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Abstract. We exhibit a concrete procedure to construct Einstein
pseudo-Kähler and para-Kähler metrics on solvable Lie algebras. We
apply this method to classify all the rank-one pseudo-Iwasawa exten-
sions of type-(Nil4) nilsoliton in low dimension. We prove that such
metrics exist on the rank-one pseudo-Iwasawa extension of the general-
ized Heisenberg Lie algebra.
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1 - Introduction

One of the most classical and studied problem in differential geometry deals
with the existence and construction of Einstein metrics g on a given differen-
tiable manifold M , that is metrics g that satisfy the Einstein equation

(1.1) Ricg = λ Id for some λ ∈ R.

Those metrics are special solutions to the more general Einstein field equation
ricg +λg = κT where T is the stress-energy tensor, λ ∈ R is the cosmological
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constant and κ ∈ R is the Einstein gravitational constant (see e.g. [41]). If
λ = 0 the metric is called Ricci-flat. Ricci-flat metrics are related to string
theory and they are fixed point of the Ricci-flow.

The special case of Riemannian homogeneous manifolds is a very active
field of research and many properties are known. Solvmanifolds are particular
homogeneous manifolds: those are simply connected solvable Lie group with
a left-invariant metric. The Alekseevsky conjecture, stating that all Rieman-
nian homogeneous Einstein manifolds of negative scalar curvature are solvman-
ifolds, is one of the most interesting problem in this setting, and very recently
Böhm and Lafuente in the preprint [5] show a proof of it. Einstein Riemannian
solvmanifold are constructed using nilsoliton metrics and the theory is well
understood thanks to the works of many authors (see e.g. [23,27,35]).

On the other hand, a Kähler metric represents another interesting object in
geometry. A Kähler structure on a Lie algebras g is a triple (J, ω, g) consisting
of a complex structure J , a symplectic structure ω, a compatible Riemannian
metric g (i.e. g(JX, Y ) = ω(X,Y )) and such that J, ω, g are parallel: in some
sense the Kähler geometry sits between the complex, the symplectic and the
metric geometry. Special metrics are the Einstein Kähler ones, that combine
the properties of both the previous classes. In small dimension one can find
some examples in [19,33] (see also Remark 7.5).

In this article we address the construction of invariant “special” Einstein
metrics with nonzero scalar curvature on solvmanifolds in the pseudo-Rieman-
nian setting: in particular we will deal with Einstein pseudo-Kähler metrics
and Einstein para-Kähler metrics.

The pseudo-Kähler condition is the analogous notion of Kähler condition
in the more general pseudo-Riemannian setting. Those special metrics can
be found quite often in literature, and for Lie algebras some classification are
obtained expecially in low dimension (e.g. Ovando in [37] classifies pseudo-
Kähler Lie algebras up to dimension 4, while in [17] those metrics are studied
in the nilpotent context).

Einstein para-Kähler metrics incorporate para-Kähler structure, where the
complex structure J is replaced by a para-complex structure K (i.e. an en-
domorphism of TM such that K2 = +Id). Those special metrics were stud-
ied in [1] and [4]. It is worth remembering that pseudo-Kähler (resp. para-
Kähler) structures are the point of contact of symplectic, metric and complex
(resp. para-complex) geometry, but where the metric is a more general pseudo-
Riemannian metric.

Although Einstein condition on the one hand and “special” (pseudo-Kähler
or para-Kähler) structures on the other have been studied extensively but sepa-
rately in the literature, less has been done to study these two conditions simul-
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taneously. This article aims to go in this direction, showing a concrete strategy
for building examples of special pseudo-Riemannian Einstein metrics. In fact,
our recent papers [12,13], jointly with D. Conti, have allowed us to construct
new examples of Einstein homogeneous manifold with indefinite metrics. The
new technique developed may be combined with other tools to address different
problems about the construction of special metrics, as we aim to show in the
present paper.

More precisely, we will deal with Einstein metrics that are not Ricci-flat,
and we will show how to construct Einstein pseudo-Kähler metrics and Einstein
para-Kähler metrics on solvable Lie algebras g. Those structures can be easily
transferred to invariant analogous structures on a connected, simply-connected
Lie group G whose Lie algebra is g; and conversely, a left-invariant Einstein
pseudo-Kähler (or para-Kähler) metric on a solvable Lie group G can be viewed
as a special (linear) structure on the corresponding Lie algebra g.

The paper is organized as follows. In Section 2 we recall some useful pre-
liminary notions. In the next Section 3, we present the special metrics that we
want to investigate, and in Section 4 we expose the problem of Einstein metrics,
pseudo-Kähler and para-Kähler metrics on nilpotent Lie groups.

Section 5 contains a brief summary of the results contained in [12], and
it explains how to obtain Einstein metrics with nonzero scalar curvature on
solvable Lie algebras starting from pseudo-Riemannian nilsoliton metrics.

In Section 6 we present our concrete strategy to build Einstein pseudo-
Kähler (para-Kähler) metrics with nonzero scalar curvature. We also apply
this strategy to obtain new examples, and we conclude this section with a
classification of rank-one pseudo-Iwasawa extension of nice diagonal nilsoliton
(Theorem 6.5).

Finally, in the last Section 7, we introduce new different ideas that originate
from the strategy explained in Section 6. Those ideas produce other new ex-
amples (Examples 7.4 and Example 7.1) and generalizations (Example 7.6 and
Theorem 7.7). Thus this list may plot new routes to many other examples or
to new results, and may help the comprehension of Einstein pseudo-Rimannian
homogeneous manifolds.

2 - Invariant Structures on Lie Groups

We recall some definitions that we will use in the sequel. Given a Lie group
G, we will denote by g its Lie algebra.

We will consider left-invariant pseudo-Riemannian metrics g on a given Lie
group G; these will be expressed as (in)definite scalar products g (i.e. bilinear
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nondegenerate symmetric forms) on the corresponding Lie algebra g, and the
pair (g, g) will be called a metric Lie algebra. It follows that also the Levi-Civita
connection ∇, the Riemann curvature R, the Ricci operator Ric and the Ricci
curvature ric are left-invariant, so they can be expressed as linear tensors on
g. If the metric is positive definite, it is called Riemannian metric, otherwise
it is said to be an indefinite metric. Any left-invariant endomorphism E of
G can be expressed as a linear endomorphism on g, again denoted by E. A
left-invariant symplectic structure on a Lie group G is a left-invariant closed
2-form ω of maximal rank, and it is given by a nondegenerate closed 2-form ω
on the Lie algebra g.

The lower central series of a Lie algebra g is recursively defined as g0 := g,
gi := [g, gi−1], and a Lie algebra is called nilpotent if the lower central series
becomes the trivial subspace {0}, i.e. if there exists a s ∈ N such that gs = {0},
in this case the minimum s such that gs = {0} is called step. The derived series
of g is defined as a0 := g, ai := [ai−1, ai−1]. If there exist a r ∈ N such that
ar = {0} then the Lie algebra is said to be solvable, and the minimum integer r
is called deep. The dimension of a complementary subspace of g′ = [g, g] = a1
is called rank, so a rank-one solvable Lie algebra as a vector space can be
written as g = g′ ⊕ spanX for some X ∈ g. A Lie algebra is unimodular if
tr ad(X) = 0 for any X ∈ g. Obviously a nilpotent Lie algebra is also solvable
and unimodular.

A metric is Einstein if ric = λg for some constant λ ∈ R (equiv. Ric = λ Id).
The metric is called Ricci-flat if λ = 0. The scalar curvature will be denoted
by s := tr(Ric), so Einstein metric with nonzero scalar curvature satisfies s =
nλ ̸= 0.

An invariant almost complex structure J is an endomorphism of g such that
J2 = − Id, and an invariant endomorphism K of g such that K2 = +Id whose
eigenspaces have the same dimensions is called almost para-complex structure.
The torsion tensor (or Nijenhuis tensor) of an endomorphism E is defined as

NE(X,Y ) := [EX,EY ]− E[EX, Y ]− E[X,EY ] + E2[X,Y ].

If the Nijenhuis tensor of an almost complex structure J (resp. of an almost
para-complex structure K) vanishes, then the almost complex structure (resp.
the almost para-complex structure) is called integrable or simply a complex
structure (resp. a para-complex structure).

We recall that an almost para-complex structure K is equivalent to a de-
composition of the Lie algebra g in two vector subspaces g+, g− of the same
dimension n, (namely the eigenspaces of K), and K is integrable if, and only
if, the eigenspaces are involutive (i.e. g+, g− are subalgebras of g).

A solvmanifold (G, g) is a simply connected solvable Lie group G with a
left-invariant metric g. A nilmanifold Γ\G is a compact quotient of a nilpotent
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Lie group G by a cocompact discrete subgroup Γ. By Mal�cev criterion [32],
a nilpotent Lie group has a cocompact discrete subgroup if and only if its Lie
algebra g admits a basis with rational structure constants.

In the sequel of this paper, we will deal with left-invariant objects on Lie
group G, so we will identify them with their linear counterparts on the Lie
algebra g. We also want to study Einstein metrics with nonzero scalar curva-
ture. We remark that tensors on g define left-invariant tensors on the connected
simply-connected lie group G with Lie algebra g, hence all our following dis-
cussion can be translated into Lie group language.

3 - Pseudo-Riemannian Einstein Special Metrics

Given an (almost) complex structure J on a Lie algebra g, a pseudo-
Riemannian metric g is a (almost) pseudo-Hermitian metric if

g(JX, JY ) = g(X,Y ), X, Y ∈ g.

In this case we define fundamental 2-form as

ω(X,Y ) = g(JX, Y ), X, Y ∈ g.

The Hermitian metric g is (almost) pseudo-Kähler if the fundamental 2-form
is closed, i.e. dω = 0.

It follows directly from the definition that pseudo-Kähler geometry is com-
plex, symplectic and the pseudo-Riemannian metric is compatible with both
those structures. Moreover in the integrable case we get that ∇J = ∇g =
∇ω = 0.

Similarily, a compatibility condition between a para-complex structure K
and a pseudo-Riemannian metric g can be given. Namely a pseudo-Riemannian
metric g is an (almost) para-Hermitian metric if

g(KX,KY ) = −g(X,Y ), X, Y ∈ g.

The fundamental 2-form ω is the nondegenerate form defined by

ω(X,Y ) = g(KX,Y ), X, Y ∈ g

and an (almost) para-Hermitian metric is (almost) para-Kähler if dω = 0.
From the definitions, we see that any (almost) para-Hermitian g has neutral
signature (n, n), and the eigenspaces of K are null spaces for g.

Note that para-Kähler geometry is para-complex, symplectic and the metric
is compatible with both those structures. Furthermore, easy computations show
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that in this case K, g and ω are all parallel with respect to ∇, the Levi-Civita
connection of g.

If we also require the metric g to be Einstein, then we deal with Einstein
(almost) pseudo-Kähler and Einstein (almost) para-Kähler metrics.

4 - Einstein pseudo-Riemannian nilpotent Lie algebras

Our goal is to construct Einstein pseudo-Kähler (or para-Kähler) metrics
on solvable Lie algebras with nonzero scalar curvature. To this end, we start
by looking at the nilpotent case.

We begin recalling some important results of Milnor and Dotti Miatello
about the (almost)-Kähler Einstein on solvable Lie algebra in the Riemannian
case:

T h e o r em 4.1 ( [34]). Let g be a nilpotent not Abelian Lie algebra, then it
has no Einstein Riemannian invariant metric.

By Milnor’s result the only nilpotent Lie algebra admitting an Einstein
metric is the abelian Lie algebra, and in this case the metric is Ricci-flat. This
is a more general fact concerning unimodular solvable Lie algebra, as stated by
the

Th e o r em 4.2 ( [18]). Let g be a unimodular solvable Lie algebra, then any
Einstein Riemannian metric g on g is flat, hence Ricci-flat.

On the other hand, in the indefinite case there are examples of Einstein
metric with s ̸= 0 on non-abelian nilpotent Lie algebras: the first example
appeared in [10] and a systematic way to construct them was reported in [11,
14].

The construction of nilpotent Lie algebras admitting Einstein metrics with
nonzero scalar curvature is obstructed by an algebraic condition. Let us recall
that the space of derivations of a Lie algebra g is the set

Der(g) := {X : g → g | X is linear and X[v, w] = [Xv,w] + [v,Xw]}.

We proved the following obstruction result:

T h e o r em 4.3 ( [10, Theorem 4.1]). Let g be an unimodular Lie algebra
with Killing form zero. If g has an Einstein metric with s ̸= 0, then Der(g) ⊂
sl(g).

Moreover, for low dimensions we have that most of the real Lie algebras
does not admit such metrics, because of the following



[7] special einstein pseudo-riemannian metrics 455

Th e o r em 4.4 ( [10, Theorem 4.3 and Theorem 4.4]). On a nilpotent Lie
algebra of dimension up to six, Einstein metrics are Ricci-flat.

If g is a nilpotent 7-dimensional Lie algebra not appearing in following Ta-
ble 1, every Einstein metric on g is Ricci-flat.

Name [22] g

123457E 0, 0, e12, e13, e14, e23 + e15, e23 + e24 + e16

123457H 0, 0, e12, e13, e14 + e23, e15 + e24, e25 + e23 + e16

123457H1 0, 0, e12, e13, e14 + e23, e15 + e24,−e16 − e25 + e23

13457I 0, 0, e12, e13, e14, e23, e25 + e26 − e34 + e15

12457J 0, 0, e12, e13, e23, e24 + e15, e34 + e25 + e16 + e14

12457J1 0, 0, e12, e13, e23, e24 + e15, e34 − e25 + e16 + e14

12457N 0, 0, e12, e13, e23, e24 + e15, λe25 + e26 + e34 − e35 + e16 + e14, λ ∈ R
12457N1 0, 0, e12, e13, e23,−e25 − e14,−e35 + e25 + e16

12457N2 0, 0, e12, e13, e23,−e14 − e25, e15 − e35 + e16 + e24 + λe25, λ ≥ 0

123457F 0, 0, e12, e13, e14, e15 + e23, e16 − e34 + e24 + e25

12457G 0, 0, e12, e13, 0, e25 + e14 + e23,−e34 + e26 + e15

Table 1. 11 cases with Der(g) ⊂ sl(g), i.e. that might carry an Einstein metric with
s ̸= 0.

We know that Fernández, Freibert and Sánchez found in [20] an Einstein
metric on the Lie algebra 123457E. We believe that also 123457H, 123457H1,
12457J , 12457J1 and 12457G have an invariant Einstein metric with s ̸= 0
(here the names refer to the Gong’s classification given in [22]).

As said before, we were able in [10] to construct the first 8-dimensional
example of a pseudo-Riemannian Einstein metric with s ̸= 0 on a nilpotent Lie
algebra. For the sake of completeness, we will report that example.

E x amp l e 4.5 ( [10, Theorem 5.2]). Consider the nilpotent Lie algerba g
whose structure equations satisfy the following

(0, 0, 0, 0, e12 + e34, e14 − e23, e16 − e24 + e35,−e13 + e26 + e45).

Here and throughout the paper, we will describe Lie algebras by giving the
action of the Chevalley-Eilenberg operator d on the dual (which is equivalent
to giving the expression for the Lie bracket). The notation above means that
g∗ has a fixed basis {e1, . . . , e4} with de1 = · · · = de4 = 0, de5 = e12 + e34 =
e1 ∧ e2 + e3 ∧ e4 and so on.
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The Lie algebra g admits two Einstein metric with scalar curvature s =
56
15 ̸= 0, with signature (6, 2) and (3, 5), namely:

e1⊗e1+e2⊗e2± (e3⊗e3+e4⊗e4)− 7

3
e5⊗e5∓ 7

3
e6⊗e6± 98

15
(e7⊗e7+e8⊗e8).

The Lie algebra of Example 4.5 is a particular Lie algebra, called nice. A
nice Lie algebra is a pair (g,B) where g is a Lie algebra, B = {e1, . . . , en} is a
basis with structure constants ckij such that:

1. for all i < j there exists at most one index k s.t. ckij ̸= 0;

2. the condition ckij , c
k
lm ̸= 0 implies that either {i, j} = {l,m} or {i, j} ∩

{l,m} = ∅;

(i.e. both [ei, ej ] and ei⌟ d ej are multiple of at most one element of the basis
{ei} or of the dual basis {ei} up to constants). Two nice nilpotent Lie algebras
(g,B), (g′,B′) are considered equivalent if there is a Lie algebra isomorphism f
that maps basis elements to multiples of basis elements.

To a nice Lie algebra (g,B) we can associate:

1. a directed graph ∆ with arrows labelled by nodes, called its nice diagram:

the nodes of ∆ are the elements of the nice basis, and ei
ej−→ ek is an arrow

if [ei, ej ] is a nonzero multiple of ek;

2. the root matrix M∆, which has a row for every nonzero ckij ; the row

associated to ckij has +1 in position k, −1 in positions i and j, and zeroes
in the other entries.

E x amp l e 4.6. Consider the 6-dimensional nice Lie algebra given by

(0, 0, 0, 0, e13 + e24, e12 + e34),

then its nice diagram ∆ is drawn in Figure 1, and the corresponding root matrix
is

M∆ =




−1 0 −1 0 1 0
0 −1 0 −1 1 0
−1 −1 0 0 0 1
0 0 −1 −1 0 1


 .

We studied intensively the nilpotent nice Lie algebras, and we obtain a clas-
sification up to equivalence for dimension ≤ 9 ( [9]). More recently we develop
helpful techniques to handle with them in [6]. Those nice Lie algebras were
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Fig. 1. A nice diagram ∆.

introduced and studied in [30,31], and are an useful tool in the study of nil-
soliton and Ricci flow in the Riemannian and pseudo-Riemannian setting (see
e.g. [13,28,29,35,38,39,42]), and lately they were used to address the problem
of ad-invariant metrics ( [6,8]). We also used nice Lie algebra to construct ex-
plicit left-invariant Einstein pseudo-Riemannian metrics on nilpotent Lie group
with s ̸= 0 ( [11]) or s = 0 ( [7, 14]); even if those examples are difficult to
construct, we know that for each n ≥ 8, there exist n-dimensional nice nilpotent
Lie algebras with an Einstein diagonal metric with s ̸= 0 [11, Theorem 3.7].

However, the latter construction seems quite useless to our goal because of
the following results:

L emma 4.7 ( [21, Lemma 6.3]). If (J, g) is an invariant pseudo-Kähler
structure on a nilpotent Lie algebra g, then the Ricci tensor of g vanishes.

P r o p o s i t i o n 4.8 ( [15, Corollary 8.2, Proposition 6.4]). Invariant para-
Kähler structures (K, g) on nilpotent Lie algebras are Ricci-flat.

A left-invariant para-Kähler structure on a unimodular Lie group has s = 0.

So, even if it is possible to build Einstein non-Ricci-flat metrics on nilpo-
tent Lie algebras, it is impossible to merge this condition with further special
structures, such as pseudo-Kähler or para-Kähler.
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This force us to look for another category out of nilpotent condition to
obtain special Einstein metrics. Reasonable targets are solvable Lie algebras,
and we show below that such an example exists.

E x amp l e 4.9. Consider the solvable Lie algebra aff(R) of dimension 2
defined by (e12, 0) and consider the tensors:

g+ = e1 ⊗ e1 + e2 ⊗ e2, g− = −e1 ⊗ e1 + e2 ⊗ e2, ω = e12,

J(e1) = e2, J(e2) = −e1, K(e1) = e2, K(e2) = e1.

A straightforward computation shows that K2 = Id, J2 = − Id, NK = NJ = 0,
dω = 0, g+(JX, Y ) = ω(X,Y ) = g−(KX,Y ) and Ricg+ = Ricg− = − Id. So
(g+, J, ω) is an Einstein pseudo-Kähler metric, while (g−,K, ω) is an Einstein
para-Kähler metric, and both metrics have nonzero scalar curvature.

5 - Pseudo-Riemannian Nilsolitons and Einstein Solvmanifolds

By the results mentioned in the previous section, to have Einstein special
metrics with nonzero scalar curvature we should look to a bigger class than the
nilpotent one, namely the solvable Lie algebras. The first step is to study how
to construct pseudo-Riemannian Einstein metrics on solvable Lie algebra.

In the indefinite case, there are new phenomenon and new instances that
do not appear in the positive definite case: there are Einstein metrics on nilpo-
tent Lie algebras with nonzero scalar curvature; there are example of Einstein
metrics on solvable Lie algebra whose restriction to the nilradical is a degener-
ate bilinear form; there are abundance of Ricci-flat metrics, both on nilpotent
and solvable non-nilpotent Lie algebra. In the end, we observe that Einstein
pseudo-Riemannian metrics may apper either on unimodular or nonunimodular
Lie algebras.

These differences and the wide spectrum of examples that can be con-
structed make a complete classification of Einstein metrics in the pseudo-
Riemannian case very difficult. However, in a previous paper together with
D. Conti, we study the Einstein solvable Lie algebras and their relations with
pseudo-Riemannian nilsoliton metrics ( [12]). In this section we recall some
important facts and we will show how the study of nilsoliton metrics help the
construction of Einstein metrics with nonzero scalar curvature. The interested
reader may refer to [12,13].

Our aim was to find some suitable categories S and N , where

S ⊂ { Einstein pseudo-Riemannian solvmanifolds }
N ⊂ { pseudo-Riemannian nilsolitons }
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such that we can have a bijective relation:

S ∋ Einstein Solvmanifold (g̃, g̃) ←→ Nilsoliton metric (g, g) ∈ N .

This relation in the Riemannian setting is rigid and robust, by the work
of many authors (see e.g. the surveys [24,26] and the reference therein), for
example Lauret ( [27]) proved that Einstein solvmanifolds are standard, i.e.
they decompose as an orthogonal direct sum

g̃ = g⊕⊥ a,

where g is a nilpotent ideal and a is an abelian subalgebra. Previous results
of Heber ( [23]) showed that a acts by normal derivations on g and we know
that those examples are nonunimodular ( [18]). Unfortunately, as reported
before, we proved that most of the properties of the Riemannian case simply
does not hold for the more general pseudo-Riemannian setting: nevertheless,
we were able to obtain a kind relation that include the Riemannian one as a
very special case.

The starting point to construct our yearned relation is the following:

D e f i n i t i o n 5.1. A standard decomposition of a metric Lie algebra g̃ is
a decomposition g̃ = g ⊕⊥ a, where g is a nilpotent ideal and a is an abelian
subalgebra.

Note that g is any nilpotent ideal of g̃ which is settled between the derived
Lie algebra [g̃, g̃] = g̃′ and the nilradical n of g̃, i.e. g̃′ ⊂ g ⊂ n. Note also
that the standard Riemannian solvmanifolds are also standard for the pseudo-
Riemannian definition.

In fact, in [12, Section 1], we show that imposing any further restriction on
the ideal g may lead to some problem on the nondegenerate of the metric: we
found examples of Einstein solvable Lie algebra g̃ where (g̃′)⊥ is degenerate, and
we found examples of Einstein solvable Lie algebra where (n)⊥ is degenerate
(so chosing g equals to the nilradical or to the derived Lie algebra necessarily
excludes interesting cases).

On the other hand, this definition of standard decomposition is the mini-
mum to get some interesting relations, since we need the metric to be nonde-
generate on some nilpotent ideal. Note that some examples of Einstein solvable
Lie algebra do not fit in this definition: in particular we are excluding cases
where g has degenerate metric and cases with g⊥ not abelian. Examples of
either those instance may occur.

On a solvable Lie algebra with a standard decomposition, we define the
vector H to be the metric dual of X → tr adX, i.e. g̃(H,X) = tr adX, X ∈ g̃.

Denoting by E∗ the adjoint of E with respect to the metric, we introduce
the following definition, that will play an important role in the sequel.
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D e f i n i t i o n 5.2. A standard decomposition g̃ = g⊕⊥ a is pseudo-Iwasawa
if adX = (adX)∗ for any X ∈ a.

Pseudo-Iwasawa condition seems a strong restriction, but we proved that
other Einstein solvable Lie algebras are isometric to a pseudo-Iwasawa one
( [12, Proposition 1.19]). Note also that a Riemannian Einstein solvable Lie
algebra is always (pseudo-)Iwasawa (see [23]). On the other hand, it is pos-
sible to have Einstein solvable pseudo-Riemannian Lie algebra where (adX)∗

is not a derivations, or examples of Einstein solvable Lie algebra such that
[adX, (adX)∗] ̸= 0.

The second ingredient to obtain a relation is given by the notion of nilsoliton:
the pair (g, g) is a (Algebraic) nilsoliton if g is a nilpotent Lie algebra, g a
pseudo-Riemannian metric and the Ricci tensor satisfies

(5.1) Ricg = λ Id+D, λ ∈ R, D ∈ Der g.

Thus Einstein metrics are particular solutions of (5.1) with D = 0. We
remark that all the algebraic pseudo-Riemannian nilsolitons are Ricci soliton
( [36]), but there exist Ricci solitons which are not algebraic ( [3]).

Recall that a derivation N on a Lie algebra g is called a Nikolayevsky (or
pre-Einstein) derivation if it is diagonalizable and satisfies tr(NX) = trX
for any X ∈ Der g. Note that nice nilpotent Lie algebra have Nikolayevsky
derivation diagonal with respect to the nice basis.

We gave the following characterization of the nilsoliton metrics.

T h e o r em 5.3 ( [12, Theorem 2.1]). Let g be a nilsoliton metric on a
nilpotent Lie algebra g. Then either

1. λ = 0 and D is a nilpotent derivation in the null space of Der g; or

2. λ ̸= 0 and setting D̃ = − 1
λD, we have

tr(X) = tr(D̃ ◦X), X ∈ Der g;

relative to the Jordan decomposition D̃ = D̃s + D̃n, D̃s is a Nikolayevsky
derivation and D̃n a nilpotent derivation in the null space of Der g.

In either case, the eigenvalues of D are rational.

From this theorem we have that equation (5.1) generates 4 different type of
nilsolitons in the pseudo-Riemannian case, that we can summarize as follow:

(Nil1) λ = 0, D = 0. This is the Ricci-flat case, examples of which exist in
abundance in the pseudo-Riemannian setting (see e.g. [7,14]).
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(Nil2) λ = 0, D ̸= 0. In this case, by Theorem 5.3 D is nilpotent (non semisim-
ple) and it is not a Nikolayevsky derivation.

(Nil3) λ ̸= 0, D = 0. This is the Einstein case, with nonzero scalar curvature,
that we discussed in Section 4. This case has no Riemannian counterpart
by Milnor [34].

(Nil4) λ ̸= 0, D ̸= 0. This is the classical Riemannian situation. Note that if D
is diagonalizable, it is a multiple of a Nikolayevsky derivation. However,
examples of indefinite nilsoliton with non semisimple derivation D may
appear.

In our paper, we gave examples of nilsoliton metrics for each type (as well
as the first example of type (Nil4) with non semisimple derivation), but more
examples can be found in literature: for example, there are known examples
of (Nil4) on the Heisenberg Lie algebra where the derivation D is semisim-
ple [25, 36]. It is worth to mention (see [12, Remark 2.6]) that pseudo-
Riemannian nilsolitons are not unique, unlike the Riemannian ones, as proved
in [29].

On the other hand, we demonstrated that an Einstein pseudo-Iwasawa solv-
able Lie algebra induce a nilsoliton equation on the nilpotent ideal g.

T h e o r em 5.4 ( [12, Theorem 3.9]). Let g̃ = g⊕⊥ a be a pseudo-Iwasawa
decomposition. Then the Einstein equation Ricg̃ = λ Id on (g̃, g̃) is satisfied if
and only if

1. g with the induced metric satisfies the nilsoliton equation

Ric = λ Id+D, D = adH.

2. ⟨adX, adY ⟩tr = −λg̃(X,Y ) for all X,Y ∈ a.

In this case, then
trD2 = −λ trD.

Where ⟨X,Y ⟩tr denotes the inner product induced by the trace, explicitly
⟨X,Y ⟩tr = tr(X ◦ Y ).

The relation we were looking for is given by the following Corollary 5.5 and
Theorem 5.6.

C o r o l l a r y 5.5 ( [12, Corollary 3.13]). Given a pseudo-Iwasawa solvable
Lie algebra g̃ = g⋊ a satisfying Ricg̃ = λ Id for some nonzero λ, then either:

1. g̃ is unimodular, H = 0 and (g, g) is a nilsoliton of type (Nil3), with
Ricg = λ Id; or
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2. g̃ is not unimodular, g̃(H,H) ̸= 0, g ⊕ spanH is also Einstein with a
pseudo-Iwasawa decomposition, and (g, g) is a nilsoliton of type (Nil4),
with Ricg = λ Id+D and trD ̸= 0.

In particular, we will use the following theorem to obtain Einstein solvable
Lie algebra from nilsoliton metrics (compare with [43, Theorem 4.7]).

T h e o r em 5.6 ( [12, Theorem 4.1]). Let (g, g) be a nilsoliton, Ricg =
λ Id+D, λ ̸= 0. Let a ⊂ Der g be a subalgebra of self-adjoint derivations
containing D, and assume that ⟨, ⟩tr is nondegenerate on a. Then the metric

g − 1
λ⟨, ⟩tr on g̃ = g ⋊ a is Einstein with R̃ic = λ Id and the decomposition

g̃ = g⊕⊥ a is pseudo-Iwasawa.

We will call the solvable Lie algebra constructed in Theorem 5.6 a pseudo-
Iwasawa extension of the nilsoliton g and the dimension of a will be called
the rank of the extension. The problem to construct Einstein metrics on Lie
algebra can be translate in computing nilsoliton metrics. However, in general
this problem may be as difficult as to solve the Einstein equation (1.1).

Luckily, it turns out that on nice nilpotent Lie algebras it is easy to perform
computations and to find diagonal nilsoliton metrics, as we will see from the
next result, but before stating it, we need to fix some notation. For a vector
X we denote with XD the diagonal matrix with diagonal matrix with X in the
diagonal; [1] denotes a vector with all entries equal to 1; eM∆(g) is a vector
depending on the root matrix: explicitly if the h-th row of M∆ is t(− ei − ej +
ek), the h-th component of eM∆(g) is gk

gigj
(where gi are the component of the

diagonal metric); and c is the vector of the structure constants ckij written using
the same order as in the root matrix.

T h e o r em 5.7 ( [13, Theorem 1.5]). Let g be a nice nilpotent Lie algebra
and let b be a solution to M∆

tM∆b = [1]. Given a diagonal pseudo-Riemannian
metric g, the following are equivalent:

1. g is a diagonal nilsoliton with Ric = λ Id+D;

2. Ric = λ(Id−N), where N is the diagonal Nikolayevsky derivation;

3. X ∈ −2λb+ ker tM∆, where XD = eM∆(g)(cD)2.

The last condition of the theorem above can be disassembled to linear prob-
lems and a polynomial one, and we applied this theorem obtaining the signature
of all possible diagonal nilsoliton pseudo-Riemannian metric in low dimensions
(see [13, Theorem 2.1]).

The diagonal nilsoliton metric on nice Lie algebra force the derivation D
apperaing in (5.1) to be diagonalizable, hence to be the diagonal Nikolayevsky
derivation. Applying Theorem 5.6 we obtain the following
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P r o p o s i t i o n 5.8 ( [13, Proposition 1.20]). Let g be a nice nilpotent Lie
algebra with a diagonal metric g of type (Nil4). Then Ricg = λ Id−λN , where
N is the (nonzero) diagonal Nikolayevsky derivation, and the semidirect product
g̃ = g⋊N span e0 is a nice solvable Lie algebra with an Einstein diagonal pseudo-
Iwasawa metric

g − trN

λ
e0 ⊗ e0.

Rema r k 5.9. Since a nice nilpotent Lie algebra often has many nilsoliton
metrics with different signatures, we see that in the case of diagonal nice nil-
soliton the rank-one pseudo-Iwasawa extension is the same Lie algebra for all
the diagonal metrics, and it is isomorphic to the rank-one extension obtained
using the Nikolayevsky derivation. In practice, once one knows that a nice
nilpotent Lie algebra admits a (Nil4)-type diagonal nilsoliton metric (e.g. by
Theorem 5.7), one may conclude that g ⋊N span e0 is Einstein with nonzero
scalar curvature.

This rank-one extension obtained using the Nikolayevsky derivation is the
standard extension used in the Riemannian setting.

R ema r k 5.10. In the Riemannian setting, the clear relation between nil-
soliton metrics and Einstein solvmanifolds suggests a strategy to build Einstein
(almost)-Kähler metrics on solvable Lie algebra: first one looks for Riemannian
nilsoliton metrics and then extends the Lie algebra to a solvable Riemannian
Einstein. After that one searches for an invariant symplectic 2-form ω, and
finally one checks if the endomorphism J defined by ω(X,Y ) = g(JX, Y ) is a
complex integrable stucture. This strategy was pursued efficiently in [19,33].

The similar relation between nilsoliton and Einstein metrics that we proved
in the pseudo-Riemannian setting is the key point to extend this strategy to
the indefinite case: our strategy, exposed in Section 6, includes the Riemannian
one as a special case.

R ema r k 5.11. We finally remark that our correspondence between Ein-
stein solvmanifolds and nilsoliton metrics do not cover the whole space of
pseudo-Riemannian Einstein solvmanifolds: there are examples that are not
pseudo-Iwasawa extension or that are not related to nilsolitons. Nevertheless,
the theory and technique developed up to now are very effective in construct
such examples.

6 - A Strategy and New Examples

We remark that to build Einstein metrics with s ̸= 0, it is necessary to look
for solvable Lie algebras that are not nilpotent, and a practical way to build
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them is through nilsoliton metrics. Using the results exposed in the previous
section, we can write the following recipe to construct examples of Einstein non-
Ricci-flat para-Kähler and pseudo-Kähler metrics on solvable non-nilpotent Lie
algebras:

1̂ Find a nilsoliton metric (g, g) of type (Nil4).

2̂ Extend it to an Einstein pseudo-Riemannian solvable Lie algebra (g̃, g̃)
using Theorem 5.6, i.e. consider a pseudo-Iwasawa extension. Necessarily
this extension is Einstein with nonzero scalar curvature.

3̂ Look for symplectic 2-form ω, such that ∇ω = 0.

4̂ (a) Look for a integrable complex structure J such that g(J ·, ·) = ω(·, ·)
and ∇J = 0. We got a pseudo-Kähler Einstein solvable Lie algebra with
nonzero scalar curvature.
Or
(b) Look for a integrable para-complex structure K such that g(K·, ·) =
ω(·, ·) and ∇K = 0. We got a para-Kähler Einstein solvable Lie algebra
with nonzero scalar curvature.

In our strategy, examples of (Nil4)-type nilsolitons required in point 1̂ can
be constructed using nice algebras and diagonal nilsoliton metrics, i.e. by using
Theorem 5.7. Point 2̂ is fulfilled by applying the Theorem 5.6 (or by applying
Proposition 5.8 for diagonal nice nilsoliton). The points 3̂ and 4̂ on Lie algebras
are standard problems. Once we know the pseudo-Iwasawa extension from
point 2̂, we can compute the space of closed 2-forms and check if there is a
nondegenerate one. Moreover, since the Einstein metric is also given by the
previous point, we can easily compute the Levi-Civita connection and find a
suitable symplectic parallel 2-form. Finally, to deal with point 4̂, we define
an endomorphism E such that ω(X,Y ) = g(EX, Y ), and we force it to be an
integrable (para-) complex structure to achieve the final result, i.e. we impose
that NE = 0 (or equivalently ∇E = 0) and that E2 = ± Id.

In the end, if we restrict to look for nice diagonal (Nil4)-type nilsoliton
metrics most of this strategy becomes a linear problem, and hence is quite easy
to deal with it.

Note that by Remark 5.9, the second point 2̂ can be simplified by considering
only rank-one extension of nilsoliton metric. As an example, we apply this
strategy to some nilsoliton metrics obtained in [13]: to this end, we recall
in the following Table 2 the low dimensional nilpotent Lie algebra and their
Nikolayevsky derivation N (note that up to dimension 5 all the nilpotent Lie
algebras are nice). The names refer to the notation used in [9], namely there are
first the dimensions of the lower central series and a counter after the column.
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Name g N

1:1 0 (1)

2:1 0, 0 (1, 1)

31:1 0, 0, e12 2/3(1, 1, 2)

3:1 0, 0, 0 (1, 1, 1)

421:1 0, 0, e12, e13 1/3(1, 2, 3, 4)

41:1 0, 0, 0, e12 1/3(2, 2, 3, 4)

4:1 0, 0, 0, 0 (1, 1, 1, 1)

5321:1 0, 0, e12, e13, e14 1/12(2, 9, 11, 13, 15)

5321:2 0, 0, e12, e13, e14 + e23 3/11(1, 2, 3, 4, 5)

532:1 0, 0, e12, e13, e23 5/12(1, 1, 2, 3, 3)

521:1 0, 0, 0, 0, e12, e14 1/3(1, 2, 3, 3, 4)

521:2 0, 0, 0, e12, e24 + e13 1/7(4, 3, 6, 7, 10)

52:1 0, 0, 0, e12, e13 1/4(2, 3, 3, 5, 5)

51:1 0, 0, 0, 0, e12 1/3(2, 2, 3, 3, 4)

51:2 0, 0, 0, 0, e12 + e34 3/4(1, 1, 1, 1, 2)

5:1 0, 0, 0, 0, 0 (1, 1, 1, 1, 1)

Table 2. Nice nilpotent Lie algebras of dimension ≤ 5 and their diagonal Nikolayevsky
derivation

Ex amp l e 6.1. Consider the 3-dimensional Heisenberg Lie algebra h with
structure equations given by:

(0, 0, e12).

By [13] we know it admits a diagonal nilsoliton metric g, and we can compute
such a metric using Theorem 5.7. The solution is not unique, and we have that

g = g1e
1 ⊗ e1 + g2e

2 ⊗ e2 − 2g1g2λ

3
e3 ⊗ e3

is a nilsoliton metric satisfying Ricg = λ(Id−N) where N is the diagonal Nikoa-
lyevsky derivation of h, i.e.

N =
2

3
e1 ⊗ e1 +

2

3
e2 ⊗ e2 +

4

3
e3 ⊗ e3.

Thus the solvable Lie algebra g̃ of dimension 4 given by

(
2

3
e14,

2

3
e24,

4

3
e34 + e12, 0

)
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admits an Einstein metric g̃ = g − trN
λ e4 ⊗ e4. We fix λ = −1

2 , hence

g̃ = g1e
1 ⊗ e1 + g2e

2 ⊗ e2 +
g1g2
3

e3 ⊗ e3 +
16

3
e4 ⊗ e4.

A simple linear computation show that a generic closed 2-form can be write as
ye12 + 4y

3 e
34 + span{e14, e24} and imposing dω = 0, ∇ω = 0 and ω2 ̸= 0 one

gets that

ω = ye12 +
4

3
ye34, y ̸= 0.

At this point, we compute the endomorphism E such that g(EX, Y ) = ω(X,Y ):

E = − y

g1
e2 ⊗ e1 +

y

g2
e1 ⊗ e2 −

4y

g1g2
e4 ⊗ e3 +

y

4
e3 ⊗ e4.

Finally, we impose that ∇E = 0 (equivalently that NE = 0) and E2 = ± Id.

For E = − Id one gets g2 =
y2

g1
while for E = Id one gets g2 = −y2

g1
. In the end

we have that




g̃ = g1e
1 ⊗ e1 +

y2

g1
e2 ⊗ e2 +

y2

3
e3 ⊗ e3 +

16

3
e4 ⊗ e4,

ω = ye12 +
4

3
ye34,

J(e1) =
g1
y
e2, J(e2) = − y

g1
e1, J(e3) =

y

4
e4, J(e4) = −4

y
e3,

is a pseudo-kähler Einstein structure; and




g̃ = g1e
1 ⊗ e1 − y2

g1
e2 ⊗ e2 − y2

3
e3 ⊗ e3 +

16

3
e4 ⊗ e4,

ω = ye12 +
4

3
ye34,

K(e1) = −g1
y
e2, K(e2) = − y

g1
e1, K(e3) =

y

4
e4, K(e4) =

4

y
e3,

is a para-kähler Einstein structure. In both cases Ricg̃ = −1
2 Id.

We would like to make another example, in dimension 6.

E x amp l e 6.2. Consider the 5-dimensional Lie algebra 51:2 with structure
equation give by:

(0, 0, 0, 0, e12 + e34).
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By [13] we know it admits a diagonal nilsoliton metric g, and we can com-
pute such a metric using Theorem 5.7, hence we consider the rank-one pseudo-
Iwasawa solvable extension obtained using the Nikolayevsky derivation N , na-
mely the Lie algebra g̃


3

4
e16,

3

4
e26,

3

4
e36,

3

4
e46, e12 + e34

6

4
e56, 0


.

Proceding as before, on g̃ we find a pseudo-kähler Einstein structure given by:




g̃ = g1e
1 ⊗ e1 +

y2

g1
e2 ⊗ e2 + g3e

3 ⊗ e3 +
y2

g3
e4 ⊗ e4 +

y2

4
e5 ⊗ e5 + 9e6 ⊗ e6,

ω = ye12 + ye34 +
3

2
ye56,

J(e1) =
g1
y
e2, J(e2) = − y

g1
e1, J(e3) =

g3
y
e4,

J(e4) = − y

g3
e3, J(e5) =

y

6
e6, J(e6) = −6

y
e5;

and a para-kähler Einstein structure given by:




g̃ = g1e
1 ⊗ e1 − y2

g1
e2 ⊗ e2 + g3e

3 ⊗ e3 − y2

g3
e4 ⊗ e4 − y2

4
e5 ⊗ e5 + 9e6 ⊗ e6,

ω = ye12 + ye34 +
3

2
ye56,

K(e1) = −g1
y
e2, K(e2) = − y

g1
e1, K(e3) = −g3

y
e4,

K(e4) = − y

g3
e3, K(e5) =

y

6
e6, K(e6) =

6

y
e5.

In both cases Ricg̃ = −1
2 Id.

R ema r k 6.3. Since we use nilsoliton of type (Nil4), it follows from Corol-
lary 5.5 that the pseudo-Iwasawa extension are not unimodular. On the other
hand, Einstein nilpotent Lie algebras are unimodular, and most of the Lie al-
gebras we produced in [11] have rational constant; therefore the associated Lie
group G has a lattice Γ and the left-invariant Einstein metric on G induces an
Einstein metric on the nilmanifold Γ\G.

A clear obstruction to the construction of pseudo-Kähler and para-Kähler
metrics is the existence of a symplectic structure. For the rank-one pseudo-
Iwasawa extension of Remark 5.9, one can easily check if the target Lie algebra
admits such a structure. This test produces the following result.
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L emma 6.4. Let g be a nice nilpotent Lie algebra of dimension ≤ 5 and
let g be a diagonal (Nil4)-type nilsoltion. Then the rank-one pseudo-Iwasawa
extension (g̃, g̃) admits a symplectic structure if, and only if, it is the pseudo-
Iwasawa extension of one the following Lie algebras:

1:1 (0)

31:1 (0, 0, e12)

5321:2 (0, 0, e12, e13, e14 + e23)

521:2 (0, 0, 0, e12, e24 + e13)

51:2 (0, 0, 0, 0, e12 + e34).

P r o o f. We can exclude all the Lie algebra g of even dimension, since their
rank-one extension can not admit any symplectic structure.

For the remaining case, we know by [13, Theorem 2.1] that all those ex-
amples admit a nilsoliton of type (Nil4), and Theorem 5.7 tells us that the
derivation D appearing in (5.1) is a multiple of the Nikolayevsky derivation
N . Hence, reasoning as in Remark 5.9, the structure equations of the pseudo-
Iwasawa extension g̃ are easily computed using Proposition 5.8 and Table 2:
for example, the pseudo-Iwasawa extension of 521:2 is the solvable Lie alge-
bra g̃ = g ⋊N span e6, where N is the diagonal Nikolayevsky derivation and
[e6, ei] = N(ei). Explicitly, the structure equations are

(
4

7
e16,

3

7
e26,

6

7
e36, e46 + e12,

10

7
e56 + e24 + e13, 0

)
.

Finally, a direct computation of the space of 2-forms shows that the Lie
algebras not listed in the statement do not have any nondegenerate closed 2-
form. For the other Lie algebraa, we explicitly give the structure equations of
the extension and a symplectic 2-form ω in the Table 3. □

We conclude this section classifying the rank-one pseudo-Iwasawa extension
of nice nilsolton diagonal metric admitting a pseudo-Kähler or para-Kähler
Einstein metric with nonzero scalar curvature.

T h e o r em 6.5. Let g be a nice nilpotent Lie algebra of dimension ≤ 5 with
a diagonal nilsoliton g and let (g̃, g̃) be its rank-one pseudo-Iwasawa extension.
Then the following are equivalent:

1. (g̃, g) admits an Einstein pseudo-Kähler structure with nonzero scalar cur-
vature;

2. (g̃, g) admits an Einstein para-Kähler structure with nonzero scalar cur-
vature;
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Name of g Rank-one extension g̃ Symplectic form ω

1:1 e12, 0 e12

31:1
2

3
e14,

2

3
e24,

4

3
e34 + e12, 0 e12 +

4

3
e34

3

11
e16,

6

11
e26,

9

11
e36 + e12,

5321:2 e14 + e23 +
15

11
e56

12

11
e46 + e13,

15

11
e56 + e14 + e23, 0

521:2
4

7
e16,

3

7
e26,

6

7
e36, e46 + e12,

10

7
e56 + e24 + e13, 0 e13 + e24 +

10

7
e56

51:2
3

4
e16,

3

4
e26,

3

4
e36,

3

4
e46,

6

4
e56 + e12 + e34, 0 e12 + e34 +

3

2
e56

Table 3. Symplectic rank-one pseudo-Iwasawa extensions of diagonal nice nilsolitons
of dimension ≤ 6

3. depending on the dimension dim g̃, the pair (g, g̃) are isomorphic respec-
tively to

� (0) and (e12, 0); or

� (0, 0, e12) and

(
2

3
e14,

2

3
e24,

4

3
e34 + e12, 0

)
; or

� (0, 0, 0, 0, e12+e34) and

(
3

4
e16,

3

4
e26,

3

4
e36,

3

4
e46,

6

4
e56 + e12 + e34, 0

)
.

P r o o f. The Examples 6.1, 6.2 and 4.9 show that 3 implies both 1 and
2. For the converse, note that Lemma 6.4 reduce the possibility to only 5
possible pseudo-Iwasawa extension, which are listed explicitly in Table 3. Now
observe that by Proposition 5.8 and the definition of rank-one pseudo-Iwasawa
extension the Einstein metric g̃ is diagonal on g̃ with respect to the basis given
in Table 3.

We compute the Levi-Civita connection of the Einstein metric g̃ = gie
i⊗ei,

and taking a closed 2-form ω =
∑

yi,je
ij we look for a suitable symplectic

parallel 2-form.
Consider the extension of 5321:2. Then we have

∇e1ω(e2, e4) = −ω(∇e1e2, e4)− ω(e2,∇e1e4)

= −ω(−1

2
e3, e4)− ω(e2,

g4
2g3

e3 −
1

2
e5) = −y2,3g4

2g3
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because any closed 2-form satisfies ω(e3, e4) = ω(e2, e5) = 0 and ω(e2, e3) =
y2,3 ̸= 0.

Similarily, for the extension of 521:2, we got

∇e1ω(e1, e2) = −ω(∇e1e1, e2)− ω(e1,∇e1e2)

= −ω(
4g1
7g6

e6, e4)− ω(e1,−
1

2
e4) = +

4g1y2,6
7g6

because any closed 2-form satisfies ω(e1, e4) = 0 and ω(e2, e6) = y2,6 ̸= 0.

We conclude that neither the pseudo-Iwasawa Einstein extension of 5321:2
nor the pseudo-Iwasawa Einstein extension of 521:2 can admit a parallel sym-
plectic structure, hence they have no pseudo-Kähler and no para-Kähler struc-
ture compatible with the Einstein metric. □

7 - More Examples, Ideas and Remarks

In this Section we will list some possible implementations of our strategy
as well as different useful approach to construct special Einstein metrics on
solvable Lie algebra with nonzero scalar curvature.

1. Instead of working with diagonal nice nilsoliton metric, one can look
for non diagonal nilsoliton metrics, and then apply Theorem 5.6 to construct
an Einstein solvable Lie algebra. In this case the challenge part is to find a
nilsoliton metric. With this approach, we were able to find a structure on a
pseudo-Iwasawa extension of 521:2, which was excluded from Theorem 6.5.

In the next examples for symmetric tensor product we use the following
notation: ei⊙ek(v, w) := ei(v)ek(w)+ei(v)ek(w), i.e. ei⊙ek := ei⊗ek+ek⊗ei.

E x amp l e 7.1. The metric g = g1e
1⊙e3−g1e

2⊙e4− g21
4 e

5⊗e5 is a (Nil4)-
type nilsoliton on the Lie algebra 521:2, with a semisimple diagonal derivation
D (thus D is multiple of the Nikolayevsky derivation). Hence by Theorem 5.6
on the pseudo-Iwasawa solvable extension

(
4

7
e16,

3

7
e26,

6

7
e36, e46 + e12,

10

7
e56 + e24 + e13, 0

)

the metric g̃ = g1e
1 ⊙ e3 − g1e

2 ⊙ e4 − g21
4 e

5 ⊗ e5 + 400
49 e

6 ⊗ e6 is Einstein



[23] special einstein pseudo-riemannian metrics 471

(Ricg̃ = −1
2 Id). Moreover, a straightforward computation prove that the triple




g̃, ω = g1e
13 + g1e

24 +
10

7
g1e

56,

K(e1) = e1, K(e2) = −e2, K(e3) = −e3, K(e4) = −e4,

K(e5) = −10

7
g1e6, K(e6) =

10

7
g1e5,

defines a para-Kähler structure compatible with the metric g̃.

2. Given a (Nil4)-type nilsoliton metric, another possibility is to compute
a higher rank pseudo-Iwasawa extension: by Theorem 5.6 this can be achieved
computing a set a of commuting self-adjoint derivation containing D, such that
the scalar product induced by the trace is nondegenerate.

E x amp l e 7.2. Consider the abelian Lie algebra of dimension 2 with basis
{e1, e2} together with the Lorentzian nilsoltion metric g = 1

4(−e1⊗e1+e2⊗e2),
and consider the self-adjoint derivations N = e1 ⊗ e1 + e2 ⊗ e2 and D = e2 ⊗
e1 − e1 ⊗ e2 (note that N is the Nikolayevsky derivation). Those derivations
commute and ⟨, ⟩tr is nondegenerate on span{N,D}, so we have a 4-dimensional
solvable pseudo-Iwasawa Einstein extension g̃ with structure equation given by:

(e13 + e24, e23 − e14, 0, 0)

and Einstein metric g̃ given by

g̃ =
1

4
(−e1 ⊗ e1 + e2 ⊗ e2) + 4(e3 ⊗ e3 − e4 ⊗ e4)

such that Ricg̃ = −1
2 Id. Finally, it is a matter of computation to verify that

ω = −e14 + e23 is a parallel symplectic structure and the endomorphism

J = −4e4 ⊗ e1 − 4e3 ⊗ e2 +
1

4
e2 ⊗ e3 +

1

4
e1 ⊗ e4

is an integrable complex structure such that g(J ·, ·) = ω(·, ·). Hence we have
an Einstein pseudo-Kähler structure.

Note that the metric appearing in Example 7.2 has neutral signature but it
is possible to modify the metric to obtain a Riemannian Einstein Kähler metric.

E x amp l e 7.3. As in the previous example, let g be the 2-dimensional
abelian Lie algebra {e1, e2} together with the Lorentzian nilsoltion metric g =
1
4(e

1 ⊗ e1 − e2 ⊗ e2), and consider the self-adjoint derivations N and D as
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in Example 7.2. We have a 4-dimensional solvable pseudo-Iwasawa Einstein
extension g̃ as before. The Einstein metric g̃ is given by

g =
1

4
(e1 ⊗ e1 − e2 ⊗ e2) + 4(e3 ⊗ e3 − e4 ⊗ e4)

such that Ricg̃ = −1
2 Id. Again, the 2-form ω is a parallel symplectic structure

and the endomorphism

K = 4e4 ⊗ e1 + 4e3 ⊗ e2 +
1

4
e2 ⊗ e3 +

1

4
e1 ⊗ e4

is an integrable para-complex structure such that g(K·, ·) = ω(·, ·), hence we
have an Einstein para-Kähler structure.

As mentioned before, this procedure may lead also to Riemannian Einstein
Kähler structure. The following example will show a concrete case.

E x amp l e 7.4. Let g be the nilpotent Lie algebra 421:1. From [13] we
know it admits a diagonal nilsoliton metric of (Nil4)-type, hence the rank-one
pseudo-Iwasawa extension has an Einstein metric. Note that the derivations

N =
1

3
(e1 ⊗ e1 + 2e2 ⊗ e2 + 3e3 ⊗ e3 + 4e4 ⊗ e4),

D =
1

3
(3e1 ⊗ e1 − 4e2 ⊗ e2 − e3 ⊗ e3 + 24e4 ⊗ e4)

commute and are both self-adjoint with respect to the diagonal nilsoliton metric
(in fact, N is the Nikolayevsky derivation). Since ⟨, ⟩tr is nondegenerate in the
space span{N,D} = a, by Theorem 5.6 we can conclude that the rank-two
pseudo-Iwasawa extension g̃ = g ⋊ a has an Einstein metric. Explicitly g̃ is
given by

1

3
e15 + e16,

2

3
e25 − 4

3
e26, e35 − 1

3
e36 + e12,

4

3
e45 +

2

3
e46 + e13, 0, 0



and we can choose the Einstein metric g̃ as

3

g1
e1 ⊗ e1 + 3g1e

2 ⊗ e2 + 3g1e
3 ⊗ e3 + 3e4 ⊗ e4 +

20

3
e5 ⊗ e5 +

20

3
e6 ⊗ e6

with Ricg̃ = −1
2 Id (the choice of g̃ is not unique, depends on diagonal parame-

ters of the nilsoliton metrics, but doing so we will simplify further computation).
Finally, proceeding as in Example 6.1 we find that the triple




g̃, ω = 3e13 + 2g1e
25 − 4g1e

26 + 4e45 + 2e46,

J(e1) =
1

g1
e1, J(e2) =

3g1
10

e5 −
3g1
5

e6, J(e3) = −g1e1,

J(e4) =
3

5
e5 +

3

10
e6, J(e5) = − 2

3g1
e2 −

4

3
e4, J(e6) =

4

3g1
e2 −

2

3
e4,
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defines a pseudo-Kähler structure compatible with the metric g̃.

Similarly, again on the solvable Lie algebra g̃ = g ⋊ a, we can chose the
triple




g̃ = − 3

g1
e1 ⊗ e1 − 3g1e

2 ⊗ e2 + 3g1e
3 ⊗ e3 − 3e4 ⊗ e4+

20

3
e5 ⊗ e5+

20

3
e6 ⊗ e6,

ω = 3e13 − 2g1e
25 + 4g1e

26 + 4e45 + 2e46,

K(e1) =
1

g1
e1, K(e2) = −3g1

10
e5 +

3g1
5

e6, K(e3) = g1e1,

K(e4) =
3

5
e5 +

3

10
e6, K(e5) = − 2

3g1
e2 +

4

3
e4, K(e6) =

4

3g1
e2 +

2

3
e4,

which defines an Einstein para-Kähler structure with Ricg̃ = 1
2 Id

R ema r k 7.5. We observe that in the example above the parameters of the
Einstein pseudo-Kähler metric g̃ can be chosen to be all positive, i.e. for g1 > 0
we have a Kähler Einstein complex structure. This solvable Lie algebra g̃ of
Example 7.4 was studied in [33, Theorem 3.2.2] (see also [19, Theorem 3.1])
where it is stated that g̃ admits only a Kähler Einstein almost complex structure
which is not integrable. This is in contrast with our previous example: indeed,
we find a misprint in the definition of the endomorphism J in the proof of [33,
Theorem 3.2.2], that might have led the authors to an incorrect conclusion.

3. We noted in Remark 6.3 that the pseudo-Iwasawa extension obatained
using (Nil4)-type nilsoliton are necessarily non unimodular, and hence by [34,
Lemma 6.2] they do not have a discrete subgroup with compact quotient.

To have compact Einstein pseudo-Kähler or para-Kähler manifolds with
s ̸= 0 arising as quotient of solvable Lie groups by a discrete lattice, we need
to look for unimodular Lie algebras. It may be possible to obtain Einstein
unimodular solvable Lie algebras with nonzero scalar curvature using extension
of (Nil3)-type nilsoliton (see [12, Corollary 4.12]). Once the solvable extension
is fixed, we may apply points 3 and 4 as before.

Note that (Nil3)-type nilsolitons are Einstein metrics with s ̸= 0 on nilpo-
tent Lie algebras, and they appear for dimensions ≥ 7 ( [10,20]). In this case
the computations may be more challenging.

Moreover, we observe that by Proposition 4.8, this way can not produce
any Einstein para-Kähler metric with nonzero scalar curvature.

At time of writing, we are not aware of a similar obstruction for Einstein
pseudo-Kähler metrics on unimodular Lie algebras, nor if they exist: if it is so,
the above discussion can lead explicitly to such an example.
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4. We see that Examples 6.1 and 6.2 in low dimensions all belong to the
family of rank-one pseudo-Iwasawa extension of the generalized Heisenberg Lie
algebra. In fact, that construction can be generalized, as we will show.

E x amp l e 7.6. For any 1 ≤ n ∈ N, let us consider the generalized Heisen-
berg Lie algebra, that is the nilpotent (2n + 1)-dimensional Lie algebra h2n+1

with structure equations given by:(
0, . . . , 0,

n∑
i=1

e2i−1,2i

)

equivalently, [e2i−1, e2i] = −e2n+1 for i = 1, . . . , n. This is a nice Lie algebra,
and its Nikolayevsky derivation is

N =

n∑
i=1

n+ 1

n+ 2
(e2i−1 ⊗ e2i−1 + e2i−1 ⊗ e2i−1) + 2

n+ 1

n+ 2
e2n+1 ⊗ e2n+1.

It admits diagonal nilsoliton pseudo-Riemannian metric of type (Nil4). In par-
ticular, we chose the following diagonal family of metrics

gε =

n∑
i=1

(
g2i−1e

2i−1 ⊗ e2i−1 − ε
α2

g2i−1
e2i ⊗ e2i

)
− ε

α2

n+ 1
e2n+1 ⊗ e2n+1,

where ε ∈ {+1,−1} and α, g2i−1 ̸= 0. An easy computation shows that
Ricε = −1

2 Id+
1
2N .

Consider now the rank-one pseudo-Iwasawa extension g̃ = g⋊ span{e2n+2}
where [e2n+2, ej ] = Nej . Namely the structure equations of g̃ are given by

(
n+ 1

n+ 2
e1,2n+2, . . . ,

n+ 1

n+ 2
e2n,2n+2, 2

n+ 1

n+ 2
e2n+1,2n+2 +

n∑
i=1

e2i−1,2i, 0

)
,

and by Theorem 5.6 the metric g̃ε = gε + 4 (n+1)2

(n+2) e
2n+2 ⊗ e2n+1 is an Einstein

metric satisfying Ricg̃ε = −1
2 Id. We note that g̃ is a symplectic nonunimodular

solvable Lie algebra of dimension 2n + 2, and we consider the nondegenerate
closed 2-form ω given by

ω = α

n∑
i=1

e2i−1,2i + α
(n+ 1)2

n+ 2
(e2n+1,2n+2).

Finally, we consider the endomorphism Jε given by:

Jε =
n∑

i=1

(
−ε

g2i−1

α
e2i−1 ⊗ e2i −

α

g2i−1
e2i ⊗ e2i−1

)

+
α

2(n+ 1)
e2n+1 ⊗ e2n+2 + ε

2(n+ 2)

α
e2n+2 ⊗ e2n+1.
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It is easy to see that J2
ε = ε Id. Denoting the Levi-Civita connection of gε by

∇ε, a straightforward computation shows that

∇εω = ∇εJε = ∇εg̃ε = 0, NJε = 0

dω = 0, g̃ε(JεX,Y ) = ω(X,Y ) X,Y ∈ g̃,

hence for ε = +1, the triple (g+1, ω, J+1) defines an Einstein para-Kähler struc-
ture, and for ε = −1 the triple (g−1, ω, J−1) defines an Einstein para-Kähler
structure.

Note that the metric g̃+1 has always neutral signature, while the Einstein
metric g̃−1 can have different signature, depending on the signs of the n pa-
rameters g2i−1. In particular the family of Einstein metric g̃−1 can have any
signature

(
2(1 + k), 2(n− k)

)
for k = 0, . . . , n.

The last example leads us to the

Th e o r em 7.7. On the rank-one pseudo-Iwasawa extension g̃ of the gen-
eralized Heisenberg Lie algebra h2n+1, there exist an Einstein pseudo-Kähler
structure and an Einstein para-Kähler structure. In particular there exists a
Riemannian Einstein Kähler structure.

Note that the previous examples of Einstein Kähler metrics on rank-one
extensions founded in [19,33] belong to the family described in Theorem 7.7.

5. We can modify our strategy to build examples of other Einstein special
metrics. For example, a similar quest for Ricci-flat pseudo-Kähler or para-
Kähler metrics may be addressed with the same strategy explained in Section 6:
by changing slightly the points 1̂ and 2̂ one may use the correspondence between
nilsolitons and Ricci-flat extensions developed in [12]. Indeed, we have noted
a large amount of Ricci-flat pseudo-Riemannian metric in literature, so in [7]
we wonder if every nilpotent Lie algebra admits a Ricci-flat metric. Note that
there exist nilpotent Lie algebras not admitting any flat metric ( [2]), hence
the same question for flat metrics is false.

However, the abundance of Ricci-flat pseudo-Riemannian metrics and the
fact that pseudo-Kähler and para-Kähler Ricci-flat metrics appear also on nilpo-
tent Lie algebras, suggest that the nilsolitons may not be the best approach and
we believe that there may be different ways to deal with this specific problem
(indeed, the real challenge is to build Einstein pseudo-Riemannian metrics with
nonzero scalar curvature).

Another class of interesting metrics are the nearly pseudo-Kähler and nearly
para-Kähler metrics (see e.g. [40]), i.e. a triple (g, Jε, ω) where g is a pseudo-
Riemannian metric, Jε is an almost (para-) complex and satisfy J2

ε = ε Id
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for ε = ±1, ω is a 2-form such that g(JεX,Y ) = ω(X,Y ), and the following
condition holds

(∇XJε)X = 0,

where ∇ is the Levi-Civita connection of g. Those metrics are not symplectic
nor (para-) complex, unless they are pseudo-Kähler or para-Kähler. We would
like to point out that our strategy might be modified to construct nearly pseudo-
Kähler (or nearly para-Kähler) Einstein metric with s ̸= 0 on solvable Lie
algebras. In this case, one keeps points 1̂ and 2̂, that produce the Einstein
metric and hence the Levi-Civita connection, and modify the other points to
achieve the construction of a nearly pseudo-Kähler (or nearly para-Kähler)
metrics.

6. The strategy proposed in Section 6 can be weakened to search for almost
complex (resp. almost para-complex) non integrable structure. In this case the
symplectic structure and the endomorphism J (resp. K) do not need to be
parallel with respect to the Levi-Civita connection. The strategy to build such
examples may follows points 1̂ and 2̂ to construct a suitable Einstein solvable
Lie algebra, and then one modifies points 3̂ and 4̂, by allowing ∇ω ̸= 0 and
NE ̸= 0.

We remark that almost pseudo-Kähler or para-Kähler Einstein structures
with s ̸= 0 may appear also on nilpotent Lie algebras, because the restrictions
of Lemma 4.7 and of Proposition 4.8 do not apply. To our knowledge, the
existence of invariant almost pseudo-Kähler or para-Kähler Einstein metrics
with nonzero scalar curvature on nilpotent Lie algebras is an open question,
that we feel may be out of scope for this article.

Finally, one may wonder whether the construction proposed in Section 6 can
also be applied to the construction of left-invariant pseudo-Sasaki Einstein met-
rics on solvmanifolds. Unfortunately, the answer is negative, as [16, Proposition
2.6] demonstrates that solvable Lie algebras with a Sasaki pseudo-Riemannian
metric do not have any pseudo-Iwasawa decomposition, whereas the strategy
proposed in this article allows only for the construction of pseudo-Iwasawa ex-
tensions.

Ac k n ow l e d gm e n t s. This paper is an expanded version of a talk given
by the author to the meeting “Cohomology of Complex Manifolds and Special
Structures – II” (Levico, TN, Italy, 5-9 July 2021).
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