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Compact homogeneous locally conformally

Kähler manifolds are Vaisman. A new proof

Abstract. An LCK manifold with potential is a complex manifold
with a Kähler potential on its cover, such that any deck transformation
multiplies the Kähler potential by a constant multiplier. We prove that
any homogeneous LCK manifold admits a metric with LCK potential.
This is used to give a new proof that any compact homogeneous LCK
manifold is Vaisman.
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1 - Introduction

A locally conformally Kähler (LCK) manifold is a complex manifold (M, I)
equipped with a Hermitian metric g (LCK metric) which is locally conformally
equivalent to a Kähler metric. Then the Hermitian form ω(x, y) := g(Ix, y)
satisfies dω = θ ∧ ω, where θ is a 1-form, called the Lee form (see [DO] for an
introduction to the subject).

An LCK metric g is called Vaisman if the Lee form is not only closed, but
also parallel with respect to the Levi Civita connection of g.

The LCK condition is conformally invariant: if g is an LCK metric on M ,
then efg is LCK for all smooth functions f on M . By contrast, the Vaisman
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condition is not conformally invariant. Moreover, on a compact complex mani-
fold, a Vaisman metric (if it exists) is unique up to homothety in its conformal
class and coincides with the Gauduchon metric of that conformal class.

One of the most interesting problems in LCK geometry is to find sufficient
conditions for an LCK manifold to admit Vaisman metrics. In this paper we
prove that homogeneity is such a sufficient condition.

An LCK manifold (M, I, g) is homogeneous if it admits a transitive and
effective action of a Lie group by holomorphic isometries of the LCK metric. In
this case, M = G/H, where G is a connected Lie group, and H is the stabilizer
subgroup of G.

R ema r k 1.1. (i) A group G as above also preserves ω and θ.
(ii) Recall that the group Aut(M) of biholomorphic conformalities of a

compact LCK manifold is compact. Indeed, any holomorphic conformality pre-
serves the corresponding Gauduchon metric which is unique up to a constant.
We can therefore assume that M is homogeneous under the group of holomor-
phic conformalities.

The following result was announced in [HK1], see also [HK2], [HK3] and
[Gu] for a subsequent discussion. A short, complete and self-contained proof
appeared in [GMO]. Here we present a new proof, based on the notion of LCK
structure with potential.

T h e o r em 1.2. A compact homogeneous locally conformally Kähler mani-
fold is Vaisman.

The new proof amounts in showing that the homogeneity implies the ex-
istence of a holomorphic circle action whose lift to the Kähler cover does not
contain only homotheties of the Kähler metric. This will imply that the man-
ifold is LCK with potential. We then observe that the Lee form of this LCK
structure with potential has constant length, which characterizes the Vaisman
metrics among the LCK metrics with potential.

Section 2 of this paper gathers the necessary background on LCK geometry,
inlcuding Vaisman and LCK with potential metrics. In Section 3 we present the
proof of Theorem 1.2. In the last section, we give new proofs for two classical
results about homogeneous Vaisman manifolds.

2 - Preliminaries

2.1 - Locally conformally Kähler manifolds

De f i n i t i o n 2.1. Let (M, I) be a complex manifold, dimCM ⩾ 2. It is
called locally conformally Kähler (LCK) if it admits a Hermitian metric g whose
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fundamental 2-form ω(·, ·) := g(·, I·) satisfies

(2.1) dω = θ ∧ ω, dθ = 0,

for a certain closed 1-form θ called the Lee form.

R ema r k 2.2. Definition 2.1 is equivalent to the existence of a covering M̃
endowed with a Kähler metric Ω which is acted on by the deck group AutM (M̃)
by homotheties.

R ema r k 2.3. The operator dθ := d−θ∧ is called twisted de Rham operator.
It obviously satisfies d2θ = 0 and hence (Λ∗M,dθ) produces a cohomology called
Morse-Novikov or twisted.

The following fundamental result of I. Vaisman shows that on compact
complex manifolds, Kähler and LCK metrics cannot coexist.

T h e o r em 2.4 ( [Va1]). Let (M,ω, θ) be a compact LCK manifold, not
globally conformally Kähler (i.e. with non-exact Lee form). Then M does not
admit a Kähler metric.

2.2 - Vaisman manifolds

De f i n i t i o n 2.5. An LCK manifold (M,ω, θ) is called Vaisman if ∇θ = 0,
where ∇ is the Levi-Civita connection of g.

E x amp l e 2.6. All diagonal Hopf manifolds are Vaisman ([OV4]). The
Vaisman compact complex surfaces are classified in [B], see also [VVO].

There exist compact LCK manifolds which do not admit Vaisman metrics.
Such are the LCK Inoue surfaces, [B], the Oeljeklaus-Toma manifolds, [OT],
[O], and the non-diagonal Hopf manifolds, [OV4], [VVO].

R ema r k 2.7. On a Vaisman manifold, the Lee field θ♯ and the anti-Lee
field Iθ♯ are real holomorphic (Lieθ♯ I = LieIθ♯ I = 0) and Killing (Lieθ♯ g =
LieIθ♯ g = 0), see [DO]. Moreover [θ♯, Iθ♯] = 0. The 2-dimensional foliation Σ
they generate is called the canonical foliation.

According to the above Remark, the Lee field generates a flow of holomor-
phic isometries. The following characterization is a partial converse:

T h e o r em 2.8 ( [KO]). Let (M,ω, θ) be an LCK manifold equipped with a
holomorphic and conformal C-action ρ without fixed points, which lifts to non-
isometric homotheties on the Kähler cover M̃ . Then (M,ω, θ) is conformally
equivalent with a Vaisman manifold.
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R ema r k 2.9. Since θ is parallel, it has constant norm and thus we can
always scale the LCK metric such that |θ| = 1. In this assumption, the following
formula holds, [DO]:

(2.2) dθc = ω − θ ∧ θc, where θc(X) = −θ(IX).

Moreover, one can see, [Ve], that the (1,1)-form ω0 := dcθ is semi-positive
definite, having all eigenvalues1 positive, except one which is 0.

2.3 - LCK manifolds with potential

De f i n i t i o n 2.10. An LCK manifold has LCK potential if it admits a
Kähler covering on which the Kähler metric has a global and positive potential
function ψ such that the deck group multiplies ψ by a constant. In this case,
M is called LCK manifold with potential.

P r o p o s i t i o n 2.11. The LCK manifold (M, I, g, θ) is LCK with potential
if and only if equation (2.2) is satisfied.

De f i n i t i o n 2.12. A function φ ∈ C∞(M) is called dθd
c
θ-plurisubharmonic

if ω = dθd
c
θ(φ), where dθ is the twisted de Rham operator (Remark 2.3) and

dcθ := IdθI
−1.

Equation (2.2) (and hence the definition of LCK manifolds with potential)
can be translated on the LCK manifold itself:

T h e o r em 2.13 ([OV3, Claim 2.8]). (M, I, θ, ω) is LCK with potential if
and only if ω = dθd

c
θ(ψ) for a strictly positive dθd

c
θ-plurisubharmonic function

ψ on M .

Rema r k 2.14. All Vaisman manifolds are LCK manifolds with poten-
tial: on their Kähler covering, the automorphic potential is represented by the
squared length of the pull-back of the Lee form with respect to the Kähler
metric. Among the non-Vaisman examples, we mention the non-diagonal Hopf
manifolds, [OV3].

We shall need the following characterizations of the Vaisman metrics among
the LCK metrics with potential:

P r o p o s i t i o n 2.15 ([OV4]). Let (M,ω, θ) be a compact LCK manifold
with potential. Then the LCK metric is Gauduchon if and only if ω0 = dcθ is
semi-positive definite, and then it is Vaisman. Equivalently, a compact LCK
manifold with potential and with constant norm of θ is Vaisman.

1The eigenvalues of a Hermitian form η are the eigenvalues of the symmetric operator Lη

defined by the equation η(x, Iy) = g(Lηx, y).
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In the proof that we shall present, we make use of the following sufficient
condition for a compact LCK manifold to admit an LCK metric with potential
(compare with Theorem 2.8).

T h e o r em 2.16 ( [OV2], [I, Theorem 0.4]). Let M be a compact complex
manifold, equipped with a holomorphic S1-action and an LCK metric g (not
necessarily S1-invariant). Suppose that this S1 action does not lift to an iso-
metric action on the Kähler cover of M . Then g admits an LCK potential.

P r o o f. The automorphic Kähler potential was obtained in [OV2] by
cohomological arguments, and it is not necessarily positive. In our terminology,
“LCK potential” is always positive. The existence of a positive potential is
implied a posteriori using a result from [OV5]. N. Istrati ( [I, Theorem 0.4])
produced an explicit form of this argument, showing that any S1-invariant LCK
metric, in assumptions of Theorem 2.16, admits an LCK potential. □

3 - Homogeneous LCK manifolds admit LCK potential

The idea is to show that the homogeneity of G/H implies the existence
of a holomorphic circle action which is lifted to non-isometric homotheties of
the universal cover. This will imply that the manifold is LCK with potential
(Theorem 2.16). We translate this potential on the manifold itself, we average
it on G and obtain an invariant LCK metric with potential whose Lee form has
constant length, which characterizes the Vaisman metrics among the LCK met-
rics with potential (Proposition 2.15). The manifold is thus of Vaisman type.
Finally, we prove that the initial homogeneous LCK metric itself is Vaisman.

We start with the following lemma.

L emma 3.1. Let (M,ω, θ) be an LCK manifold, and A a vector field act-
ing on M by holomorphic isometries. Assume that the function θ(A) is not
identically zero. Then A does not act by isometries when lifted to a Kähler
cover of M .

P r o o f. Let M̃
π−→ M be a Kähler cover of M . Then θ1 := π∗θ is

exact: θ1 = dφ, and the corresponding Kähler form on M̃ can be written as
ω̃ = eφπ∗ω. Denote by A1 the lift of A to M̃ . Then LieA1(ω̃) = (LieA1 φ)ω̃,
in other words, A1 acts by isometries if and only if LieA1 φ = 0. However,
Cartan’s formula gives

LieA1 φ = A1 ⌟ dφ = dφ(A1) = θ1(A1).
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Since, by assumption, θ(A) ̸= 0 somewhere on M , we have θ1(A1) ̸= 0 some-
where on M̃ . □

We can prove now that M is of Vaisman type. Every homogeneous manifold
M can be obtained as M = G/H, where G acts on M transitively by automor-
phisms, and H is the stabilizer of the point. In our case, M is LCK, and G
acts on M by holomorphic LCK isometries. Since the group of isometries of a
compact manifold is compact, we may freely assume that G is compact. This
will be our running assumption from now on.

P r o p o s i t i o n 3.2. Let (M,ω, θ) be a compact, homogeneous LCK man-
ifold, M = G/H, where G is a compact Lie group. Then M admits a G-
homogeneous Vaisman metric with the same Lee form.

P r o o f. S t e p 1: Let g = Lie(G). Choose A ∈ g such that θ(A) ̸= 0
somewhere on M , and let T ⊂ G be the closure of the one-parametric subgroup
of G generated by etA. Then T is a compact torus, hence A can be obtained as a
limit of vector fields Ai such that each one-parametric subgroup of G generated
by etAi is a circle. Then for some i the vector field Ai satisfies θ(A1) ̸= 0
somewhere on M . By Lemma 3.1, Ai it cannot act by isometries on the Kähler
cover of M̃ . By Theorem 2.16, M admits an LCK metric with potential.

S t e p 2: By Theorem 2.13, the fundamental form of an LCK metric with
potential is written as ωψ = dθd

c
θ(ψ), for a positive function ψ on M . Averaging

on the compact group G, we obtain a metric g1 with the fundamental form

ω1 = AvG(ωψ) = dθd
c
θ(AvG(ψ)).

Then g1 is still LCK with potential, but the potential is now G-invariant, and
the metric is also G-invariant. Since θ is already G-invariant, the averaging
process does not change it. Then θ is also the Lee form of g1, and its norm in
this metric is constant: |θ|ω1 = const. Then Proposition 2.15 implies that g1 is
Vaisman. □

Finally, we can prove that the initial homogeneous LCK metric is itself
Vaisman.

Th e o r em 3.3. Let (M, g, I, ω, θ) be a compact, homogeneous LCK mani-
fold, M = G/H. Then (M,ω, θ) is Vaisman.

P r o o f. By Proposition 3.2, M admits a G-homogeneous Vaisman metric
ω1 with the same Lee form. By Theorem 2.16, we can assume that ω is an
LCK metric with potential. Then Theorem 3.3 would follow if we prove that a
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G-homogeneous metric with potential and a given Lee form is unique up to a
constant multiplier. □

P r o p o s i t i o n 3.4. Let M = G/H be a G-homogeneous complex manifold,
and ω1, ω2 two G-homogeneous LCK metrics with potential and the same Lee
form. Then ω1 is proportional to ω2.

P r o o f. By Theorem 2.13, ωi = dθd
c
θ(φi). Averaging φi with G if neces-

sary, we can assume that it is a G-invariant function, hence constant. Then
ωi = dθd

c
θ(ai), where ai are constant functions, hence these two forms are pro-

portional. □

4 - Homogeneous Vaisman manifolds

For the sake of completion, we give here new proofs of some old important
results concerning homogeneous Vaisman manifolds.

T h e o r em 4.1 ( [Va2]). The canonical foliation of a compact homogeneous
Vaisman manifold (M = G/H, I, g) is regular.2

P r o o f. Since M is compact, Σ has at least one compact leaf (this was
proven in [T], but follows also by results of Kato (in [K]) or [OV4]). Then,
by homogeneity, all leaves are compact, and hence Σ is quasi-regular. Consider
the elliptic fibration π : M → M/Σ. This map has at least one smooth fibre.
To see this, just consider π with values in the smooth part of M/Σ and apply
Sard-Brown’s theorem. But then, again by homogeneity, all fibers are smooth.
□

Rema r k 4.2. On homogeneous Vaisman manifolds the foliation Σ is reg-
ular, but the foliation ⟨θ♯⟩ ⊂ Σ generated by the Lee field is not necessarily

regular. Indeed, consider the Hopf surface H = (C2\0)
⟨A⟩ , where A = α Id and α

is a complex number such that α
|α| is not a root of unity. In this case the Lee

field is a radial vector field on C2, and its trajectory applied to a 3-dimensional
sphere gives a diffeomorphism v −→ α

|α| which has infinite order.

A consequence of Theorem 4.1 is the following.

2A foliation on a manifold is regular if its leaf space is a manifold; and it is quasi-regular
if all its leaves are compact, in which case the leaf space is an orbifold.
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C o r o l l a r y 4.3. A compact homogeneous Vaisman manifold M has b1 = 1.

P r o o f. Since the canonical foliation Σ is regular, M is a T 2-fibration over
a homogeneous projective manifold P . Since any algebraic group is rational,
homogeneous projective manifolds are also rational. Using [D, Chapter 4], we
obtain that P is simply connected.

Write the exact sequence

0−→H1(P )−→H1(M)−→H1(T 2)
γ−→ H2(P )

and observe that the rank of γ is 1 (see [OV1]). Therefore, b1(P ) = 0 implies
that b1(M) = 1. □

Rema r k 4.4. One can construct homogeneous Vaisman manifolds as in
[Va2], starting from a compact homogeneous projective manifold P = G/H
such that the action of G on P can be linearized (id est P admits an equivariant
ample line bundle). Note that the structure of compact homogeneous Kähler
manifolds is clarified in [M]: up to biholomorphisms, they are products of flag
manifolds.

Ac k n ow l e d gm e n t s. We are grateful to Florin Belgun for pointing out
an error in the initial proof of Theorem 3.3; thanks to him, the actual proof is
much simpler.
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