−2E| = ∅. Hence any member
of the pencil |µ∗H − 2E| is reducible. Therefore, any member of the pencil
(TpS)

∗|S is also reducible. Hence, from the finiteness of lines on S, the only
possibility for the form of a generic member of the pencil (TpS)

∗|S is C1 + C2,
where C1 and C2 are irreducible conics. Since C1 and C2 are then smooth, both
of them must pass the point p. Therefore at least one of the conics C1 and C2

moves on S while passing the smooth point p of S. But this again contradicts
Remark 3.2. □

From this, it is not difficult to obtain the following

L emma 3.8. Let S ⊂ CP4 be a Segre surface and p a smooth point of S.
If there exists no line on S through p, then the pencil |µ∗H − 2E| has exactly
two members whose restrictions to E are double point.

P r o o f. It is elementary to prove that, under a suitable choice of homo-
geneous coordinates (u, v) on CP1, any 1-dimensional subsystem of the linear
system |O(2)| on CP1 is generated by either u2 and v2, or u2 and uv. These
are distinguished by presence of a base point of the subsystem. By Lemma 3.7,
under the present assumption on the point p, the pencil |µ∗H − 2E| is base
point free. So it does not have a base point also on E. This means that the
restriction homomorphism

rE : H0(µ∗H − 2E) −→ H0(OE(2))(3.2)

has a 2-dimensional image, and that the image is generated by u2 and v2 for
suitable homogeneous coordinates (u, v) on E. Obviously, the two members
of the pencil (TpS)

∗|S which correspond to these generators are the members
which satisfy the property in the lemma. □

From this lemma, we obtain the following result about the defining function
H of the divisor D in I(S). (See Section 2.1 for the definition of H and D.)

P r o p o s i t i o n 3.9. Let S ⊂ CP4 be a Segre surface and p ∈ Sreg a point
which does not belong to any line on S. Then we have H(p) ̸= 0 in the sense
that the quadratic polynomial H(p) in λ, µ is not identically zero. Further, the
quadratic equation H(p) = 0 does not have a double root.

P r o o f. As in the previous proof, under the assumption on the point p, the
restriction map rE as in (3.2) has a two-dimensional image. So not all elements
of Image(rE) can have a double root on E. Because zeroes of H(p) correspond
to hyperplanes whose sections have non-nodal singularity at p, this means that
a generic member of the pencil (TpS)

∗|S has an ordinary node at p. This implies
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H(p) ̸= 0. Since each solution of the equation H(p) = 0 about (λ, µ) ∈ CP1

corresponds to a hyperplane H ∈ (TpS)
∗ such that the singularity of H|S at p

is non-nodal, the equation H(p) = 0 has a double root iff such a hyperplane is
unique. On the other hand, via the blowup µ at p, such a hyperplane gives an
element of the pencil

∣∣Image(rE)
∣∣ on E which is a double point. By Lemma

3.8, when p is not on a line on S, the last pencil has exactly two such members.
These mean that the equation H(p) = 0 does not have a double root. □

As an immediate consequence, we can identify any component of the divisor
D1 in I(S) as follows.

C o r o l l a r y 3.10. For any Segre surface S ⊂ CP4, any irreducible compo-
nent of the divisor D1 is of the form π−1

1 (l), where l is a line lying on S.

Rema r k 3.11. This corollary does not assert that π−1
1 (l) is a component

of the divisor D1 for any line l on S. Indeed, we will see that this is not correct
in general.

From the corollary, we obtain the following information about the cuspidal
locus in the dual varieties of Segre surfaces.

P r o p o s i t i o n 3.12. Let S ⊂ CP4 be any Segre surface. Then the cuspidal
locus in the dual variety S∗ is contained in the image π2(DS), where π2 :
I(S) → S∗ is the projection introduced in Section 2.1.

P r o o f. From our definition of the cuspidal locus given in Section 2.1, any
component of the cuspidal locus has a point H such that H|S has an ordinary
cusp at some point p ∈ Sreg. Then the point (p,H) ∈ I(S) belongs to either D1

or DS . If (p,H) ∈ D1, then from Corollary 3.10, the smooth point p belongs
to a line l on S, and the hyperplane H includes l. This means that the section
H|S contains l as a component. Therefore, H|S does not have an ordinary cusp
at p, which contradicts our choice of H. This implies (p,H) ∈ DS . So the
hyperplane H belongs to the image π2(DS). □

3.3 - Hyperplane sections from the divisor DS

From Proposition 3.12, for any Segre surface S, the investigation of the
cuspidal locus in the dual variety S∗ is reduced to that of the divisor DS in
I(S) and its image to S∗ by the projection π2 : I(S) → S∗. In this subsection,
we first investigate the structure of hyperplane sections of a Segre surface which
are obtained from generic points of the divisor DS . Next, by using it, we show
that there are three possibilities for the concrete forms of hyperplane sections
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which are obtained from generic points ofDS , and then derive some conclusions
about irreducibility of the cuspidal locus in the dual varieties of Segre surfaces.

Take any point p ∈ Sreg which does not belong to any line on S. By Propo-
sition 3.9, there exist precisely two hyperplanes belonging to the pencil (TpS)

∗

whose intersections with S have non-nodal singularity at p. We denote H1 and
H2 for these hyperplanes. We then have (p,H1) ∈ DS and (p,H2) ∈ DS .

P r o p o s i t i o n 3.13. Let C be any one of the two hyperplane sections H1|S
and H2|S. If C is irreducible, then C has an ordinary cusp at p as its all
singularity. If C is reducible, then exactly one of the following holds:

� C is an irreducible conic with multiplicity two,

� C consists of two irreducible conics which are not co-planer and which
are tangent to each other at p with order two.

P r o o f. Since pa(C) = 1 for the arithmetic genus of C, when C is irre-
ducible, it is a rational curve which has an ordinary node or an ordinary cusp
at p as its all singularity. But since the singularity is non-nodal as above, it
has to be an ordinary cusp.

Next assume that C is reducible and has some line l as a component. Write
C = l+D, whereD is a cubic curve. Since l cannot go through p from the choice
of p, the cubic D has to have a non-nodal singularity at p. From absence of
lines through p, this means that the cubic D is irreducible and p is an ordinary
cusp of D. Therefore, D is contained in a 2-plane. This contradicts Proposition
3.3. Hence, the curve C does not contain any line. So we have C = C1 + C2,
where both C1 and C2 are irreducible conics. Since both are smooth, they pass
the point p. If C1 = C2, then C is a double irreducible conic as in the first item
in the proposition.

Suppose C1 ̸= C2. They do not intersect transversely at the point p as C
is non-nodal at p. Because of the isomorphism (2.16), they cannot lie on the
same 2-plane. Since C1 and C2 are tangent at p, this means C1 ∩ C2 = {p}.
Because p is a smooth point of S and C1+C2 is a hyperplane section of S, this
implies that the smooth curves C1 and C2 do not pass any singularity of S.
From Proposition 3.1, this means C2

1 = C2
2 = 0. We also have

4 = (C1 + C2)
2 = C2

1 + C2
2 + 2C1C2.

So we obtain C1C2 = 2. Thus, the curve C = C1 +C2 is tangent to each other
at p with order two. □

By using the double covering structure on some Segre surfaces over a quadric
surface or a quadric cone in CP3 given in [7], it is possible to see that the
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situation as in the two items of Proposition 3.13 really happen. For the situation
in the first item, the conic with multiplicity two, which we simply call a double
conic, satisfies the following property.

P r o p o s i t i o n 3.14. Irreducible double conics on a Segre surface always
form a pencil on the surface. Further, any double conic passes a singular point
of the surface.

P r o o f. Write the double conic as 2C. Let µ : S̃ → S be the minimal
resolution of all singularities of S and C̃ the strict transform of C into S̃. Then
by Proposition 3.1, we have C̃2 = 0. Hence we have dim |C̃| = 1. Mapping
twice of members of the pencil |C̃| by µ, we obtain the required pencil of double
conics on S.

For the latter assertion, writing H|S = 2C with a hyperplane H, we have

4 = (H|S)2 = (2C)2 = 4C2.

This means C2 = 1. On the other hand, if the conic C does not pass any
singular point of S, then we have C2 = 0 by Proposition 3.1. Hence the conic
C passes through a singular point of S. □

Next we show the following proposition meaning that, among the three pos-
sibilities in Proposition 3.13 for the two hyperplane sections, the last possibility
cannot occur if the point p is generic.

P r o p o s i t i o n 3.15. Let S be any Segre surface and C a hyperplane section
of S which is as in the second item in Proposition 3.13. Then the parameter
space of the versal family of equi-singular displacements of C in S is smooth
and 1-dimensional.

P r o o f. The idea of the proof is similar to Theorem 2.2. Write C = C1+C2

as above. So C1 and C2 are irreducible conics which are tangent to each other
at a point p ∈ Sreg with order two, and which have no other intersection. As
in the proof of Proposition 3.13, C1 and C2 do not pass any singularity of S.
We may replace the cuspidal curve C in the short exact sequence (2.6) by the
reducible curve C1 + C2, and we still have an exact sequence

0 −→ IC1+C2/I
2
C1+C2

−→ ΩS |C1+C2 −→ ΩC1+C2 −→ 0.(3.3)

Applying HomOC1+C2
( · ,OC1+C2) to this sequence, the equi-singular normal

sheaf N ′
C1+C2

is again defined as the kernel sheaf of the surjective homomor-
phism NC1+C2 −→ T 1

C1+C2
, and we have an exact sequence

0 −→ N ′
C1+C2

−→ NC1+C2 −→ T 1
C1+C2

−→ 0.(3.4)
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Let ν : C̃1 ⊔ C̃2 → C1 ∪ C2 be the normalization of the curve C1 + C2. C̃1 and
C̃2 are isomorphic to C1 and C2 respectively, and the point p = C2 ∩ C2 is an
A3-singularity (i.e. tacnode) of C1 + C2. So in a neighborhood of p, the curve
C1 + C2 can be identified with the curve y2 = x4 in C2 around the origin. As
C2
1 = C2

2 = 0 from Proposition 3.1 and C1. C2 = 2, we have

NC1+C2 |Ci ≃ [C1 + C2]|Ci ≃ OCi(2), i = 1, 2.(3.5)

Let J be the Jacobian ideal sheaf of the curve C1+C2, and write JC1+C2

for J |C1+C2 . We readily have Jp = (x3, y) for the germ at p. The desingular-
ization of the tacnode may be obtained by blowing-up the surface S twice.
Let µ be the composition of the two blowups. Then the restrictions of µ
to C̃1 ⊔ C̃2 gives the normalization ν of the curve C1 + C2. By introducing
the coordinates u = y/x and v = u/x on the exceptional curves of the first
and the second blowup respectively, the composition µ is concretely written as
(x, v) −→ (x, x2v), while the strict transforms C̃1 and C̃2 are defined by v = 1
and v = −1. Hence, if p̃1 ∈ C̃1 and p̃2 ∈ C̃2 denote the points on the normal-
ization which correspond to the tacnode p, the germs of µ∗J at p̃1 and p̃2 are
generated by two functions x3 and x2v. Restricting µ∗J to the strict trans-
forms means a substitution of v = ±1, and therefore, over the two components
C̃1 and C̃2, we have

(
ν∗JC1+C2

)∣∣
C̃i

≃
(
µ∗J

)∣∣
C̃i

≃ OC̃i
(−2p̃i).(3.6)

As in (2.8) for the case of an A2-singularity, we have N
′ ≃ N ⊗OC1+C2

JC1+C2 .

Hence, combined with (3.5), over each component C̃i, ν
∗N ′ is isomorphic to

OC̃i
(2)⊗ OC̃i

(−2) ≃ OC̃i
. So we have

ν∗N ′
C1+C2

≃ OC̃1⊔C̃2
.(3.7)

Therefore we obtain an exact sequence

0 −→ N ′
C1+C2

−→ ν∗OC̃1⊔C̃2
−→ Cp −→ 0.(3.8)

Since Rqν∗OC̃1⊔C̃2
= 0 for q > 0, the Leray spectral sequence means H i(C̃1 ⊔

C̃2,OC̃1⊔C̃2
) ≃ H i(ν∗OC̃1⊔C̃2

) for any i ≥ 0. This readily means H i(ν∗OC̃1⊔C̃2
)

= 0 for any i > 0. From the cohomology exact sequence of (3.8), noting that the
homomorphism H0(ν∗OC̃1⊔C̃2

) −→ H0(Cp) is evidently surjective, we obtain

H0
(
N ′

C1+C2

)
≃ C and H1

(
N ′

C1+C2

)
= 0.
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The former implies that any first order equi-singular displacement of the curve
C1 + C2 in S is unobstructed, and the latter means that the versal family of
such displacements of C1 + C2 in S is 1-dimensional. □

One might expect that the possibility of occurrence of the double conic
as in the first item in Proposition 3.13 in case the point p is generic can be
eliminated as well. However, as we shall see soon, this is not at all correct.
Rather, occurrence of the double conic for a generic point p will play a key
role for proving irreducibility of the cuspidal locus in the dual variety of an
arbitrary Segre surface.

We still assume that p ∈ Sreg is a point which does not belong to any line
on S, and H1 and H2 are the two hyperplanes which cut out from S curves
having non-nodal singularity at p. From Propositions 3.13 and 3.15, assuming
genericity to the point p, there are the following three possibilities for the two
hyperplane sections:

(i) both H1|S and H2|S are double conics,

(ii) exactly one of H1|S and H2|S has an ordinary cusp at p, and the other
one is a double conic,

(iii) both H1|S and H2|S have ordinary cusp at p.

When the situation (i) occurs, the image π2(DS) is not a component of the
cuspidal locus because singularity of a double curve is not an ordinary cusp.
Together with Proposition 3.12, this means that the cuspidal locus in S∗ is
empty in this case. For the case (ii), the divisor DS is necessarily reducible. It
consists of two irreducible components since the projection DS → S is of degree
two. Both components are birational to S by the projection. The image under
the projection π2 : I(S) → S∗ of the irreducible component corresponding to
the double conics is not a component of the cuspidal locus by the same reason
to the case (i), while the image of the other component is exactly the cuspidal
locus in S∗. It follows that the cuspidal locus in S∗ is irreducible in this case.
Finally, if the situation (iii) occurs, whole of the image π2(DS) is exactly the
cuspidal locus in S∗. But at this stage, we do not know whether it is irreducible
or not, because we do not know whether the divisor DS is irreducible or not.
This ambiguity will be resolved in Sections 4 and 5.

3.4 - Pencils of double conics on Segre surfaces

As one can expect from results in the previous section, irreducibility of the
cuspidal locus in S∗ is closely related to the existence of double conics in S. In
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this subsection, we first provide a relation between the pencil of double conics
and irreducibility of the cuspidal locus in the dual varieties of Segre surfaces.
Next we determine the number of pencils of double conics for any Segre surfaces.

P r o p o s i t i o n 3.16. Pencils of double conics on a Segre surface S are in
one-to-one correspondence with irreducible components of the divisor DS whose
generic point (p,H) satisfies the property that H|S is a double conic.

P r o o f. Let P be a pencil of double conics on S. For a generic point
p ∈ Sreg, there exists precisely one member of P which passes p. Let Hp be
the hyperplane which cuts out this member. Then we have (p,Hp) ∈ DS by
Corollary 3.10, and the assignment p → (p,Hp) gives a birational map from S
to an irreducible component of DS . If P1 and P2 are distinct pencils of double
conics on S, then the components of DS obtained this way are distinct because
P1 and P2 do not have a common member by Proposition 3.1. Conversely,
any component of the divisor DS as in the proposition comes from a pencil of
double conics by Proposition 3.14. Therefore, the correspondence is bijective. □

In particular, any Segre surface S has at most two pencils of double conics,
and if S has two such pencils, then the divisor DS is reducible. The number
of pencils of double conics on each Segre surface can be determined from the
Segre symbol of the surface by the following result.

P r o p o s i t i o n 3.17. Pencils of double conics on a Segre surface S are in
one-to-one correspondence with the units

(11), (12), (13), (14)(3.9)

which are contained in the Segre symbol of S.

For example, if the Segre symbol of S is [(12)11], then S has a single pencil of
double conics since the symbol contains one unit (12) among (3.9). Similarly,
if the Segre symbol of S is [(11)(11)1], then S has two pencils of double conics
since the symbol contains a unit (11) twice.

P r o o f. First we explain how we can obtain a pencil of double conics from
any one of the units (3.9). The Segre symbol determines two symmetric matri-
ces of size 5×5 which correspond to two defining quadratic polynomials for the
Segre surface. An entry in the Segre symbol determines submatrices of the two
full matrices. For the unit (12) for example, the two symmetric submatrices
are given by

P(12) =



α 0 0
0 0 α
0 α 1


 , Q(12) =



1 0 0
0 0 1
0 1 0


 ,



[25] segre quartic surfaces 575

where α is a complex number. If the Segre symbol of S contains the unit
(12), then the two full symmetric matrices P and Q which define S have the
matrices P(12) and Q(12) as submatrices respectively. Therefore, the matrix
P − αQ contains P(12) − αQ(12) as a submatrix, and we have

P(12) − αQ(12) =



0 0 0
0 0 0
0 0 1


 .

This means that a projection from CP4 to CP2 which drops two coordinates
maps S to a conic in CP2. The conic has to be irreducible since S is irreducible.
By pulling back tangent lines of the conic by the last projection, we obtain
a pencil of double conics on S. The same argument works when the Segre
symbol contains any one of the units (11), (13) or (14). (For the case (14), the
submatrices are equal to the full matrices.)

In order to provide the reverse direction, assume that a Segre surface S has
a pencil P = {2Ct | t ∈ CP1} of double conics. Then pulling back the conics to
the minimal resolution S̃ of S as in the proof of Proposition 3.14, we obtain a
pencil {C̃t | t ∈ CP1} of rational curves on S̃ whose self-intersection numbers are
zero. The linear system {C̃t+ C̃s | t, s ∈ CP1} induces a rational map S̃ → CP2

whose image is an irreducible conic, and this factors through S via the minimal
resolution. Hence there is a rational map S → CP2 whose image is an irreducible
conic. Since the curves Ct + Cs belong to the class of hyperplane sections, the
last projection S → CP2 is induced from a linear projection CP4 → CP2 as a
restriction of the domain. Let f(X0, . . . , X4) and g(X0, . . . , X4) be quadratic
polynomials that define S, and P andQ the symmetric matrices that correspond
to F and G respectively. Then from the presence of the projection to the conic,
there has to exist constants a and b such that rank (aF + bG) = 3. Now, using
the list of the symbols for all Segre surfaces (see Table 1), it is not difficult
to verify that this occurs only when the symbol includes one of (11), (12), (13)
and (14). □

Rema r k 3.18. From the proof, it follows that the component of DS as in
Proposition 3.16 is contracted to a conic in S∗ by the projection π2 : I(S) → S∗.

Proposition 3.17 implies the following

C o r o l l a r y 3.19. Let S ⊂ CP4 be a Segre surface. The cuspidal locus in S∗

is empty if and only if the Segre symbol of S is either [(11)(11)1] or [(12)(11)].

P r o o f. These two symbols actually contain two units among (3.9). Con-
versely, from the list of symbols for all Segre surfaces as in Table 1, all other
symbols contain at most one unit among (3.9). □
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C o r o l l a r y 3.20. If the symbol of a Segre surface S is among the following
list, then the cuspidal locus in S∗ is an irreducible surface, and it is birational
to S.

[111(11)], [12(11)], [11(12)], [1(13)], [(11)3], [(12)2], [(14)].(3.10)

P r o o f. From the list of symbols for Segre surfaces (Table 1), these seven
symbols are the ones which have exactly one unit among (3.9). By Proposition
3.16, the divisor DS for these Segre surfaces is reducible, and exactly one of the
irreducible components is from the pencil of double conics. From the results
in the previous subsection, the image of the other irreducible component of
DS by the projection π2 : I(S) → S∗ is exactly the cuspidal locus in S∗.
The projection from that irreducible component of DS to the cuspidal locus is
birational, since the hyperplane section of S determined from a generic point of
the component has a single cusp, which means that the projection is generically
one-to-one. □

Segre Sing (S) # lines DS cusp. x y
symbol locus

[11111] none 16 + 0 + 0 irred. irred. - 16 + 0 + 0

[1112] A1 8 + 4 + 0 irred. irred. - 8 + 2 · 4 + 0

[111(11)] 2A1 0 + 8 + 0 red. irred. - 0 + 2 · 8 + 0

[12(11)] 3A1 0 + 4 + 2 red. irred. 2 0 + 2 · 4 + 4 · 2
[1(11)(11)] 4A1 0 + 0 + 4 red. empty 2 0 + 0 + 4 · 4

[113] A2 4 + 4 + 0 irred. irred. - 4 + 3 · 4 + 0

[122] 2A1 4 + 4 + 1 irred. irred. 2 4 + 2 · 4 + 4 · 1
[11(12)] A3 0 + 4 + 0 red. irred. - 0 + 4 · 4 + 0

[14] A3 2 + 3 + 0 irred. irred. - 2 + (4 + 4 + 6) + 0

[1(13)] D4 0 + 2 + 0 red. irred. - 0 + 8 · 2 + 0

[(11)3] 2A1 +A2 0 + 2 + 2 red. irred. 3 0 + 2 · 2 + 6 · 2
[(12)2] A1 +A3 0 + 2 + 1 red. irred. 4 0 + 4 · 2 + 8 · 1

[(11)(12)] 2A1 +A3 0 + 0 + 2 red. empty 4 0 + 0 + 8 · 2
[(14)] D5 0 + 1 + 0 red. irred. - 0 + 16 · 1 + 0

[23] A1 +A2 2 + 3 + 1 irred. irred. 3 2 + (2 + 2 + 3) + 6 · 1
[5] A4 1 + 2 + 0 irred. irred. - 1 + (10 + 5) + 0

Table 1. See Remark 3.21 for details.

Rema r k 3.21. This is a remark for Table 1. For the number of lines, the
first number is that of lines disjoint from singularities of S. The second one
is the number of lines which pass exactly one singularity of S. The third one
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is the number of lines which pass two singularities of S. The x-column is the
multiplicity of the component π−1

1 (l) in the divisor D1, where l is a line passing
two singularities of S. These are calculated in Section 6, and are independent
of the choice of such a line l. Finally, the y-column shows multiplicities of lines,
counted from a realization of each Segre surface as a degeneration from smooth
ones. For instance, for the surface with symbol [12(11)], 0 + 2 · 4 + 4 · 2 means
that the multiplicities of the 4 lines which pass one singularity is two, and
those of the two lines which pass two singularities are 4. We are not presenting
multiplicities of lines which do not pass any singularity, because they are all
one. See the remark at the end of this article for more details and as to why
we present these multiplicities. □

From Corollaries 3.19 and 3.20, the structure of the cuspidal locus in the
dual variety of a Segre surface is well-understood when the surface admits a
pencil of double conics. When the surface does not admit a pencil of double
conics, we already know that the cuspidal locus is exactly the image of the
divisor DS under the projection π2 : I(S) → S∗. The projection from the
divisor DS to the cuspidal locus is birational, by the same reason to the similar
assertion in Corollary 3.20. On the other hand,DS has a structure of generically
finite double covering over S by the projection π1 : DS → S. Thus, if S is a
Segre surface which does not have a pencil of double conics, then the cuspidal
locus in S∗ is birational to a double covering over S. In the next section, we
discuss the branch divisor of this covering for arbitrary Segre surface S.

4 - Lines on Segre surfaces as branch divisors

We begin with the following

P r o p o s i t i o n 4.1. For any Segre surface S, every component of the branch
divisor of the generically finite double covering DS → S is a line lying on S.

P r o o f. By Proposition 3.9, the functionH on I(S) which defines the divisor
D does not vanish identically on the fiber over a point p ∈ Sreg if p is not on a
line on S, and moreover, the quadratic polynomial H(p) does not have a double
root. Let (p,H1) and (p,H2) be the two points corresponding to two roots of
the equation H(p) = 0. Then we have (p,H1), (p,H2) ∈ D but these do not
belong to D1 because H(p) ̸≡ 0 as above. Hence (p,H1), (p,H2) ∈ DS . Since
H1 ̸= H2, this means that p is not a branch point of the projection DS → S. □

We note that the proposition does not assert that a line on S is always a
branch divisor. Indeed, as mentioned in Section 2.1, a sufficient condition for a
line l on S to be a branch divisor is that not all three coefficient functions of H
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vanish identically on l. If this condition is not satisfied, then l is a branch divisor
iff the discriminant of the quadratic function H/ym vanishes on l identically,
where y = 0 is a local equation of the line l on S, andm is the minimal vanishing
order of the three functions along l. In this sections, we determine whether a
line on S is really a branch divisor of the generically finite double covering
DS → S. Conclusions will vary depending on the number of singularities of S
belonging to the line.

4.1 - The case l ∩ Sing (S) = ∅

We begin with some property for lines on S which do not pass any singularity
of S. The number of such lines on each Segre surface is displayed in Table 1.
(See Remark 3.21.)

L emma 4.2. Let S ⊂ CP4 be a Segre surface and l a line lying on S.
Suppose l ∩ Sing (S) = ∅. Then there exists no hyperplane H ⊂ CP4 such that
the divisor H|S includes the double line 2l as a sub-divisor. Further, if a point
p on l is not on another line on S, then there exists no hyperplane section which
has a triple point at p.

P r o o f. For the first assertion, take any hyperplane H containing l, and
writeH|S in the form l+D withD a cubic curve. It suffices to show thatD does
not include the line l as a component. The indeterminacy of the projection from
the line l is eliminated by blowing up CP4 along l, and we obtain a morphism
from the blowup C̃P4 to CP2. As l ∩ Sing (S) = ∅, the strict transform S̃ of
S into C̃P4 is isomorphic to S. Let ϕ : S̃ → CP2 be the restriction of the
morphism C̃P4 → CP2 to S̃. Under the identification S̃ ≃ S, ϕ is naturally
identified with the map from S induced by a 2-dimensional subsystem of |D|,
and this subsystem is base point free. Since l is a (−1)-curve from Proposition
3.1, we have

D2 = (K−1
S − l)2 = 4− 2− 1 = 1 and D. l = (K−1

S − l). l = 1− (−1) = 2.

(4.1)

The former means that the morphism ϕ : S̃ → CP2 is birational. Hence the
restriction ϕ|l cannot be of degree-two, and hence, from the latter of (4.1), the
image ϕ(l) is a conic. This means that no member of the above 2-dimensional
subsystem of |D| can contain l as a component.

For the second assertion, suppose that a point p ∈ l is not on another line
on S, and let H|S be a hyperplane section which has a triple point at p. Then
the hyperplane H has to contain TpS. Hence we may write H|S = l + D as



[29] segre quartic surfaces 579

before, where D is a possibly reducible cubic curve which has at least a double
point at p. If D is reducible or non-reduced, then D has to include a line l′ as
a component. We have l′ ̸= l from what we have already proved in this proof,
and also we have p ̸∈ l′ as we are assuming that p is not on another line on S.
This means that the curve D − l′ is a conic which has a double point at p. So
D− l′ consists of two lines and both of them pass p. This again contradicts the
assumption that p is not on another line on S. Therefore the cubic curve D has
to be non-reduced, irreducible, and singular. This means that D is planer, and
contradicts Proposition 3.3. Therefore no hyperplane section of S can have a
triple point at p. □

By using this lemma, we next show:

P r o p o s i t i o n 4.3. Let S ⊂ CP4 be a Segre surface. If l is a line on S that
does not intersect Sing (S), then π−1

1 (l) ̸⊂ D1 holds, and l is a simple branch
divisor of the generically finite double covering DS → S.

P r o o f. First we show that if l is a line as in the proposition, then for any
point p ∈ l which is not on another line on S, any member of the residual pencil

(TpS)
∗|S − l =

{
D − l |D ∈ (TpS)

∗|S
}

is smooth at p, and any two different members of the same pencil intersect
each other transversely at p. The former follows immediately from Lemma
4.2, because a member of the residual pencil which is singular at p gives a
hyperplane section which has a triple point at p. For the latter, let µ : S′ → S
be a blowup at p, and E the exceptional curve. Again by Lemma 4.2, the
restriction homomorphism

rE : H0
(
µ∗H − 2E

)
−→ H0

(
OE(2)

)
(4.2)

is injective, and therefore, has a 2-dimensional image. Let l′ be the strict
transform of l into S′. Any element of the image of rE vanishes at the point
E ∩ l′. So this point is a base point of the pencil on E formed by the image of
rE . These mean that members of the pencil (TpS)

∗|S − l are naturally in one-
to-one correspondence with points on E. Therefore, any two different members
of the pencil (TpS)

∗|S − l intersect each other transversely at p.

We still fix any point p ∈ l which is not on another line on S. Since S
is smooth at p and l is a line, we can choose non-homogeneous coordinates
(x, y, z, w) on CP4, centered at the point p, such that

TpS = {z = w = 0} and l = {y = z = w = 0}(4.3)
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hold. The pair (x, y) can be used as coordinates on S around p. As in Section
2.1, there exists a pair of holomorphic functions F (x, y) and G(x, y) such that

S = {(x, y, z, w) | z = F (x, y), w = G(x, y)}(4.4)

holds around p. Then F (x, y) = 0 and G(x, y) = 0 are local equations around
p of generators of the pencil (TpS)

∗|S . Let m = (x, y) be the maximal ideal at
p. Then we have F,G ∈ m2, and also F (x, 0) = 0 and G(x, 0) = 0 hold since
l ⊂ S. So we can write F = yf and G = yg for some f, g ∈ m. From the
property on members of the residual pencil (TpS)

∗|S − l obtained in the first
part of the present proof, we may suppose that the curve {f = 0} intersects l
transversely at p. This condition implies fx(0, 0) ̸= 0. We consider the map

(x, y) −→ (x̃, ỹ) :=
(
f(x, y), y

)

defined in a neighborhood of p in S. As fx(0, 0) ̸= 0, the Jacobian of this
map does not vanish at the origin, and hence we can use (x̃, ỹ) as holomorphic
coordinates in a neighborhood of p. For simplicity of presentation, we redefine
x to be the above x̃, so that we have F = xy, and we still write G = yg, g ∈ m.
Then by replacing G by G− cF for a constant c to eliminate the term xy from
G = yg, we may suppose that the leading term of G in a Taylor expansion at
p is of the form ay2 for some constant a. We have a ̸= 0 since otherwise the
zero of G would have a triple point at p, which contradicts Lemma 4.2. Thus,
an expansion of g (= G/y) at p is of the form

ay + h(x, y) with h ∈ m2 and a ̸= 0.(4.5)

Now recall from (2.3) that a defining equation of the divisor D = D1 +DS

on I(S) is given by

Hess (F )λ2 +
(
FxxGyy +GxxFyy − 2FxyGxy

)
λµ+Hess (G)µ2 = 0.(4.6)

Thanks to the above change of coordinates, we have Hess (F ) = −1 ̸= 0, and
this means that π−1

1 (l) ̸⊂ D1. We recall from (2.5) that the discriminant of
(4.6) is given by

(
FxxGyy −GxxFyy

)2
+ 4

(
FxxGxy − FxyGxx

)(
FyyGxy − FxyGyy

)
.(4.7)

In the present situation, it is easy to see that this is written as

4GxxGyy = 4ygxx(2gy + ygyy).(4.8)

This means that the line l = {y = 0} is included in the zero divisor of the
discriminant (4.7) with multiplicity at least one. If this multiplicity is strictly
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greater than one, from (4.8), we obtain a divisibility y | gxx or y | gy. The former
happens iff the Taylor expansion of g at the origin is of the form

b1 + b2x+ b3y + yh̃(x, y),

with h̃ ∈ m and b1, b2, b3 ∈ C. Comparing this with (4.5), we obtain b1 = b2 = 0
and b3 = a. This means g = ay + yh̃ = y(a+ h̃). Hence y | g. Therefore y2 |G
holds, which implies that the hyperplane section {w = 0}|S contains the double
line 2l. This contradicts Lemma 4.2. Hence we have y ̸ | gxx. Furthermore,
again from (4.5), we have gy(0, 0) ̸= 0. Hence we have y ̸ | gy. Thus we have
shown that the discriminant (4.8) is not divisible by y2. Hence the line l is
included in the zero divisor of the discriminant with multiplicity precisely one.
This means that l is a simple branch divisor of DS → S. □

We postpone an immediate implication from Proposition 4.3 until Section 5.

4.2 - The case where l ∩ Sing (S) is a single point

In this subsection, we consider lines on Segre surfaces to which only one
singular point of the surface belongs. Again, the number of such lines on each
Segre surface is displayed in Table 1. (See Remark 3.21.) Each of these lines
are not Cartier divisors on the surfaces. We begin with the following lemma
which is analogous to Lemma 4.2.

L emma 4.4. Let S ⊂ CP4 be a Segre surface and l a line on S. If l ∩
Sing (S) consists of one point, then there exists a unique hyperplane H such
that the divisor H|S is of the form 2l + l′ + l′′, where l′ and l′′ are possibly
identical lines which are different from l. Further, if a point p ∈ l ∩ Sreg does
not belong to any other line on S, then there exists no hyperplane section which
has a triple point at p.

P r o o f. Let µ : S̃ → S be the minimal resolution of the unique singularity
of S lying on l, E the exceptional divisor, and l̃ the strict transform of l into S̃.
Of course, E is not necessarily irreducible. Let Z be the fundamental cycle in
the exceptional divisor E, so that if m is the maximal ideal at the singularity,
for a generic element f ∈ m, the function µ∗f vanishes on E with the same
multiplicity as Z on each component of E. Then as in the same way to showing
the property µ∗m ≃ O(−Z) [2, III (3.8) Proposition], we have

µ∗ (K−1
S ⊗ OS(−l)

)
≃ K−1

S̃
⊗ OS̃(−l̃ − Z).

Let C̃P4 → CP4 be a blowup along l, and S′ ⊂ C̃P4 the strict transform of
S. This time the projection S′ → S is not an isomorphism, but the minimal
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resolution µ factors through the morphism S′ → S. This means that the system∣∣K−1
S̃

− l̃− Z
∣∣ does not have a base point. Using l̃2 = −1 from Proposition 3.1

as well as the properties Z2 = −2 and Z. l̃ = 1, we calculate

(
K−1

S̃
− l̃ − Z

)2
= (K−1

S )2 + l̃2 + Z2 − 2K−1
S̃

. l̃ + 2l̃. Z − 2K−1
S̃

. Z

= 4 + (−1) + (−2)− 2. 1 + 2. 1− 2. 0 = 1,(
K−1

S̃
− l̃ − Z

)
. l̃ = 1− (−1)− 1 = 1.

If ϕ : S̃ → CP2 means the morphism induced by the system
∣∣K−1

S̃
− l̃ − Z

∣∣,
these imply that ϕ is birational and the image ϕ(l̃) is a line. Thus, the divisor
ϕ−1(ϕ(l)) is the unique member of

∣∣K−1
S̃

− l̃ − Z
∣∣ which has l̃ as a component.

The multiplicity of l̃ in this member is precisely one since ϕ is birational. Adding
l̃+Z to ϕ−1(ϕ(l)) and projecting it to S by µ, we obtain the unique hyperplane
section of S which includes the line l with multiplicity precisely two. Write
this hyperplane section as 2l + C, where C is a conic. This conic has to be
reducible since otherwise C will move in S from Remark 3.2, which contradicts
the uniqueness just proved. Therefore C consists of two lines, and the unique
hyperplane section is of the form 2l + l′ + l′′ with l′ ̸= l and l′′ ̸= l as in the
lemma.

For the latter assertion of the lemma, let p ∈ l ∩ Sreg be as in the lemma,
and suppose that H|S is a hyperplane section which has a triple point at p.
The hyperplane section 2l + l′ + l′′ has a triple point, but the triple point is
on a line different from l. So we have H|S ̸= 2l + l′ + l′′. Hence, from the
above uniqueness, H|S is of the form l + D, where D is a cubic curve which
does not contain l as a component. D has at least a double point at p. If D is
reducible, it contains a line, which does not pass p. But then the residual conic
D− l cannot have a double point at p. Hence D is an irreducible singular cubic
curve. Such a curve is planer. This contradicts Proposition 3.3. Therefore, no
hyperplane section has a triple point at p. □

By using this lemma, we show an analogous result to Proposition 4.3.

P r o p o s i t i o n 4.5. Let S ⊂ CP4 be a Segre surface and l a line on S. If
l ∩ Sing (S) consists of one point, then π−1

1 (l) ̸⊂ D1 holds, and l is a branch
divisor of the generically finite double covering DS → S with multiplicity at
least two.

P r o o f. The idea of the proof is similar to Proposition 4.3. First we show
that if the line l is as in the proposition, then for any point p ∈ l ∩ Sreg which
is not on another line on S, we can choose two generators of the residual pencil
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(TpS)
∗|S − l in such a way that one of them has the line l as the unique com-

ponent which passes p, while the other one has a component which intersects l
transversely at p as the unique component which passes p.

First let H1|S be the unique hyperplane section which includes the double
line 2l as in the first half of Lemma 4.4. By the assumption that p does not
belong to another line on S and the latter half of Lemma 4.4, there does not
exist a hyperplane section of S which has a triple point at p. Hence the residual
curve H1|S − 2l does not pass p. Let H2 be any element of the pencil (TpS)

∗

which is different from H1. Then since the multiplicity of H2|S at p is precisely
two by Lemma 4.4, the curve H2|S − l has a unique component which passes p,
and it is smooth at p. If this component were tangent to l at p, by subtracting
a constant multiple of a defining equation of H1 from that of H2, there would
exist a hyperplane H ∈ (TpS)

∗ for which H|S has a triple point at p. This
contradicts Lemma 4.4. Hence the component always intersects l transversely
at p. Thus we have obtained generators of the pencil (TpS)

∗|S − l which satisfy
the above properties.

As in the proof of Proposition 4.3, we can choose non-homogeneous coordi-
nates (x, y, z, w) centered at p, such that the properties (4.3) hold. Let F (x, y)
and G(x, y) be a pair of holomorphic functions such that (4.4) holds. We may
suppose that the hyperplane {z = 0} is exactly the one whose section contains
the double line 2l. Then we have the divisibility y2 |F and y |G. Further, if
we write G = yg(x, y), then g belongs to the maximal ideal m at p. Moreover,
we have gx(0, 0) ̸= 0 from the above transversality for the component different
from l. Hence in the same way to the proof of Proposition 4.3, we may use
(g(x, y), y) as coordinates on S around p instead of (x, y). Again we redefine
x as g(x, y), so that G = xy. We remain to write F = y2f . Then we have
f ̸∈ m since all components of {z = 0} ∩ S passing p are 2l. From G = xy, we
have Hess (G) = −1 ̸= 0, and hence again from (4.6), we have π−1

1 (l) ̸⊂ D1.
Moreover, this time from F = y2f , we obtain that the discriminant (4.7) is
given by

4FxxFyy = 4y2fxx(2f + 4yfy + y2fyy).(4.9)

Since this is divisible by y2, we obtain that the generically finite double covering
DS → S has the line l as a branch divisor and the multiplicity of l as a branch
divisor is at least two. □

We remark that since the function fxx in (4.9) may be divisible by y or
its power, we cannot conclude that the multiplicity of the line l as a branch
divisor is exactly two. Note that 2f + 4yfy + y2fyy is not divisible by y since
f is not. Since quadric polynomials which define a Segre surface are concretely
obtained, it might be possible to obtain the functions F and G in explicit forms
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in the present circumstance, and by using them to determine the multiplicity of
the line as a branch divisor, for each Segre surface and each line of the present
kind. In Section 6, we will do that sort of calculations for lines on Segre surfaces
which pass two singularities of the surfaces.

4.3 - The case where l ∩ Sing (S) consists of two points

Let l be a line on a Segre surface S which passes two singular points of
S. In this subsection, we investigate the structure of hyperplane sections of
S which belong to the pencil (TpS)

∗|S for some point p ∈ l ∩ Sreg. Note that
since S is quartic, no three singularities of S belong to the same line lying on
S. Note also that the line joining two singularities of S does not necessarily
lie on S. We begin with the following property which is characteristic to the
present kind of lines.

L emma 4.6. Let S ⊂ CP4 be a Segre surface and l a line on S. If l ∩
Sing (S) consists of two points, then the tangent plane TpS is independent of
the choice of a point p ∈ l ∩ Sreg. In particular, for any such a point p and
any hyperplane H ∈ (TpS)

∗, the section H|S includes the double line 2l as a
sub-divisor.

P r o o f. Let p1 and p2 be the two singularities of S on l, and µ : S̃ → S
the minimal resolution of p1 and p2. Let l̃ be the strict transform of l into S̃,
and Z1 and Z2 the fundamental cycles over p1 and p2 respectively. Then in the
same way to the proof of Lemma 4.4, we have

µ∗ (K−1
S ⊗ OS(−l)

)
≃ K−1

S̃
⊗ OS̃(−l̃ − Z1 − Z2),

and the system
∣∣K−1

S̃
− l̃ − Z1 − Z2

∣∣ does not have a base point. Similarly, we

also have
(
K−1

S̃
− l̃ − Z1 − Z2

)2
= 1, but this time we have

(
K−1

S̃
− l̃ − Z1 − Z2

)
. l̃ = 1− (−1)− 1− 1 = 0.

If ϕ : S̃ → CP2 means the morphism induced by the 2-dimensional system∣∣K−1
S̃

− l̃−Z1−Z2

∣∣, these imply that ϕ is a birational morphism and it contracts

the curve l̃ to a point. Hence the system
∣∣K−1

S̃
− 2l̃ − Z1 − Z2

∣∣ (note that l̃ is

further subtracted) is a pencil. Adding 2l̃ + Z1 + Z2 to the members of this
pencil and projecting them to S by µ, we obtain a pencil of hyperplane sections
which contains the double line 2l as fixed components. Clearly, this pencil is
equal to the pencil (TpS)

∗|S . Since this holds for any p ∈ l ∩ Sreg, we obtain
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that the pencil (TpS)
∗|S is independent of a choice of the point p ∈ l ∩ Sreg.

Hence the tangent plane TpS is independent of a choice of a point p ∩ Sreg. □

It is possible to obtain more detailed information about the structure of the
hyperplane sections by H ∈ (TpS)

∗, in the situation of Lemma 4.6 as follows.
We notice that from Table 1, when two singularities of S belong to a line, the
types of them are {A1, A1}, {A1, A2} or {A1, A3}.

L emma 4.7. Let S and l be as in Lemma 4.6, and p ∈ l ∩ Sreg a point
such that no other line on S passes p. Then there exists a unique hyperplane
section of S whose multiplicity at p is at least three. Further, we have:

� If the singularities on l are {A1, A1}, then such a section is of the form
2l+C, where C is an irreducible conic that intersects l transversely at p.

� If the singularities on l are {A1, A2}, then such a section is of the form
3l + l′ where l′ is a line different from l.

� If the singularities on l are {A1, A3}, then such a section is of the form 4l.

P r o o f. Because not every member of the pencil (TpS)
∗|S has a triple point

at p by Lemma 3.6, there exists at most one member of the pencil which has a
triple point at p. Let µ : S′ → S be blowup at p, E the exceptional curve, and
l′ the strict transform of l. By Lemma 4.6, any member of the pencil (TpS)

∗|S
contains the double line 2l. So the strict transform to S′ of any member of
the pencil (TpS)

∗|S has at least a double point at E ∩ l′. This implies that the
image of the restriction homomorphism

rE : H0
(
µ∗H − 2E

)
−→ H0

(
OE(2)

)

is at most 1-dimensional. Further the kernel of rE is at most 1-dimensional
from Lemma 3.6. Hence rE has exactly 1-dimensional kernel. This means that
the pencil (TpS)

∗|S has a unique member whose multiplicity at p is at least
three.

Next in order to show the latter half of the proposition, we change the
meaning of the above notations and let µ : S̃ → S, l̃, Z1, Z2 have the same
meaning as in the proof of Lemma 4.6. Further, for brevity, we put L :=
K−1

S̃
− l̃−Z1 −Z2, and let ϕ : S̃ → CP2 again mean the morphism induced by

the 2-dimensional linear system |L|. Recall that ϕ is birational and contracts l̃
to a point.

First suppose that both singularities on l are A1-points as in the first item in
the lemma. Then each of the two divisors Z1 and Z2 is just a single (−2)-curve
respectively. We readily have

L.Z1 = L.Z2 = 1.
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Therefore both ϕ(Z1) and ϕ(Z2) are lines. By the factorization theorem of
birational morphism between smooth surfaces, the morphism ϕ is a composition
of blowups. We have l̃2 = −1 from Proposition 3.1. Further, since S̃ is a weak
del Pezzo surface, there does not exist a smooth rational curve on S̃ whose
self-intersection number is less than (−2). From these, we can readily show
that no curve intersecting l̃ is contracted by ϕ. Hence, in a neighborhood of
l̃, ϕ is exactly the blow down of the (−1)-curve l̃. This implies that for any
line ℓ ⊂ CP2 through the point ϕ(l̃), the preimage ϕ−1(ℓ) contains the curve
l̃ by multiplicity precisely one. Hence no member of the system |L| contains l̃
with multiplicity strictly greater than one. Therefore no member of the system
|K−1

S | contains l̃ by multiplicity strictly greater than two. So we may write the
unique member of the pencil (TpS)

∗|S which has a triple point at the point p
as 2l + C, where C is a conic which goes through p. Because we are assuming
non-existence of a line through p, the conic C cannot be reducible. If C is
tangent to l at the point p, then the curve l + C would lie on the 2-plane
which is spanned by C, and this contradicts Proposition 3.3. Hence the conic
C intersects l transversely at a unique point. This proves the first item in the
proposition.

Next suppose that one of the two singularities on l is an A2-point as in the
second item of the proposition. We may suppose that the fundamental cycle
Z1 is over the A2-point, and we write it as Z1 = E1 + E2, where E2 is the
component which intersects l̃. The cycle Z2 is a single (−2)-curve. We readily
have

L. l̃ = L.E2 = 0, L.E1 = L.Z2 = 1.

These mean that not only l̃ but also E2 are contracted to a point by the bira-
tional morphism ϕ : S̃ → CP2, and E1 and Z2 are mapped to lines by ϕ. Further
we have ϕ(E1) ̸= ϕ(Z2) because ϕ is birational. Furthermore, in a similar way
to the case of {A1, A1}, using l̃2 = −1 and E2

2 = −2, we can show that in a
neighborhood of the chain l̃+E2, the birational morphism ϕ contracts exactly
these two curves. From the above self-intersection numbers, ϕ blows down l̃
first and next E2. This implies that the member ϕ−1

(
ϕ(Z2)

)
∈ |L| contains l̃

by multiplicity precisely two. Adding l̃ + Z1 + Z2 to it and taking the image
by µ : S̃ → S, we obtain a hyperplane section of S which is of the form 3l+ l′,
where l′ is a line different from l. Thus we have obtained the second item in
the proposition.

Finally, suppose that one of the two singularities on l is an A3-point, and
assume that the chain Z1 = E1 + E2 + E3 is the fundamental cycle over this
singularity, with the component E3 (resp.E2) intersecting l̃ (resp.E3). Then
this time we have

L. l̃ = L.E2 = L.E3 = 0, L.E1 = L.Z2 = 1.
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These mean that the chain l̃+E3+E2 is contracted to a point by ϕ : S̃ → CP2,
and E1 and Z2 are mapped to lines by ϕ. Further these lines are mutually
different by the same reason to the A2-case. Since l̃

2 = −1 and E2
3 = E2

2 = −2,
the birational morphism ϕ blows down components of the chain l̃ + E3 + E2

in this order. It follows that the member ϕ−1(ϕ(Z2)) ∈ |L| contains l̃ by
multiplicity precisely three. Adding l̃ + Z1 + Z2 to it and taking the image by
the minimal resolution µ : S̃ → S, we obtain a hyperplane section of S which
is of the form 4l. Thus, we obtain the third item in the proposition. □

Note that in the proof for the second and third items, absence of a line
through the point p is not used.

By using Lemma 4.6, we prove the following result about the divisor D1.

P r o p o s i t i o n 4.8. Let S ⊂ CP4 be a Segre surface and l a line on S. If
l ∩ Sing (S) consists of two points, then π−1

1 (l) is a component of the divisor
D1, and its multiplicity is at least two.

P r o o f. Again an idea of the proof is similar to Proposition 4.3. Pick any
point p ∈ l ∩ Sreg. We choose homogeneous coordinates (x, y, z, w) on CP3

centered at p, such that the conditions (4.3) hold, and let F (x, y) and G(x, y)
be holomorphic functions around p such that (4.4) holds. By Lemma 4.6, we
can write F = y2f and G = y2g for some holomorphic functions f and g around
p. Then by elementary calculations, we have

y2 |Hess (F ), y2 |Hess (G) and y2 |FxxGyy +GxxFyy − 2FxyGxy.

Thus all coefficient functions of the defining function H in (2.3) of the divisor
D on I(S) are divisible by y2, and this implies that π−1(l) is contained in the
divisor D1 by multiplicity at least two. □

We remark that when both of the two singularities on the line l are A1-
points as in the first item in Lemma 4.7, by making use of the unique hyperplane
section which has a triple point at p ∈ l ∩ Sreg, it is possible to show that the
multiplicity of the component π−1

1 (l) in D1 is precisely two, in a similar way to
Propositions 4.3 and 4.5. But if one of the two singularities on the line l is not
an A1-point, Lemma 4.7 does not give an element of the pencil (TpS)

∗|S whose
equation can be assumed to be in a sufficiently informative form (like xy) as in
the cases of Propositions 4.3 and 4.5, and by this reason we cannot determine
the precise multiplicity of the component π−1

1 (l) in D1. By a similar reason, it
seems more difficult to determine whether such a line l is really a branch divisor
of the generically finite double covering DS → S. In Section 6, we determine
the precise multiplicity of π−1(l) by using explicit defining polynomials of Segre
surfaces, and show that the lines in question are never branch divisors of the
double covering.
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5 - Conclusions, and singularity of the cuspidal locus

5.1 - Irreducibility of the cuspidal locus

Let S be a Segre surface. From Corollaries 3.19 and 3.20, we already know
that the cuspidal locus in S∗ is empty if the Segre symbol of S is either
[(11)(11)1] or [(11)(12)], and that the cuspidal locus is irreducible and bira-
tional to S if the symbol contains exactly one of the four units (11), (12), (13)
and (14). For the remaining Segre surfaces, it is already easy to show the
following conclusion.

P r o p o s i t i o n 5.1. If the Segre symbol of a Segre surface S is among the
seven ones listed in (5.1), then the divisor DS and the cuspidal locus in S∗ are
irreducible, and they are mutually birational. In particular, the cuspidal locus
is birational to a double covering over S.

[11111], [1112], [113], [122], [14], [23], [5].(5.1)

P r o o f. The seven symbols (5.1) are characterized by the property that they
do not contain any units among (11), (12), (13) and (14). By Proposition 3.17,
this condition is equivalent to absence of a pencil of double conics on the Segre
surface. From Proposition 3.12 and the results in Section 3.3, absence of a
pencil of double conics means that whole of the divisor DS is mapped precisely
to the cuspidal locus in S∗. Further, as presented in Table 1, the Segre surfaces
having these seven symbols are exactly the ones which have a line that does not
pass any singularity of the surfaces. By Proposition 4.3, these lines are simple
branch divisors of the generically finite double covering DS → S. Therefore
the divisor DS is irreducible for these seven kinds of Segre surfaces.

It remains to show that the projection from DS to the cuspidal locus in S∗

is birational. But this is immediate from the fact that for a generic point (p,H)
of the divisor DS , the hyperplane section H|S has a single ordinary cusp as its
all singularity. □

Irreducibility of the divisor DS for these Segre surfaces are reflected in
Table 1.

Combined with Corollaries 3.19 and 3.20, Proposition 5.1 gives the following
result.

C o r o l l a r y 5.2. The cuspidal locus in the dual variety of any Segre surface
is either empty or an irreducible surface.

For the structure of the cuspidal locus beyond irreducibility for Segre sur-
faces in Proposition 5.1, the cuspidal locus is birational to the divisor DS in
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I(S), and DS has a structure of generically finite double covering over S. From
Proposition 4.1, any component of the branch divisor of the double covering is
a line on S, and from Propositions 4.3 and 4.5, any line on S which passes at
most one singularity of S is actually a branch divisor of the covering. So what
is still missing is whether lines through two singular points of S are components
of the branch divisor of the covering DS → S.

If S is a Segre surface whose symbol is among (5.1), and S has a ling passing
two singular points of the surface, then from Table 1, the symbol of S is either
[221] or [32]. In Appendix, we will show by explicit calculations using defining
equations of Segre surfaces, that the lines through two singular points of the
surfaces are never a component of a branch divisor of DS → S. This implies
the following

P r o p o s i t i o n 5.3. Let S be a Segre surface whose symbol is among (5.1).
Then the branch divisor of the generically finite double covering DS → S con-
sists of all the lines which pass through at most one singular point of S.

Next, by using the results obtained so far, we explicitly construct a surface
which is birational to the cuspidal locus in S∗ for a smooth Segre surface S.

A smooth Segre surface is nothing but a smooth del Pezzo surface of degree
four. It is well-known that any smooth del Pezzo surface of degree four can be
realized as a 5 points blown up of CP2, where 5 points are in a general position.
In the following, instead of using this realization, we make use of a realization
of smooth Segre surfaces as 4 points blown up of CP1 ×CP1. This seems more
economical than to work under the above realization.

Choose 4 points on CP1×CP1 such that no two points are on the same (1, 0)-
curve nor on the same (0, 1)-curve, and such that there exists no (1, 1)-curve
to which all the 4 points belong. Let S → CP1 ×CP1 be a blowing up at these
4 points. Then the anti-canonical system |K−1

S | gives a projective embedding
S ⊂ CP4 which realizes S as a smooth complete intersection of two quadrics.
Thus, S is a smooth Segre surface. If e1, e2, e3 and e4 are the exceptional curves
of the blowup, the following 16 curves are all (−1)-curves on S:

e1, e2, e3, e4,(5.2)

(1, 0)− e1, (1, 0)− e2, (1, 0)− e3, (1, 0)− e4,(5.3)

(0, 1)− e1, (0, 1)− e2, (0, 1)− e3, (0, 1)− e4,(5.4)

(1, 1)− e234, (1, 1)− e134, (1, 1)− e124, (1, 1)− e123,(5.5)

where in the last line, e234 means e2 + e3 + e4 and so on. All these curves are
mapped to lines in CP4 isomorphically by the anti-canonical system. By adding



590 nobuhiro honda and ayato minagawa [40]

up all these 16 classes, we obtain the class

(8, 8)− 4e1234.(5.6)

By Propositions 4.3 and 5.3, this is exactly the class of the branch divisor of
the generically finite double covering DS → S for the smooth Segre surface S.
The class (5.6) is exactly the class 4K−1

S . Moreover, since each component of
the branch divisor is a line, all their intersections are transverse. Therefore, any
singularity of the branch divisor is an A1-point. Hence, any singularity of the
double covering branched along all lines on S is an A1-point. If π1 denotes the
covering map as before, the canonical class of this double covering is given by

π∗
1

(
KS +

1

2
· 4K−1

S

)
≃ π∗

1K
−1
S .

Since K−1
S is ample, this means that the canonical class of the double covering

is big. In particular, we obtain

P r o p o s i t i o n 5.4. The cuspidal locus in S∗ of any smooth Segre surface S
is an irreducible surface of general type.

5.2 - Singularities of the cuspidal locus

Finally, we discuss singularities of the cuspidal locus in the dual variety S∗

when the Segre surface S has a line that does not go through any singularity
of S (namely when the divisor DS is irreducible). By Proposition 4.3, such a
line l is always a simple branch divisor of the generically finite double covering
DS → S. In particular, the divisor DS is smooth at generic points of the
ramification curve over l. In this subsection, we first identify the image of this
ramification curve under the projection π2 in a concrete form, and next show
that the image π2(DS), namely the cuspidal locus in S∗, has ordinary cusps
along the image of the ramification curve over l. For these purposes, we first
prove a few lemmas.

L emma 5.5. If a line l on a Segre surface S does not pass any singularity
of S, then π−1

1 (l) ≃ l × CP1 holomorphically.

P r o o f. Take any p ∈ Sreg and let Np ≃ C2 denote the fiber of the normal
bundle NSreg/CP4

→ Sreg over the point p. The fiber of the projection π1 :
I(S) → S over p is identified with P(Np) ≃ CP1. Therefore we have a natural
isomorphism

π−1
1 (l) ≃ P

(
NSreg/CP4

|l
)
.
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Take a pair of quadrics Q1 and Q2 in CP4 which satisfy Q1 ∩ Q2 = S. Then
we have an isomorphism NSreg/CP4

≃ NSreg/Q1
⊕ NSreg/Q2

. Further, we have
NSreg/Q1

|l ≃ [Q2]|l ≃ O(2) and similarly NSreg/Q2
|l ≃ O(2). Hence, NSreg/CP4

|l
≃ O(2)⊕2. These mean the assertion of the lemma. □

L emma 5.6. Let S and l be as in the previous lemma, and l∗ the 2-plane in
CP∗

4 formed by hyperplanes which contain the line l. Then we have π2
(
π−1
1 (l)

)
= l∗.

P r o o f. Suppose (p,H) ∈ π−1
1 (l). Then p ∈ l and TpS ⊂ H. As l ⊂ TpS,

these mean l ⊂ H. Namely H ∈ l∗. Hence π2
(
π−1
1 (l)

)
⊂ l∗. To show the reverse

inclusion, it suffices to show that the image π2
(
π−1
1 (l)

)
is 2-dimensional because

l∗ is irreducible. If p is any point of l, then the fiber π−1
1 (p) is identified with a

line in CP∗
4 formed by hyperplanes containing TpS. So, if the image π2

(
π−1
1 (l)

)
would be 1-dimensional, the tangent plane TpS has to be independent of a choice
of a point p ∈ l. If this is actually the case, any H containing the common
2-plane has to satisfy H|S ≥ 2l. But by Lemma 4.2, such a hyperplane does
not exist. Hence the tangent plane TpS really varies as the point p moves
on l. □

The next lemma identifies the map π−1
1 (l) → l∗ in a concrete form:

L emma 5.7. Let l ⊂ S be as in Lemma 5.5, so that π−1
1 (l) ≃ CP1 × CP1.

Then the restriction of the projection π2 : I(S) −→ S∗ to the divisor π−1
1 (l) can

be identified with a quotient map from π−1
1 (l) under the involution on π−1

1 (l) ≃
CP1 × CP1 given by the reflection (x, y) → (y, x).

P r o o f. By the previous lemma, the image π2
(
π−1
1 (l)

)
is a 2-plane. It is well-

known that any degree-two morphism from CP1×CP1 to CP2 is identified with
the quotient map under the reflection as in the lemma. Hence it is enough to
show that for a generic point H ∈ l∗, there exist precisely two points p, q ∈ Sreg

which satisfy (p,H) ∈ π−1
1 (l) and (q,H) ∈ π−1

1 (l). The condition (p,H) ∈
π−1
1 (l) is equivalent to the conditions p ∈ l and TpS ⊂ H, and therefore, the

presence of the above two points (p,H) and (q,H) is equivalent to the condition
that the hyperplane H is tangent to S at p and q. By [7, Proposition 3.12],
if H is generic in the 2-plane l∗, then H|S is of the form l + C, where C is a
smooth rational cubic curve intersecting l transversely at exactly two points.
Hence H is indeed tangent to S at two points on l. □

By Lemma 5.7, the ramification divisor of the projection π−1
1 (l) → l∗ can

be identified with the diagonal of π−1
1 (l) ≃ CP1 × CP1, and the branch divisor

is a smooth conic in the 2-plane l∗. In the sequel, we denote these ramification
divisor and branch divisor by ∆ and ∆ respectively. The divisor DS is smooth
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at generic points of the ramification divisor ∆. For a generic point (p,H)
belonging to ∆, the structure of the hyperplane section H|S is described as
follows.

L emma 5.8. Let (p,H) ∈ ∆ be generic. Then the section H|S is of the
form l + C, where C is a rational normal cubic curve which intersects l at a
unique point, and which is tangent to l at the point with order two.

P r o o f. By the two projections π1 and π2, there are natural isomorphisms
l ≃ ∆ ≃ ∆. As the conic ∆ is the branch divisor of the double covering
π−1
1 (l) → l∗, a hyperplane H belongs to ∆ iff the residual cubic curve C =

H|S − l satisfies the property that C ∩ l consists of a single point. Let p be this
point. Of course this is a smooth point of S, and p ∈ l and H ∈ ∆ are identified
under the above isomorphism l ≃ ∆. To show the lemma, it is enough to show
that if the point p does not belong to any other line on S, then the residual
curve C satisfies the properties in the proposition.

For intersection numbers, we have

C. l = (H|S − l). l = H. l − l. l = 1− (−1) = 2,(5.7)

where H. l means the intersection number taken in CP4. Since C ∩ l = {p} as
above, this means that C and l do not intersect transversely at p. If C would
be reducible, then from the above assumption on the point p, C has to have a
smooth conic D as a component and D has to be tangent to l at p. Then the
curve l +D lies on a 2-plane, and this contradicts Proposition 3.3. Hence C is
an irreducible cubic curve through p which does not intersect transversely at p.
Moreover, again by Proposition 3.3, C has to be non-planer. Therefore, C is
a non-degenerate irreducible cubic curve in CP3. Hence it has to be a rational
cubic curve, and by (5.7), it has to be tangent to l at p with order two. □

Thus, the singularity of hyperplane sections of S given by generic points of
the conic ∆ is not an ordinary cusp but a tacnode. So it would be natural to
expect that the cuspidal locus is singular along the conic ∆. The next result
shows that this is actually the case and identify the singularity along ∆.

P r o p o s i t i o n 5.9. Let S ⊂ CP4 be a Segre surface and l ⊂ S a line
satisfying l ∩ Sing (S) = ∅. Then the cuspidal locus in S∗ has ordinary cusps
along generic points of the conic ∆ in the 2-plane l∗.

P r o o f. Let H ⊂ CP4 be a generic hyperplane belonging to the conic ∆, so
that by the previous proposition, the section H|S is of the form l + C, where l
is a line and C is a rational normal cubic that is tangent to l at a point. Let p
be the tangent point. Similarly to the situation in Proposition 3.15, the curve
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l+C is singular only at p, and the type of the singularity is a tacnode. On this
reducible curve, we still have an exact sequence

0 −→ N ′
l+C −→ Nl+C −→ T 1

l+C −→ 0.(5.8)

By Proposition 3.1 and Lemma 5.8, we have l2 = −1, C2 = 1, and l. C = 2.
Hence we obtain

Nl+C |l ≃ [l + C]|l ≃ Ol(1) and Nl+C |C ≃ [l + C]|C ≃ OC(3).(5.9)

Let J be the Jacobian ideal sheaf of the curve l + C, and write Jl+C for
J |l+C . Let ν : l ⊔ C → l + C be the normalization of l + C. Then the
calculations in the proof of Proposition 3.15 works without any change, and as
in (3.6), we obtain

(
ν∗Jl+C

)
|C ≃ OC(−2) and

(
ν∗Jl+C

)
|l ≃ Ol(−2).

From these and (5.9), we obtain

ν∗N ′
l+C ≃ Ol(−1) ⊔ OC(1),

and hence, also an exact sequence

0 −→ N ′
l+C −→ ν∗

(
Ol(−1) ⊔ OC(1)

)
−→ Cp −→ 0.(5.10)

From this, we again have

H0
(
N ′

l+C

)
≃ C and H1

(
N ′

l+C

)
= 0.

Hence we again obtain that any first order displacement of the curve l + C in
S is unobstructed, and that the versal family of equi-singular displacements of
l + C in S is 1-dimensional. From (5.8), we also obtain an exact sequence

0 −→ H0
(
N ′

l+C

)
−→ H0

(
Nl+C

)
−→ H0

(
T 1
l+C

)
−→ 0.(5.11)

For the versal deformation of the tacnode, as discussed right before the
proof of Theorem 2.3, the versal family is smooth and 3-dimensional. In the
notation and argument there, the fiber of the lift of the versal family by the
Galois cover (t1, t2, t3, t4) → (s1, s2, s3) has an A2-singularity iff (t1, t2, t3, t4) is
equal to

(t, t, t,−3t), (t, t,−3t, t), (t,−3t, t, t) or (−3t, t, t, t)

for some t ̸= 0. Therefore, the fiber of the versal family over a point (s1, s2, s3)
has an A2-singularity iff it is of the form (−6t2,−8t3,−3t4) for some t ̸= 0.
Similarly to the notations we used in Section 2.2, let A2 ⊂ C3 be the locus
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formed by points in this form. Then the closure of A2 has an A2-singularity
at the origin, since, up to a non-zero constant multiple to each factor, the map
(z1, z2) −→ (z1, z2, z

2
1) gives an isomorphism from a curve with an ordinary

cusp to the above closure.

As in the proof of Theorem 2.3, take a small neighborhood B of the point
H ∈ ∆ in CP∗

4, and regard B as a parameter space for displacements of the
hyperplane section l + C in S. Then by versality, we have an induced holo-
morphic map f : B → C3, and the differential (df)H is identified with the
map H0

(
Nl+C

)
−→ H0

(
T 1
l+C

)
in (5.11). The intersection of B with the cus-

pidal locus in S∗ is exactly f−1(A2 ∪ {H}). By the surjectivity of the map
H0

(
Nl+C

)
−→ H0

(
T 1
l+C

)
and the above property about the closure of the lo-

cus A2, the cuspidal locus has A2-singularities along f−1(0). Since sections of
S by hyperplanes belonging to the conic ∆ have tacnode by Lemma 5.8, f−1(0)
is equal to ∆ ∩ B. Thus, the cuspidal locus has A2-singularities along generic
points of ∆. □

Proposition 5.9 in particular means that, for a Segre surface S which has a
line not passing any singularity of S, the cuspidal locus in S∗ is non-normal,
and that the projection π2 : DS → π2(DS) gives the normalization along the
conic ∆.

6 - Appendix. Explicit calculations for the cuspidal locus

Here is a list of Segre symbols for all Segre surfaces that have a line which
passes two singularities of the surfaces: A Segre surface with symbol [(11)111]

symbol [(11)(11)1] [2(11)1] [221] [3(11)] [32] [(21)(11)] [2(21)]
singularities 4A1 3A1 2A1 A2 + 2A1 A1 +A2 A3 + 2A1 A1 +A3

has two singularities, but it is not included in this list because the line through
these points does not lie on the surface.

In this subsection, to each surface in the above list, by making use of the
common tangent plane to the surface along the line l connecting two singulari-
ties of S (see Lemma 4.6), we calculate the two functions F and G in concrete
forms to some extent. Next, we determine the precise multiplicity of the divisor
π−1
1 (l) as a component of D1, and show that the line l is never a branch divisor

of the generically finite double covering DS → S. Applying this to the cases
where the Segre symbol is [32] or [221], this in particular proves Proposition
5.3 about the branch divisor of the covering DS → S.

In the following argument, (X0, X1, X2, X3, X4) are homogeneous coordi-
nates on CP4. For brevity, we use the symbol ei (0 ≤ i ≤ 4) to mean the point
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of CP4 whose unique non-zero entry is the i-th one. For two given functions
F (x, y) and G(x, y), we put

K := FxxGyy + FyyGxx − 2FxyGxy

for simplicity, so that the defining equation of the divisor D = D1+DS in the
incidence variety I(S) is given by

H = Hess (F )λ2 +Kλµ+Hess (G)µ2.

The way how one can derive the normal forms for the pair of the defining
quadratic polynomials for each type of Segre surface is briefly explained in [7,
Section 3.2].

6.1 - Appendix

First we discuss a Segre surface S whose symbol is [(11)(11)1]. This would
be the easiest case in actual calculations. Let α, β, γ be mutually different
complex numbers. The normal forms for the equations of S on CP4 are given by

αX2
0 + αX2

1 + βX2
2 + βX2

3 + γX2
4 = X2

0 +X2
1 +X2

2 +X2
3 +X2

4 = 0.

It is more convenient to make an obvious coordinate change and rewrite the
equations as

αX0X1 + βX2X3 + γX2
4 = X0X1 +X2X3 +X2

4 = 0.

The surface S has exactly four singularities, and all of them are A1-points.
They are concretely given by ei with i = 0, 1, 2, 3. The involution of CP4 which
exchanges X0 and X1 keeps S invariant, and it exchanges the two A1-points e0
and e1. Similarly, the involution of CP4 which exchanges X2 and X3 keeps S
invariant, and it exchanges the two points e2 and e3. Among six lines connecting
the four A1-points, the four lines e0e2, e0e3, e1e2 and e1e3 lie on S. The group
generated by the above two involutions on S acts transitively on the set of these
four lines. So in the following, we choose a line l := e0e2 = {X1 = X3 = X4 = 0}
and calculate an equation of the divisor D in the incidence variety I(S), in a
neighborhood of points of π−1

1 (l). The common tangent plane to S along points
on l\{e0, e2} is given by

T = {X1 = X3 = 0}.(6.1)

In the sequel, we work on the open subset {X0 ̸= 0} = C4 and use xi =
Xi/X0, 1 ≤ i ≤ 4, as coordinates on it. Then from (6.1), we may use (x, y) :=
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(x2, x4) as coordinates on S around any point of l\{e0, e2}. The two points
e0 and e2 are excluded since these are singular points of S. On S, we have
l = {y = 0}. From the second equation of S, we obtain

x1 = −xx3 − y2.(6.2)

Substituting this into the affine form of the first equation of S, we obtain

(β − α)xx3 + (γ − α)y2 = 0.(6.3)

We put
F = x3 and G = x1.

From (6.3) and (6.2), we obtain

F =
α− γ

β − α

y2

x
, G =

γ − β

β − α
y2.

Thus we have obtained the two functions F and G in explicit forms. (The
divisibility of F and G by y2 follows from Lemma 4.6 from the beginning.)
From these, we can compute

Hess (F ) = Hess (G) = 0, K = FxxGyy =
4(α− γ)(γ − β)

(β − α)2
y2

x3
.

Hence, we obtain

H = Kλµ =
4(α− γ)(γ − β)

(β − α)2
y2

x3
λµ.

Since this is divisible precisely by y2, we obtain that the component π−1
1 (l) is

included in D and D1 with multiplicity precisely two. Also we obtain that the
equation of the divisor DS = D −D1 is simply λµ = 0. This implies that the
generically finite double covering DS → S does not have the line l as a branch
divisor.

6.2 - Appendix

Next, we discuss a Segre surface S whose symbol is [2(11)1]. After making
a simple coordinate change as in the previous case, equations of S are given by

2αX0X1 +X2
1 + βX2X3 + γX2

4 = 2X0X1 +X2X3 +X2
4 = 0,

where α, β, γ are again mutually different complex numbers. This surface has
exactly three singularities, and they are the points e0, e2 and e3. All of them are
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A1-points. The involution of CP4 which exchangesX2 andX3 keeps S invariant,
and it exchanges e2 and e3. The two lines e0e2 and e0e3 are contained in S, and
the line e2e3 is not. The first two lines are exchanged by the above involution.
In the following, we choose the line l := e0e2 = {X1 = X3 = X4 = 0} and
calculate an equation of the divisor D around points over l\{e0, e2}. The
common tangent plane to S along points on l\{e0, e2} is given by

T = {X1 = X3 = 0}.(6.4)

In the sequel, we again work on the open subset {X0 ̸= 0} = C4 and use
xi = Xi/X0, 1 ≤ i ≤ 4, as coordinates on it. We put (x, y) := (x2, x4) and use
these as local coordinates on S around any point on l\{e0, e2}. On S, the line
l is again defined by y = 0. From the affine form of the second equation, we
obtain

x1 = −1

2

(
xx3 + y2

)
.(6.5)

Substituting this into the affine form of the first equation, we obtain

x2x23 + 2x
{
2(β − α) + y2

}
x3 + y2

{
y2 + 4(γ − α)

}
= 0.(6.6)

We put

F = x3, G = −2x1.

Then (6.6) and (6.5) can be written respectively as

x2F 2 + 2x
{
2(β − α) + y2

}
F + y2

{
y2 + 4(γ − α)

}
= 0(6.7)

and

G = xF + y2.(6.8)

Any hyperplane section of S containing the common tangent plane (6.4) in-
cludes 2l as a subdivisor, so we may put F = y2f and G = y2g for some
holomorphic functions f and g. Substituting these into (6.7) and (6.8) and
dividing by y2, we obtain

x2y2f2 + 2x
{
2(β − α) + y2

}
f +

{
y2 + 4(γ − α)

}
= 0(6.9)

and

g = xf + 1.(6.10)
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Differentiating (6.9) by x and using α ̸= β, we readily obtain a divisibility

y | (f + xfx).(6.11)

If we write f as f = u(x) + yv(x, y), we have

f + xfx = (u+ xu′) + y(v + xvx).

From (6.11), this in particular means u + xu′ = 0. Since the function f(x, y)
is known to be holomorphic only in a neighborhood of a point on l which is
different from singularities of S, and since the singularity is the origin (x, y) =
(0, 0) in the present coordinates, we have to allow a pole for u = u(x) at x = 0.
From the last equation u+ xu′ = 0, this means u(x) = c

x for some constant c.
So we have

f =
c

x
+ yv(x, y).(6.12)

If c = 0, we would obtain y | f , which means y3 |F . This implies that the section
of S by the hyperplane H = {X3 = 0} has a triple line 3l as component. But
this cannot happen because both of the singularities on l are A1-points, and
from Lemma 4.7, no hyperplane section contains the triple line 3l. Hence, c ̸= 0
holds. Differentiating (6.12) twice by x, we obtain

fxx =
2c

x3
+ yvxx.(6.13)

This means that fxx is not divisible by y. We will soon use these to determine
exact multiplicity of the component π−1

1 (l) in the divisor D1.
From F = y2f , we easily obtain

Hess (F ) = y2
{
fxx(2f + 4yfy + y2fyy)− (2fx + yfxy)

2
}
,(6.14)

and similarly for Hess (G), meaning y2 |Hess (F ) and y2 |Hess (G). From (6.14),
it follows that

y3 |Hess (F ) ⇐⇒ y | (ffxx − 2f2
x).

From (6.12) and (6.13), we readily obtain

ffxx ≡ 2c2

x4
mod y and f2

x ≡ c2

x4
mod y.

These mean y | (ffxx − 2f2
x). Hence we obtain y3 |Hess (F ).

Recall that we have written FxxGyy + FyyGxx − 2FxyGxy as K. Next we
show y2 |K and y3 ̸ |K. We have Fxx = y2fxx, and since y ̸ | fxx from (6.13),
we have y2 |Fxx and y3 ̸ |Fxx. From (6.10) and (6.12), we readily obtain

g = c+ xyv + 1.(6.15)



[49] segre quartic surfaces 599

If c = −1, then y | g follows and hence y3 |G. Again this contradicts Lemma
4.7. Hence c ̸= −1. The constant term of Gyy is easily seen to be 2(c + 1) ̸=
0. From these, we obtain y2 |FxxGyy and y3 ̸ |FxxGyy. Also, from (6.15),
we easily obtain y | gxx. This means y3 |Gxx and hence y3 |FyyGxx. Further,
it is immediate to see y |Fxy, and from (6.15) we also have y2 |Gxy. Hence
y3 |FxyGxy. So y ̸ |Gyy. From these, we obtain y2 |K and y3 ̸ |K.

Thus, we obtain y2 |H and y3 ̸ |H. Hence, the multiplicity of the divisor
π−1
1 (l) in D1 is precisely two. The discriminant of the quadratic polynomial

H/y2 is equal to

(
K

y2

)2

− 4
Hess (F )

y2
Hess (G)

y2
.(6.16)

The second term of this is divisible by y since y3 |Hess (F ) as above. But the
first term is not divisible by y since y3 ̸ |K as above. Hence (6.16) is not
divisible by y. Thus we can conclude that the line l is not a component of the
branch locus of the generically finite double covering DS → S.

6.3 - Appendix

Next we discuss the case where the Segre symbol of S is [221]. The normal
forms of the equations of S are given by

2αX0X1 +X2
1 + 2βX2X3 +X2

3 + γX2
4 = 2X0X1 + 2X2X3 +X2

4 = 0,

where α, β, γ are mutually different complex numbers. The two points e0 and e2
are A1-singularities of S, and these are all singularities of S. The line connecting
these two singularities is

l = {X1 = X3 = X4 = 0},

and this is contained in S. The common tangent plane to S along points on
l\{e0, e2} is again given by

T = {X1 = X3 = 0}.

In the sequel, we again work on the open subset {X0 ̸= 0} = C4 and use
xi = Xi/X0, 1 ≤ i ≤ 4, as coordinates on it. From the equations of T , we may
use (x, y) := (x2, x4) as local coordinates on S around any point of l\{e0, e2}.
On S, the line l is defined by y = 0. From the affine form of the second equation
of S, we obtain

x1 = −xx3 −
1

2
y2.(6.17)
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Substituting this into the affine form of the first equation, we readily obtain

(x2 + 1)x23 + x{y2 − 2(α− β)}x3 +
1

4
y4 + (γ − α)y2 = 0.(6.18)

We put
F = x3 and G = x1

for the normal directions to S. As in the last case of [2(11)1], we may put
F = y2f and G = y2g. Then (6.18) is divisible by y2, and we obtain that the
function f is subject to the equation

(x2 + 1)y2f2 + x{y2 − 2(α− β)}f +
1

4
y2 + (γ − α) = 0.(6.19)

Differentiating this by x and using α ̸= β, we readily obtain the divisibility

y2 | (f + xfx).

In the same way to the last case of [2(11)1], this means

f =
c

x
+ yv(x, y),(6.20)

for some constant c and a holomorphic function v. If c = 0, we obtain y3 |F ,
which contradicts Lemma 4.7. So c ̸= 0. In the same way to the last case of
[2(11)1], we obtain from F = y2f that y2 |Hess (F ), and further,

y3 |Hess (F ) ⇐⇒ y | (ffxx − 2f2
x).

Again from (6.20), we obtain that f satisfies the latter condition. Therefore
y3 |Hess (F ) holds. On the other hand, from (6.17), we have

G = −xF − 1

2
y2,

which means

g = −
(
c+

1

2

)
− xyv.(6.21)

This implies y | gx and y | gxx. Hence y | (ggxx−2g2x) also holds. So, in the same
way for F , we have y3 |Hess (G).

From F = y2f we have Fxx = y2fxx, and fxx ≡ 2c
x3 mod y from (6.20).

Also, from G = y2g, we have Gyy = 2g + 4ygy + y2gyy. From these, we have

FxxGyy ≡ 4cg

x3
y2 mod y3.
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In particular, y2 |FxxGyy and y3 ̸ |FxxGyy as c ̸= 0. Next, from G = y2g,
we have Gxx = y2gxx, and since y | gxx as above, we have y3 |Gxx. Therefore
y3 |FyyGxx. Next, Fxy = y(2fx + yfxy) and therefore y |Fxy. Further, G =
y2g means Gx = y2gx and y | gx as above. So y3 |Gx, which means y2 |Gxy.
Therefore y3 |FxyGxy. From these, we conclude y2 |K and y3 ̸ |K.

These imply that the defining function H of the divisor D satisfies y2 |H
and y3 ̸ |H. Hence, the multiplicity of the divisor π−1

1 (l) in D1 is precisely two.
The discriminant of the quadratic polynomial H/y2 is

(
K

y2

)2

− 4
Hess (F )

y2
Hess (G)

y2
.(6.22)

The second term is divisible by y as y3 |Hess (F ). But the first term is not
divisible by y as K is not divisible by y3 as above. Hence (6.22) is not divisible
by y. Thus we can conclude that the line l is not a branch divisor of the
generically finite double covering DS → S.

6.4 - Appendix

Next, we discuss a Segre surface S whose symbol is [3(11)]. After making a
simple coordinate change, equations of S are given by

2αX0X2 + αX2
1 + 2X1X2 + βX3X4 = 2X0X2 +X2

1 +X3X4 = 0,

where α ̸= β. This surface has exactly three singularities, and they are e0, e3
and e4. The point e0 is an A2-point of S, and both e3 and e4 are A1-points
of S. The two lines e0e3 and e0e4 are contained in S, and e3e4 is not. The
involution of CP4 which exchanges X3 and X4 keeps S invariant. It fixes the
point e0, and exchanges e3 and e4. Hence it exchanges the two lines e0e3 and
e0e4. So in the following, we only consider the line

l := e0e3 = {X1 = X2 = X4 = 0}.

The common tangent plane to S at smooth points on this line is given by

T = {X2 = X4 = 0}.(6.23)

In the sequel, we again work on the affine open subset {X0 ̸= 0} = C4 in
CP4, and use xi = Xi/X0, 1 ≤ i ≤ 4, as coordinates on the open subset. From
(6.23), we may use (x, y) := (x3, x1) as coordinates on S around any point of
l\{e0, e3}. On S, the line l is defined by y = 0. The affine form of the second
defining equation of S is given by

x2 = −1

2

(
y2 + xx4

)
.(6.24)
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Substituting this into the affine form of the first defining equation of S, we
obtain

y3 + (y + α− β)xx4 = 0.(6.25)

Thus the surface S is locally identified with the surface in C3 defined by this
cubic equation. If we substitute x4 = 0 to this equation, we obtain y3 = 0.
This means that if H is the hyperplane defined by X4 = 0, then the section
H|S contains the triple line 3l. This is the unique hyperplane given in Lemma
4.7 for the present surface S. We put

F = x4 and G = −2x2,

and we also write δ = α−β for short. Note that δ ̸= 0 since α ̸= β. Then from
(6.25), the function F is subject to the equation

y3 + (y + δ)xF = 0 i.e. F = − y3

x(y + δ)
.

Hence from (6.24), we also obtain

G =
δy2

y + δ
.(6.26)

Thus we were able to obtain the functions F and G in explicit forms. From
this, we obtain

Fxx = − 2y3

x3(y + δ)
, y2 |Fxy, y |Fyy.

These imply that Hess (F ) is divisible by y4. (We just need y3 |F for obtaining
this.) On the other hand, we obtain from (6.26) that

Gxx = Gxy = 0 and Gyy =
2δ3

(y + δ)3
.

Hence Hess (G) = 0. Further we obtain

K = FxxGyy + FyyGxx − 2FxyGxy = − 4δ3y3

x3(y + δ)4
.

Using δ ̸= 0, these mean y3 |K and y4 ̸ |K. Therefore, we obtain

H = y3λ

(
Hess (F )

y3
λ− 4δ3

x3(y + δ)4
µ

)
.

Noting that y4 |Hess (F ) and δ ̸= 0 as above, it follows that the divisor π−1
1 (l)

is included as a component of D1 with multiplicity precisely three, and the line
l is not contained in the branch divisor of the generically finite double covering
DS → S.
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6.5 - Appendix

Next we discuss the case where the symbol of a Segre surface S is [32]. The
normal forms of defining equations of S are given by

2αX0X2 + αX2
1 + 2X1X2 + 2βX3X4 +X2

4 = 2X0X2 +X2
1 + 2X3X4 = 0.

Singularities of S are the point e0, which is an A2-point, and e3, which is an
A1-point. The line

l := {X1 = X2 = X4 = 0}

passes e0 and e3 and is contained in S. The common tangent plane to S along
points of l\{e0, e3} is given by

T = {X2 = X4 = 0}.(6.27)

Again we work on the affine open subset {X0 ̸= 0} and use xi = Xi/X0

as coordinates on it. The singular point e0 is the origin. From (6.27), we may
use (x, y) := (x3, x1) as coordinates on S around points on l\{e0, e3}. On S we
have l = {y = 0}. The second equation for S becomes

2x2 = −y2 − 2xx4.(6.28)

Substituting this into the affine form of the first equation of S, we obtain an
equation

x24 − 2x(y + δ)x4 − y3 = 0,(6.29)

where we again put δ = α− β ̸= 0. The surface S is locally identified with this
surface in C3. If we let x4 = 0 in this equation, we obtain y3 = 0. This shows
that if H is the hyperplane defined by X4 = 0, then the section H|S contains
the triple line 3l. This is the unique hyperplane given in Lemma 4.7 in the
present surface. By putting

F = x4, G = −2x2,

the equations (6.29) and (6.28) can be written respectively as

F 2 − 2x(y + δ)F − y3 = 0 and G = y2 + 2xF.(6.30)

These represent the functions F and G in implicit forms. Around any point on
the line l except the two singularities of S, we may put F = y3f and G = y2g
for some holomorphic functions f and g. Then from (6.29) and (6.28) we obtain

y3f2 − 2x(y + δ)f − 1 = 0 and g = 1 + 2xyf.(6.31)
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Differentiating the former equation by x, we obtain

y3ffx − 2(y + δ)(f + xfx) = 0.(6.32)

Since δ ̸= 0, this means y3 | (f + xfx). Then in the same way to (6.11)–(6.13),
by putting f = u(x) + yv(x, y), we obtain

f =
c

x
+ yv, fxx =

2c

x3
+ yvxx.(6.33)

If c = 0, we would obtain y | f , which means y4 |F . This implies {X4 = 0}|S =
4l, which contradicts Lemma 4.7. Hence c ̸= 0. Then the latter of (6.33) means
that fxx is not divisible by y.

From F = y3f , we obtain

y3 |Fxx, y2 |Fxy and y |Fyy.(6.34)

So y4 |Hess (F ). Also, in the same way to (6.14), from G = y2g, we obtain

Hess (G) = y2
{
2(ggxx − 2g2x) + yh(x, y)

}
(6.35)

for some function h(x, y) whose explicit form is not needed. From the second
equation of (6.31), we obtain y | gx and y | gxx. So we have

y | (ggxx − 2g2x).

Therefore from (6.35) we obtain y3 |Hess (G). We have Fxx = y3fxx from
F = y3f , and Gyy ≡ 2g mod y from G = y2g. Hence FxxGyy ≡ 2fxxgy

3

mod y4. As y |Fyy from (6.34) and Gxx = y2gxx which is divisible by y3 as
y | gxx, we obtain y4 |FyyGxx. Also, we have y2 |Fxy from (6.34), and y2 |Gxy

from Gx = y2gx, Gxy = y(2gx+ygxy) and y | gx. Hence y4 |FxyGxy. From these,
we obtain

K ≡ 2fxxgy
3 mod y4.

We have y ̸ |fxx from the latter of (6.33) and c ̸= 0. If g would be divisible by
y, we have y3 |G, which means that the hyperplane section of S by {X2 = 0}
also contains the triple line 3l. This means that for any hyperplane H which
contains the common tangent 2-plane T , the section H|S contains 3l. This
cannot happen from Lemma 4.7. So y ̸ | g. It follows from these that y4 ̸ |K.
Therefore, we obtain

y3 |H and y4 ̸ |H.

Hence, the divisor π−1
1 (l) is included as a component of D1 with multiplicity

precisely three.
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The discriminant of the quadratic polynomial H/y3 is equal to

(
K

y3

)2

− 4
Hess (F )

y3
Hess (G)

y3
.(6.36)

Now we have y
∣∣ Hess (F )

y3
as y4 |Hess (F ). So the second term is divisible by y.

But the first term is not divisible by y as K is not divisible by y4. Hence (6.36)
is not divisible by y. Thus we can again conclude that the line l is not contained
in the branch locus of the generically finite double covering DS → S.

6.6 - Appendix

Next we consider the case where the symbol of a Segre surface S is [(21)(11)].
After making a simple coordinate change to the normal forms, the defining
equations of S are given by

2αX0X1 +X2
1 + αX2

2 + βX3X4 = 2X0X1 +X2
2 +X3X4 = 0,

where α ̸= β. Singularities of S are the point e0, which is an A3-point, and e3
and e4, which are A1-points. The two lines e0e3 and e0e4 are contained in S,
and the line e3e4 is not. The involution on CP4 which exchanges X3 and X4

preserves S and it fixes the A3-point e0. The A1-points e3 and e4 are exchanged
by this involution. Therefore, the two lines e0e3 and e0e4 are exchanged by the
involution. So in the following, we choose the line

l := e0e3 = {X1 = X2 = X4 = 0},

and work around points on l\{e0, e3}. The common tangent plane to S along
these points is given by

T = {X1 = X4 = 0}.(6.37)

Again we work on the affine open subset {X0 ̸= 0} and use xi = Xi/X0

as coordinates on it. The singular point e0 is the origin. From (6.37), we may
use (x, y) := (x3, x2) as coordinates on S around points on l\{e0, e3}. We then
have l = {y = 0} on S. The second equation for S becomes

2x1 = −y2 − x4x.(6.38)

Substituting this into an affine form of the first defining equation of S and again
putting δ := α− β ̸= 0, we obtain

(y2 + xx4)
2 − 4δxx4 = 0.(6.39)
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The surface S is locally identified with this surface in C3. If we put x4 = 0
in this equation, one obtains y4 = 0. This shows that the hyperplane section
{X4 = 0}|S contains 4l. This is the unique hyperplane given in Lemma 4.7 in
the present surface, and we have the coincidence {X4 = 0}|S = 4l. By putting

F = x4, G = −2x1,

the equations (6.39) and (6.38) can be written respectively as

x2F 2 + 2x(y2 − 2δ)F + y4 = 0 and G = y2 + xF.(6.40)

By putting F = y4f and substituting it into the first equation of (6.40), we
obtain that the function f is subject to the equation

x2y4f2 + 2x(y2 − 2δ)f + 1 = 0.(6.41)

From F = y4f , it is immediate to obtain

y4 |Fxx, y3 |Fxy and y2 |Fyy.(6.42)

These mean y6 |Hess (F ). From the second equation of (6.40), we obtain

G = y2(1 + xy2f),(6.43)

and from this, we readily have

y4 |Gxx, y3 |Gxy and y ̸ |Gyy.(6.44)

These mean y4 |Hess (G). Also, from (6.42) and (6.44), we readily obtain y4 |K.
In order to show y5 ̸ |K, differentiating (6.41) by x, we obtain

y4(xf2 + x2ffx) + (y2 − 2δ)(f + xfx) = 0.

As δ ̸= 0, this means y4 | (f + xfx). Writing f = u(x) + yv(x, y) as before, this
implies

fxx =
2c

x3
+ yvxx(6.45)

for some constant c. If c = 0, we obtain y | f , which cannot happen since no
hyperplane section of S can contain 5l. Hence from (6.45), we obtain y ̸ | fxx.
So y5 ̸ | y4fxx = Fxx. As y ̸ |Gyy as in (6.44), we conclude y5 ̸ |FxxGyy.
This means y5 ̸ |K. Therefore, y4 |H and y5 ̸ |H hold. Hence, the divisor D1
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includes the component π−1
1 (l) with multiplicity precisely four. The discriminant

of the quadratic polynomial H/y4 is given by

(
K

y4

)2

− 4
Hess (F )

y4
Hess (G)

y4
.(6.46)

Since y5 ̸ |K as above, K/y4 is not divisible by y. So (K/y4)2 is also not
divisible by y. On the other hand, we have y6 |Hess (F ) as above. These mean
that the discriminant (6.46) is not divisible by y. Therefore, the line l is not a
branch divisor of the generically double covering DS → S.

6.7 - Appendix

Finally in this section, we consider a Segre surface S whose symbol is [2(21)].
The normal forms of the defining equations of S are given by

2αX0X1 +X2
1 + 2βX2X3 +X2

3 + βX2
4 = 2X0X1 + 2X2X3 +X2

4 = 0,

where α ̸= β. Singularities of S are the point e0, an A1-point, and e2, an
A3-point. The line l := {X1 = X3 = X4 = 0} passes these singularities, and it
is contained in S. The common tangent plane along l\{e0, e2} is given by

T = {X1 = X3 = 0}.(6.47)

This time, we work on the affine open subset {X2 ̸= 0} in CP4 and use
xi = Xi/X2 as coordinates on it. The A2-point e2 is the origin. From (6.47),
we may use (x, y) := (x0, x4) as coordinates on S around points of l\{e0, e2}.
On S, we again have l = {y = 0}. The second equation for S becomes

2x3 = −(2xx1 + y2).(6.48)

Substituting this into an affine form of the first equation of S, we obtain

4(1 + x2)x21 + 4x(2δ + y2)x1 + y4 = 0.(6.49)

If we let x1 = 0 in this equation, we obtain y4 = 0. This means that the
hyperplane section {X1 = 0}|S is exactly 4l. The hyperplane {X1 = 0} is the
unique one given in Lemma 4.7. We put

F = x1, G = −2x3,(6.50)

and define f and g by F = y4f and G = y2g. From (6.49), we obtain that the
function f is subject to the equation

4(1 + x2)y4f2 + 4x(2δ + y2)f + 1 = 0.(6.51)
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Also, from (6.48), we have

G = y2(2xy2f + 1).

From this, we readily obtain

y4 |Gxx, y3 |Gxy and y ̸ |Gyy.(6.52)

On the other hand, in the same way to the last case, from F = y4f , we obtain

y4 |Fxx, y3 |Fxy and y2 |Fyy.(6.53)

From (6.52) and (6.53), we obtain

y6 |Hess (F ), y4 |Hess (G) and y4 |K.

Also, differentiating (6.51) by x, we obtain

2y4
{
xf2 + (1 + x2)ffx

}
+ (2δ + y2)(f + xfx) = 0.

Since δ ̸= 0, this means y4 | (f + xfx). The rest is completely the same as
the previous case of [(21)(11)], and we obtain that the divisor D1 includes the
component π−1

1 (l) with multiplicity precisely four, and that the line l is not a
branch divisor of DS → S.

6.8 - Appendix

Summing up the results in this section, as promised, we obtain the following
conclusion.

P r o p o s i t i o n 6.1. Let S ⊂ CP4 be a Segre surface and l a line which
passes two singularities of S. Then l is not a branch divisor of the generically
finite double covering DS → S.

Finally, we make a remark about multiplicities of the lines as branch divisor
of the generically finite double covering DS → S. If a line on a Segre surface
S does not pass any singularity of S, then the multiplicity of the line is one
(Proposition 4.3). If a line passes two singularities of S, it is not a branch
divisor (Proposition 6.1). When a line passes exactly one singularity of S, we
know from Proposition 4.5 that the multiplicity of the line is at least two. The
exact multiplicities of these lines might be determined by making the following
heuristic argument solid.

Take a Segre surface S whose symbol is [1112] for example. S has exactly
one singularity and 12 lines. Precisely 4 of the lines pass the singularity. (See
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Table 1.) By realizing S as a degeneration of smooth Segre surfaces, each of the
4 lines can be obtained by unifying (or gathering) two lines on smooth Segre
surfaces through the degeneration. By continuity, this would mean that the
multiplicities of the 4 lines as branch divisor are precisely two. Similarly, a
Segre surface S with symbol [113] has exactly one singularity and 8 lines. Pre-
cisely 4 of the lines pass the singularity. Again by realizing S as a degeneration
of smooth Segre surfaces, each of the 4 lines can be obtained by unifying (or
gathering) three lines on smooth Segre surfaces through the degeneration. This
would mean that the multiplicities of the 4 lines are precisely three. In Table 1,
to each line which passes at least one singularity, the multiplicity of the line
counted by using degeneration from smooth Segre surfaces in this way is pre-
sented in the y-column. These multiplicities would be equal to the multiplicities
as branch divisors of the covering DS → S.
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