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Abstract. We survey the theory of locally homogeneous almost-
Hermitian spaces. In particular, by using the framework of varying Lie
brackets, we write formulas for the curvature of all the Gauduchon con-
nections and we provide explicit examples of computations.
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1 - Introduction

In Differential Geometry, the notions of symmetries and local symmetries
arise naturally and play a central role in many geometric problems. The ge-
ometry of locally homogeneous Riemannian spaces (M, g) is well understood,
starting from the foundational paper by Nomizu [38] on local Killing vector
fields, proceeding with the work by Palais, Tricerri, and many others; we refer
e.g. to [39,54,55]. (See [41] and the references therein for an up-to-date ac-
count.) More precisely, their local geometry is encoded in the Lie algebra g of
Killing generators, that are the pairs (v,A) ∈ TpM ⊕ so(TpM, gp) such that

v ⌟
(
(Dg)k+1Rm(g)

)
p +A ·

(
(Dg)k Rm(g)

)
p = 0 for any k ∈ Z≥0 ,

where p ∈ M is a point, so(TpM, gp) acts on the tensor algebra over TpM as a
derivation, Dg denotes the Levi-Civita connection and Rm(g) is the Rieman-
nian curvature tensor. Indeed, by the condition of locally homogeneity, the
vectors v, varying (v,A) ∈ g, span TpM . Moreover, since locally homogeneous
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spaces are real analytic Riemannian manifolds (see e.g. [10, Lemma 1.1] for a
modern proof), by [38] and [39], there exists a neighborhood of p which is lo-
cally isometric to the local quotient space G/H, where G is the simply-connected
Lie group with Lie algebra g, and H is the (possibly non-closed) connected Lie
subgroup of G with Lie algebra h := {(0, A) ∈ g}. Finally, two local quo-
tient spaces are locally equivariantly isometric if and only if the corresponding
algebras of Killing generators are isomorphic in the category of the so-called
orthogonal transitive Lie algebras, see e.g. [43, Section 2].

By definition, an orthogonal transitive Lie algebra is the algebraic datum
of (g = h + m, ⟨ , ⟩), where g is a Lie algebra, h ⊂ g is a Lie subalgebra that
does not contain any non-trivial ideal of g, m is an ad(h)-invariant complement
of h in g, and ⟨ , ⟩ is an ad(h)-invariant Euclidean product on m. If we denote
m := dimm and q := dim h, these data are encoded by equivalence classes of
tensors

µ ∈
(
GL(q)× O(m)

)∖(
Λ2(Rq+m)∗ ⊗ Rq+m

)

satisfying appropriate conditions (compare with Definition 3.7), called abstract
brackets. Following Lauret, see [29], one can use these abstract brackets in
order to parametrize the moduli space of locally homogeneous spaces, up to
local equivariant isometries.

This approach of varying Lie brackets, rather than metrics, provides a con-
venient setting for variational problems [5, 27, 29, 30, 31, 32, 35]. Moreover,
we stress that locally homogeneous Riemannian spaces provide a natural com-
pletion for homogeneous Riemannian spaces with respect to various notions of
convergence, see e.g. [43,44] and so this appears as the right framework in order
to study geometric evolution equations [9,33]. Moreover, it happens that one
needs to study this completion in order to get results on homogeneous spaces,
see e.g. [10, Theorem 4].

In this note, we translate the above theory to the almost-Hermitian setting.
We consider locally homogeneous almost-Hermitian spaces, namely, almost-
Hermitian manifolds (M,J, g) such that the pseudogroup of local pseudo-holo-
morphic isometries acts transitively. In Lemma 3.5, we show that we can work
in the real-analytic category without loss of generality. By considering the in-
finitesimal action of Killing vector fields on the almost-complex structure, see
Lemma 3.3, we are lead to introduce the Lie algebra of real holomorphic Killing
generators at a point p ∈ M as the set of pairs (v,A) ∈ TpM ⊕ so(TpM, gp)
such that

v ⌟
(
(Dg)k+1J

)
p +A ·

(
(Dg)kJ

)
p = 0 ,

v ⌟
(
(Dg)k+1Rm(g)

)
p +A ·

(
(Dg)k Rm(g)

)
p = 0 for any k ∈ Z≥0 .
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They correspond to infinitesimal real holomorphic Killing vector fields, that is,
vector fields such that the local flow is made by pseudo-holomorphic isometric
local transformations. Following the same approach as before, one can show
that these data at the point p encode the local geometry of (M,J, g).

The moduli space of locally homogeneous almost-Hermitian spaces is then
parametrized by using unitary transitive Lie algebras, namely (g = h+m, I, ⟨ , ⟩),
where (g = h+m, ⟨ , ⟩) is as before, and I is an ad(h)-invariant linear complex
structure on m that satisfies ⟨I·, I··⟩ = ⟨·, ··⟩, see Theorem 5.2. Again, these
algebraic data are encoded by equivalence classes of tensors

µ ∈
(
GL(q)× U(m)

)∖(
Λ2(Rq+2m)∗ ⊗ Rq+2m

)

as before, satisfying a further compatibility condition with respect to the linear
complex structure of Cm = R2m.

After the foundational work by Gauduchon [19], any almost-Hermitian
manifold is endowed with a distinguished one-parameter family of Hermitian
connections, that are called Gauduchon connections. They include, among oth-
ers, the Chern connection and the Bismut connection, which are fundamental
tool to investigate the (almost) complex geometry of the manifold. Notice that,
in the Kähler case, they all coincide with the Levi-Civita connection, which in
the general non-Kähler setting is not even adapted to the complex structure.
Remarkably, by restricting to locally homogeneous almost-Hermitian spaces,
all the geometric quantities related to the Gauduchon family can be expressed
in purely algebraic terms depending on µ, see Section 5.2.

As explicit examples, we apply this approach to compute the Gauduchon
curvatures of locally homogeneous (almost-)Hermitian structures on the Iwa-
sawa threefold, on the primary Kodaira surface, and on the almost-Kähler
Kodaira-Thurston four-manifold. We make use of the symbolic computation
software SageMath [48].

As in the Riemannian case, local symmetries could be useful to understand
special Hermitian metrics (see e.g. [1,3,7,17,47,56]) and variational problems
in Hermitian and almost-Hermitian geometry, in particular, geometric flows
driven by Hermitian curvatures (see e.g. [4,5,11,16,28,40,45,52,57]) including
convergence notions (see Section 5.3).

The paper is organized as follows. In Section 2, we recall some preliminary
notions and notation on complex linear algebra and Hermitian geometry. In
Section 3, we introduce locally homogeneous almost-Hermitian spaces and their
Hermitian Nomizu algebras. In Section 4, we introduce the notion of almost-
Hermitian geometric models and we show their compactness with respect to
the Cheeger-Gromov convergence. In Section 5, we give a treatment of the
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moduli space of locally homogeneous almost-Hermitian spaces. We also write
explicit formulas for the curvatures of Gauduchon connections. In Section 6,
we investigate explicit examples of locally homogeneous (almost) Hermitian
metrics on the Iwasawa manifold, on the primary Kodaira surface, and on the
almost-complex Kodaira-Thurston manifold. Finally, in Appendix A, we collect
the SageMath code for the previous examples.

2 - Preliminaries and notation

We denote by Ist, ⟨ , ⟩st the standard linear complex structure and the
standard Euclidean inner product on R2m, respectively, that are defined by
Iste

o
2i−1 = eo2i and ⟨eoi , eoj ⟩st = δij with respect to the standard basis (eo1, . . ., e

o
2m)

of R2m. We will also denote by Bst(x, r) the standard Euclidean ball in R2m

centered at x ∈ R2m with radius r > 0. Any integrable almost-complex struc-
ture will be just called complex structure. We will use the word smooth as a
synonym for of class C∞.

2.1 - Complex linear algebra

Let V = (V, J, g) be a real vector space of even dimension dimR V = 2m
endowed with a linear complex structure J and an Euclidean scalar product g
such that g(J(·), J(··)) = g(·, ··). Fix a (J, g)-unitary basis (ei, Jei) for V and
consider the associated complex basis

(
εi :=

1√
2
(ei−iJei), εī :=

1√
2
(ei+iJei)

)

for the complexification V C := V ⊗R C, which splits as a sum of J-eigenspaces
V C = V 1,0⊕V 0,1. Here, we use the fact that any real tensor on V can C-linearly
extended to V C in a unique way. One can directly check that Jεi = iεi, Jεī =
−iεī and εi = εī. Notice that J acts on covectors ϑ ∈ V ∗ via (Jϑ) := ϑ ◦ J−1,
so that (ei, Jei) is the dual basis of (ei, Jei) for V

∗. Analogously, it holds that(
εi := 1√

2
(ei + iJei), εī := 1√

2
(ei − iJei)

)
is the dual basis of (εi, εī), and

Jεi = −iεi, Jεī = iεī. With respect to such basis, we have

g = δj̄i ε
i ⊙ εj̄ , with εi ⊙ εj̄ := εi ⊗ εj̄ + εj̄ ⊗ εi .

We consider now the spaces

Sym1,1(V ) := {h ∈ End(V ) : g(h(·), ··) = g(·, h(··)) , [h, J ] = 0} ,

Skew1,1(V ) := {h̃ ∈ End(V ) : g(h̃(·), ··) = −g(·, h̃(··)) , [h̃, J ] = 0} ,

and we observe that the linear map

ΦJ : Sym1,1(V ) → Skew1,1(V ) , h → h̃ = J ◦ h
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is an isomorphism, with inverse given by h̃ → h = −J ◦ h̃. We denote by
tr : Sym(V ) → R the trace of symmetric endomorphisms h : V → V and, on
the subspace Sym1,1(V ), we set trC : Sym1,1(V ) → R to be the trace of the
induced complex endomorphism h : V 1,0 → V 1,0. Notice that tr(h) = 2 trC(h)
for any h ∈ Sym1,1(V ). Finally, we consider the space of real (1, 1)-forms

Λ1,1(V ∗) := {α ∈ Λ2(V ∗) : α(J(·), J(··)) = α(·, ··)}

and the projection π1,1 : Λ2(V ∗) → Λ1,1(V ∗) given by (π1,1α)(·, ··) := 1
2

(
α(·, ··)+

α(J ·, J ··)
)
. Then, we observe that the linear map

(2.1) ςg : Sym1,1(V ) → Λ1,1(V ∗) , ςg(h) := g((J ◦ h) ·, ··)

is an isomorphism and so, accordingly, we define

TrCg : Λ1,1(V ∗) → R , TrCg (α) := trC
(
ς−1
g (α)

)
.

Since any α ∈ Λ1,1(V ∗) is of the form α = αj̄i i ε
i ∧ εj̄ , with εi ∧ εj̄ := εi ⊗

εj̄ − εj̄ ⊗ εi, an easy computation shows that TrCg (α) = δij̄αj̄i. For the sake of

notation, we set TrCg (α) := TrCg (π
1,1α) for any α ∈ Λ2(V ∗).

Lastly, it will be useful to consider the decomposition of real 3-forms

(2.2) Λ3V ∗ = Λ3
+V

∗ ⊕ Λ3
−V

∗

given by the subspaces

Λ3
+V

∗ :=
(
(Λ2(V ∗)1,0 ⊗ (V ∗)0,1)⊕ ((V ∗)1,0 ⊗ Λ2(V ∗)0,1)

)
∩ Λ3V ∗ ,

Λ3
−V

∗ :=
(
Λ3(V ∗)1,0 ⊕ Λ3(V ∗)0,1

)
∩ Λ3V ∗ .

According to (2.2), for any φ ∈ Λ3V ∗, we will write φ = φ+ + φ−.

2.2 - Basics on Hermitian geometry

Let (M2m, J, g) be an almost-Hermitian manifold, i.e. M is a smooth man-
ifold of dimRM = 2m endowed with an almost-complex structure J and a
Riemannian metric g such that g(J ·, J ··) = g(·, ··). We recall that a smooth
map whose differential preserves J (resp. g) is said to be pseudo-holomorphic
(resp. isometric). We denote by ω := g(J ·, ··) its fundamental 2-form, by Dg

the Levi-Civita connection of g, by Rm(g)(X,Y ) := Dg
[X,Y ] − [Dg

X , Dg
Y ] its Rie-

mannian curvature operator and by sec(g)(X,Y ) := g(Rm(g)(X,Y )X,Y ) its
sectional curvature. For any point x ∈ M , we denote by Exp(g)x the Rieman-
nian exponential at x, by injx(M, g) the injectivity radius at x of the underlying



378 daniele angella and francesco pediconi [6]

Riemannian manifold and by Bg(x, r) the Riemannian distance ball in M cen-
tered at x with radius r.

We set

NJ(X,Y ) := [JX, JY ]− [X,Y ]− J([JX, Y ] + [X, JY ])

to be the Nijenhuis tensor of J . By the foundational result of Newlander-
Nirenberg, J is integrable if and only if NJ = 0. We also set dc := J−1◦ d ◦J .
In particular, in the integrable setting, it holds

d= ∂ + ∂̄ , dc = −i(∂ − ∂̄) , ddc = 2i∂∂̄ .

Rema r k 2.1. Let us recall that J is integrable if M admits a real-analytic
structure AJ = {(Uα, ξα)}, compatible with its smooth structure, such that

dξα(x) ◦ Jx ◦ dξα(x)−1 = Ist for any α, for any x ∈ Uα .

Notice that J turns out to be a real-analytic tensor field, while g in general is
just smooth. However, if g is real-analytic with respect to some real-analytic
structure A′ on M , then one can assume that A′ = AJ . Indeed, all the real-
analytic structures on a given smooth manifold are equivalent up to a real-
analytic diffeomorphism, see e.g. [22,36]. Also, in the possibly non-integrable
setting, we will see in Lemma 3.5 that locally homogeneous almost-Hermitian
structures are real-analytic.

A linear connection ∇ on (M,J, g) is said to be Hermitian if leaves both J, g
parallel, i.e. ∇J = ∇g = 0. Among such connections there are the so called
t-Gauduchon connections, named after [19], that are defined by

(2.3)
g(∇t

XY, Z) := g(Dg
XY, Z)− t+1

4 (dc ω)+(X, JY, JZ)− t−1
4 (dc ω)+(X,Y, Z)

− 1
4g(X,NJ(Y, Z))− 1

2(d
c ω)−(X,Y, Z) ,

for any t ∈ R. In particular, when J is integrable, which is equivalent toNJ = 0,
then

(dc ω)+ = dc ω , (dc ω)− = 0

and therefore (2.3) reduces to

(2.4) g(∇t
XY, Z) = g(Dg

XY, Z)− t+1
4 dω(JX, Y, Z)− t−1

4 dω(JX, JY, JZ) .

The t-Gauduchon connections are Hermitian and their torsion T t = T t(J, g),
that is defined by T t(X,Y ) := ∇t

XY −∇t
Y X − [X,Y ], is given by

(2.5)

g(T t(X,Y ), Z) = − t+1
4 (dc ω)+(X, JY, JZ)− t+1

4 (dc ω)+(JX, Y, JZ)

− t−1
2 (dc ω)+(X,Y, Z)− (dc ω)−(X,Y, Z)

− 1
4g(NJ(Y, Z), X) + 1

4g(NJ(X,Z), Y ) .
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In the case when J is integrable, the previous formula reduces to

g(T t(X,Y ), Z) = − t+1
4 dω(JX, Y, Z)− t+1

4 dω(X, JY, Z)

− t−1
2 dω(JX, JY, JZ) .

Notice that there exists a 1-form ϑ = ϑ(J, g) satisfying

tr(T t(X, ·)) = t+1
2 ϑ(X) , dωm−1 = ϑ ∧ ωm−1

which is called Lee form, see [19, Eqn (2.5.11)], [18, Eqns (13) and (16)]. We
also define the t-Gauduchon curvature operator Ωt = Ωt(J, g) by

(2.6) Ωt∈ C∞(M,Λ2(T ∗M)⊗Skew1,1
g (TM)) , Ωt(X,Y ) := ∇t

[X,Y ]− [∇t
X ,∇t

Y ] .

Moreover, we call first t-Gauduchon-Ricci (1, 1)-form the tensor field

(2.7)

ρt,(1) = ρt,(1)(J, g) ∈ C∞(M,Λ1,1(T ∗M)) ,

ρt,(1)(X,Y ) := trC(Φ−1
J (π1,1Ωt)(X,Y ))

= −1
2 tr

C(J ◦ Ωt(X,Y ) + J ◦ Ωt(JX, JY )) .

Notice that, according to our notation, ρt,(1) denotes the (1, 1)-component of the
2-form obtained by tracing the curvature Ωt with respect to the endomorphism
part. Analogously, we call second t-Gauduchon-Ricci form the tensor field

(2.8)
ρt,(2) = ρt,(2)(J, g) ∈ C∞(M,Λ1,1(T ∗M)) ,

ρt,(2)(X,Y ) := g(TrCg (Ω
t(·, ··))X,Y )

and t-Gauduchon scalar curvature the trace

(2.9)
scalt = scalt(J, g) ∈ C∞(M,R) ,

scalt := 2TrCg
(
ρt,(1)

)
= 2TrCg

(
ρt,(2)

)
.

Notice that the isomorphism (2.1) allows to consider also the symmetric Ricci
endomorphisms associated to (2.7) and (2.8), see e.g. [3, Sect 2.2].

2.3 - A comparison between the Gauduchon connections and the Levi-Civita
connection

Let (M,J, g) be an almost-Hermitian Riemannian manifold and consider a
metric linear connection ∇ on M . Let us denote by Ω∇ its curvature and by
T∇ its torsion. Then, the difference Γ∇ := ∇−Dg is a (1, 2)-tensor field, which
is related to the torsion T∇ by the following
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L emma 2.2. The tensor fields T∇ and Γ∇ verify the following equations:
(2.10)

T∇(X,Y ) = Γ∇(X,Y )− Γ∇(Y,X) ,

2g
(
Γ∇(X,Y ), Z

)
= g

(
T∇(X,Y ), Z

)
− g

(
T∇(Y, Z), X

)
+ g

(
T∇(Z,X), Y

)
.

P r o o f. Firstly, since Dg is torsion free, we get

T∇(X,Y ) = ∇XY −∇Y X − [X,Y ]

= Dg
XY −Dg

Y X − [X,Y ] + Γ∇(X,Y )− Γ∇(Y,X)

= Γ∇(X,Y )− Γ∇(Y,X) .

Secondly, since ∇g = Dgg = 0, we obtain

0 = (∇Xg)(Y, Z) + (∇Y g)(X,Z)− (∇Zg)(X,Y )

= (Dg
Xg)(Y, Z)− g

(
Γ∇(X,Y ), Z

)
− g

(
Y,Γ∇(X,Z)

)
+ (DgY g)(Z,X)

− g
(
Γ∇(Y, Z), X

)
− g

(
Z,Γ∇(Y,X)

)
− (Dg

Zg)(X,Y ) + g
(
Γ∇(Z,X), Y

)

+ g
(
X,Γ∇(Z, Y )

)
− g

(
Γ∇(X,Y ), Z

)
− g

(
Γ∇(Y,X), Z

)
− g

(
Γ∇(Y, Z)

− Γ∇(Z, Y ), X
)
+ g

(
Γ∇(Z,X)− Γ∇(X,Z), Y

)

= −2g
(
Γ∇(X,Y ), Z

)
+ g

(
T∇(X,Y ), Z

)
− g

(
T∇(Y, Z), X

)
+ g

(
T∇(Z,X), Y

)

that completes the proof. □

We also remark that the curvatures Ω∇ and Rm(g) are related by the fol-
lowing

L emma 2.3. The difference Ω∇ − Rm(g) is explicitly given by

(2.11) Ω∇(X,Y )− Rm(g)(X,Y ) = X⌟(Dg
Y Γ

∇)− Y ⌟(Dg
XΓ∇)−

[
Γ∇
X ,Γ∇

Y

]
,

where Γ∇
X := Γ∇(X, ·) and X⌟(Dg

Y Γ
∇) = (Dg

Y Γ
∇)(X, ·).

P r o o f. By the very definition

Ω∇(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ]

= Dg
[X,Y ] + Γ∇

[X,Y ] −
[
Dg

X + Γ∇
X , Dg

Y + Γ∇
Y

]

= Rm(g)(X,Y )−
[
Dg

X ,Γ∇
Y

]
+

[
Dg

Y ,Γ
∇
X

]
+ Γ∇

[X,Y ] −
[
Γ∇
X ,Γ∇

Y

]
.
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Since
(
−

[
Dg

X ,Γ∇
Y

]
+

[
Dg

Y ,Γ
∇
X

]
+ Γ∇

[X,Y ]

)
(V )

= −Dg
X

(
Γ∇(Y, V )

)
+ Γ∇(Y,Dg

XV ) +Dg
Y

(
Γ∇(X,V )

)

− Γ∇(X,Dg
Y V ) + Γ∇([X,Y ], V )

= −
(
Dg

XΓ∇)(Y, V )− Γ∇(Dg
XY, V

)
+

(
Dg

Y Γ
∇)(X,V )

+ Γ∇(Dg
Y X,V ) + Γ∇([X,Y ], V

)

=
(
Dg

Y Γ
∇)(X,V )−

(
Dg

XΓ∇)(Y, V ) ,

the thesis follows. □

Let us choose now one of the Gauduchon connections ∇ = ∇t, t ∈ R. Then,
its torsion T t(J, g) is related to the tensor field DgJ by means of the following

L emma 2.4. Fix an integer k ≥ 1 and a parameter t ∈ R. Then, there
exists a constant C = C(m, k, t) > 1 such that

(2.12)
1

C

k+1∑
j=1

∣∣((Dg)jJ
)
x

∣∣
g
≤

k∑
j=0

∣∣((Dg)jT t(J, g)
)
x

∣∣
g
≤ C

k+1∑
j=1

∣∣((Dg)jJ
)
x

∣∣
g

for any x ∈ M .

P r o o f. Easy computations show that

dω(X,Y, Z) = g((Dg
XJ)Y, Z) + g((Dg

Y J)Z,X) + g((Dg
ZJ)X,Y )

and

NJ(X,Y ) =
(
(Dg

JXJ)− J ◦ (Dg
XJ)

)
Y −

(
(Dg

JY J)− J ◦ (Dg
Y J)

)
X .

Therefore, by (2.5), it follows that there exists C1 = C1(m, k, t) such that

k+1∑
j=0

∣∣((Dg)jT t(g)
)
x

∣∣
g
≤ C1

k+2∑
j=1

∣∣((Dg)jJ
)
x

∣∣
g

for any x ∈ M . On the other hand, since ∇tJ = 0, it holds

Dg
XJ = Dg

XJ −∇t
XJ = −[Γt

X , J ]

and so, by (2.10), there exists C2 = C2(m, k, t) such that

k+2∑
j=1

∣∣((Dg)jJ
)
x

∣∣
g
≤ C2

k+1∑
j=0

∣∣((Dg)jT t(g)
)
x

∣∣
g



382 daniele angella and francesco pediconi [10]

for any x ∈ M , which concludes the proof. □

Finally, formulas (2.10), (2.11) and (2.12) directly imply the following result.

P r o p o s i t i o n 2.5. Fix an integer k ≥ 0, a parameter t ∈ R and a point
x ∈ M .

i) Let K1 > 0 be such that

k∑
i=0

∣∣((∇t)iΩt(g)
)
x

∣∣
g
+

k+1∑
j=0

∣∣((∇t)jT t(g)
)
x

∣∣
g
< K1 .

Then, there exists a constant C1 = C1(m, k, t,K1) > 0 such that

k∑
i=0

∣∣((Dg)iRm(g)
)
x

∣∣
g
+

k+2∑
j=1

∣∣((Dg)jJ
)
x

∣∣
g
< C1 .

ii) Let K2 > 0 be such that

k∑
i=0

∣∣((Dg)iRm(g)
)
x

∣∣
g
+

k+2∑
j=1

∣∣((Dg)jJ
)
x

∣∣
g
< K2 .

Then, there exists a constant C2 = C2(m, k, t,K2) > 0 such that

k∑
i=0

∣∣((∇t)iΩt(g)
)
x

∣∣
g
+

k+1∑
j=0

∣∣((∇t)jT t(g)
)
x

∣∣
g
< C2 .

3 - Locally homogeneous almost-Hermitian spaces

In this section, we will collect some known and less known facts about
locally homogeneous almost-Hermitian spaces. In particular, inspired by the
Riemannian case, we briefly present the notions of real holomorphic Killing
generators, of unitary transitive Lie algebras, and of Hermitian Ambrose-Singer
connections.

3.1 - Real holomorphic Killing generators

Let (M,J, g) be an almost-Hermitian manifold. A vector field X ∈ C∞(M,
TM) is said to be real holomorphic (resp. Killing) if LXJ = 0 (resp. LXg = 0),
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namely, if its local flow is made by pseudo-holomorphic (resp. isometric) local
transformations. Moreover, for the sake of notation, we set

AX := −DgX

for any vector field X on M (not necessarily real holomorphic or Killing).

We recall the following well-known fact, see e.g. [38, p. 118], [26, p. 541],
see also [43, Sect 2.1], [41, Lem I.1.4] for detailed computations, stating that
the space of pairs

(
Xp, (AX)p

)
∈ TpM ⊕ so(TpM, gp)

at a point p ∈ M , varying X real holomorphic Killing vector field of (M,J, g)
defined in a neighorhood of p, can be endowed with a structure of Lie algebra.

L emma 3.1 ([38, p 118]). Let p ∈ M be a point and X,Y real holomorphic
Killing vector fields of the almost-Hermitian manifold (M,J, g) defined on a
neighborhood of p. Set the pairs (v,A) :=

(
Xp, (AX)p

)
, (w,B) :=

(
Yp, (AY )p

)
.

Then, [X,Y ] is a real holomorphic Killing vector field of (M,J, g) and

[X,Y ]p = A(w)−B(v) ,(3.1)

(A[X,Y ])p = [A,B] + Rm(g)p(v, w) .(3.2)

P r o o f. The Jacobi identity L[X,Y ] = [LX ,LY ] shows that [X,Y ] is real
holomorphic Killing. Equation (3.1) follows from the definition of torsion and
Dg being torsion-free. Equation (3.2) follows by direct computation, by noticing
that

A[X,Y ] = [AX , AY ] + Rm(g)(X,Y ) + ([Dg
X , AY ]− Rm(g)(X,Y ))

− ([Dg
Y , AX ]− Rm(g)(Y,X))

and that the quantity

αY (X,Z1, Z2) := g([Dg
X , AY ]Z1 − Rm(g)(X,Y )Z1, Z2)

vanishes, for Y Killing vector field. Indeed, αY (X,Z1, Z2) is symmetric in
(X,Z1) by using the algebraic Bianchi identity, and skew-symmetric in (Z1, Z2)
since (LY g)(U, V ) = g(Dg

V Y, U)−g(Dg
UY, V ) vanishes for Y Killing vector field.

This completes the proof. □

It is well known that Killing vector fields satisfy the following formulas:
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L emma 3.2 ( [38, Lem 10]). Let X ∈ C∞(M,TM) be a Killing vector field
on the Riemannian manifold (M, g). Then

AX · g = 0 ,(3.3)

X ⌟
(
(Dg)k+1Rm(g)

)
+AX ·

(
(Dg)k Rm(g)

)
= 0 for any k ∈ Z≥0 ,(3.4)

where the action of AX on the tensor bundle of M is by derivation.

Futhermore, in the almost-Hermitian setting, we derive similar formulas for
the infinitesimal action on the almost-complex structure in the following:

L emma 3.3. Let X ∈ C∞(M,TM) be a Killing vector field on the almost-
Hermitian manifold (M,J, g). Then

(3.5) (Dg)k(LXJ) = X ⌟ (Dg)k+1J +AX ·
(
(Dg)kJ

)
for any k ∈ Z≥0 ,

where the action of AX on the tensor algebra is by derivation.

P r o o f. We prove the formula by induction on k ∈ Z≥0. For the sake of
shortness of notation, we forget the metric g.

For k = 0, take any vector field Y ∈ C∞(M,TM) and compute (see [26, Eqn
2.1.2]):

(LXJ)(Y ) = LX(JY )− J(LXY ) = [X, JY ]− J [X,Y ]

= DX(JY )−DJY X − JDXY + JDY X

= DX(JY )− JDXY +AX(JY )− JAXY

= (DXJ)(Y ) + [AX , J ](Y ) .

We also give explicit computations for k = 1: for any vector field Y ∈
C∞(M,TM),

D(LXJ)(Y, ) = DY DXJ +DY [AX , J ]

= D2
Y,XJ +DDY XJ + (DY AX)J +AX(DY J)− (DY J)AX

− J(DY AX)

= D2
X,Y J − [Rm(Y,X), J ] +DDY XJ

− Rm(X,Y )J +AX(DY J)− (DY J)AX + J Rm(X,Y )

= D2
X,Y J +DDY XJ + (AX(DJ))(Y ) + (DJ)(AXY )

− ((DJ)AX)(Y )

= (X ⌟D2J)(Y ) + (AX ·DJ)(Y ),
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where we used the Ricci formula [8, Eqn (1.21)] D2
X,Y −D2

Y,X = −Rm(X,Y ),
and the property [26, Lem 2.2] DY AX = −Rm(X,Y ) for Killing vector field X.

As for the inductive step, assume that Equation (3.5) holds true for some
k ∈ Z≥0. By using again the Kostant formula and the Ricci formulas, we
compute, for vector fields Y0, Y1, . . . , Yk ∈ C∞(M,TM),

Dk+1
Y0,Y1,...,Yk

(LXJ) =
(
DY0(D

k(LXJ))
)
Y1,...,Yk

=
(
DY0(X ⌟Dk+1J)

)
Y1,...,Yk

+
(
DY0(AX ·DkJ)

)
Y1,...,Yk

= Dk+2
Y0,X,Y1,...,Yk

J +Dk+1
DY0

X,Y1,...,Yk
J

+
(
(DY0AX)(DkJ)

)
Y1,...,Yk

+
(
AX(DY0D

kJ)
)
Y1,...,Yk

−
(
DY0D

kJ)AX

)
Y1,...,Yk

−
(
(DkJ)(DY0AX)

)
Y1,...,Yk

= Dk+2
X,Y0,Y1,...,Yk

J − Rm(Y0, X) ·Dk
Y1,...,Yk

J

+Dk
Rm(Y0,X)Y1,...,Yk

J + · · ·+Dk
Y1,...,Rm(Y0,X)Yk

J

+Dk+1
DY0

X,Y1,...,Yk
J − (Rm(X,Y0) ·DkJ)Y1,...,Yk

+ (AX ·Dk+1J)Y0,Y1,...,Yk
+Dk+1

AXY0,Y1,...,Yk
J

= (X ⌟Dk+2J)Y0,Y1,...,Yk
+ (AX ·Dk+1J)Y0,Y1,...,Yk

,

completing the proof. □

We recall now the following

D e f i n i t i o n 3.4. An almost-Hermitian manifold (M,J, g) is said to be a
locally homogeneous almost-Hermitian space if its pseudogroup of local auto-
morphisms PJ,g acts transitively, that is, for any x, y ∈ M there exist neigh-
borhoods Ux, Uy ⊂ M of x, y, respectively, and a local pseudo-holomorphic
isometry f : Ux → Uy such that f(x) = y.

Let (M,J, g) be a locally homogeneous almost-Hermitian space. Since J, g
determine a smooth U(m)-structure on M , it follows that PJ,g is a transitive
Lie pseudogroup of transformations on M and so, by standard Lie pseudogroup
theory (see e.g. [50, Thm 2.2]), the following result holds.

L emma 3.5. Let (M,J, g) be a locally homogeneous almost-Hermitian
space. Then both g and J are real-analytic.

Following [38, p. 110], we give the following definition. Given a locally
homogeneous almost-Hermitian space (M,J, g) and a distinguished point p ∈
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M , the real holomorphic Killing generators at p are defined as those pairs
(v,A) ∈ TpM ⊕ gl(TpM) such that

(3.6)
A · gp = 0 , v ⌟

(
(Dg)k+1J

)
p +A ·

(
(Dg)kJ

)
p = 0 ,

v ⌟
(
(Dg)k+1Rm(g)

)
p +A ·

(
(Dg)k Rm(g)

)
p = 0 for any k ∈ Z≥0 ,

where gl(TpM) acts on the tensor algebra over TpM as a derivation. This
definition is suggested by Lemma 3.2 and Lemma 3.3, as shown in the following

P r o p o s i t i o n 3.6. If X is a real holomorphicKilling vector field of (M,J, g)
defined in a neighborhood of the point p ∈ M , then the pair (v,A) :=

(
Xp, (AX)p

)
is a real holomorphic Killing generator of (M,J, g) at p. Conversely, there exists
a neighborhood Ωp ⊂ M of p such that, for any holomorphic Killing generator
(v,A) at p, there exists a real holomorphic Killing vector field X of (M,J, g)
defined on Ωp such that (v,A) =

(
Xp, (AX)p

)
.

P r o o f. Assume thatX is a real holomorphic Killing vector field of (M,J, g)
defined in a neighborhood of p. Then, by the very definition, by (3.4), and by
(3.5) respectively, it follows that

(
Xp, (AX)p

)
satisfies (3.6), namely,

(
Xp,(AX)p

)
is a real holomorphic Killing generator of (M,J, g) at p.

Conversely, being g real-analytic, then, by [38, Thms 1, 2], there exists a
neighborhood Ωp of p such that, for any real holomorphic Killing generator
(v,A) at p, one can find a real-analytic Killing vector field X defined on Ωp

such that (v,A) =
(
Xp, (AX)p

)
. Moreover, by means of (3.5), it follows that

(Dg)k(LXJ)p = 0 for any k ∈ Z≥0. Since the endomorphism field LXJ is real-
analytic, we conclude that X is real holomorphic. □

Thanks to Lemma 3.1, we denote by killJ,g the Lie algebra of all the real
holomorphic Killing generators of the locally homogeneous almost-Hermitian
manifold (M,J, g) at the point p with the Lie bracket

(3.7)
[
(v,A), (w,B)

]
:=

(
A(w)−B(v), [A,B] + Rm(g)p(v, w)

)

and we call it the Hermitian Nomizu algebra of (M,J, g) at p.

3.2 - Unitary transitive Lie algebras

We recall that the Malcev-closure in the connected Lie group G of a Lie
subalgebra h of g = Lie(G) is the Lie algebra of the closure H of H in G, where
H is the simply connected Lie group with Lie(H) = h. Following [29,43], we
consider the following
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D e f i n i t i o n 3.7. Let m, q ∈ Z≥0. A unitary transitive Lie algebra (g =
h+m, I, ⟨ , ⟩) of rank (m, q) is the datum of

· a (q+2m)-dimensional Lie algebra g;

· a q-dimensional Lie subalgebra h ⊂ g which does not contain any non-
trivial ideal of g;

· an ad(h)-invariant complement m of h in g;

· an ad(h)-invariant linear complex structure I on m;

· an ad(h)-invariant Euclidean product ⟨ , ⟩ on m such that ⟨I·, I··⟩ = ⟨·, ··⟩.

A unitary transitive Lie algebra (g = h+m, I, ⟨ , ⟩) is said to be

· integrable it the linear complex structure I satisfies

[IX, IY ]m − [X,Y ]m = I[IX, Y ]m + I[X, IY ]m for any X,Y ∈ m ,

non-integrable otherwise;

· regular if h is Malcev-closed in the simply connected Lie group G with
Lie(G) = g, non-regular otherwise.

Let (g = h + m, I, ⟨ , ⟩) be a unitary transitive Lie algebra of rank (m, q).
Since there are no ideals of g in h, the adjoint action of h on m is a faithful
representation in u(m, I, ⟨ , ⟩) and so 0 ≤ q ≤ m2. An adapted frame is a basis
u = (e1, . . ., eq+2m) : Rq+2m → g such that

h = span(e1, . . ., eq) , m = span(eq+1, . . ., eq+2m) ,

Ieq+(2i−1) = eq+2i , ⟨eq+i, eq+j⟩ = δij .

An isomorphism between two unitary transitive Lie algebras (gi = hi +
mi, Ii, ⟨ , ⟩i) is any Lie algebra isomorphism φ : g1 → g2 such that

φ(h1) = h2 , φ(m1) = m2 , I2 ◦ φ|m1 = φ|m1 ◦ I1 , ⟨ , ⟩1 = (φ|m1)
∗⟨ , ⟩2 .

Rema r k 3.8. The product ⟨ , ⟩ on m can be extended to an inner product
⟨ , ⟩′ on g in such a way that the decomposition g = h + m is orthogonal and

⟨ , ⟩′|h⊗h corresponds, via the embedding h
ad→ u(m, I, ⟨ , ⟩) → so(m, ⟨ , ⟩), to the

negative Cartan-Killing form of so(m, ⟨ , ⟩).
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A distinguished class of unitary transitive Lie algebras are given by the
Hermitian Nomizu algebras of locally homogeneous almost-Hermitian mani-
folds. Indeed, let (M,J, g) be a locally homogeneous Hermitian space, p ∈ M
a distinguished point and killJ,g the Hermitian Nomizu algebra of (M,J, g) at
p. Consider the Euclidean scalar product on killJ,g given by

⟨⟨(v,A), (w,B)⟩⟩g := gp(v, w)− tr(AB) ,

set killJ,g0 := {(0, A) ∈ killJ,g} ⊂ u(TpM,Jp, gp) and let mg be the ⟨⟨ , ⟩⟩g-
orthogonal complement of killJ,g0 in killJ,g. Being (M,J, g) locally homogeneous,
it follows that mg ≃ TpM and this allows us to define a linear complex structure
IJ and a scalar product ⟨ , ⟩g on mg induced by J and g on M , respectively.
Then,

(3.8) (killJ,g = killJ,g0 +mg, IJ , ⟨ , ⟩g)

is a unitary transitive Lie algebra. It is straightforward to check that the Hermi-
tian Nomizu algebra, modulo isomorphisms, does not depend on the particular
choice of the point p and that two locally homogeneous almost-Hermitian spaces
are locally pseudo-holomorphically isometric if and only if their Hermitian No-
mizu algebras are isomorphic.

3.3 - Hermitian Ambrose–Singer connections and Hermitian–Singer invari-
ant

As in the Riemannian case, the following facts hold true. First, locally
homogeneity is encoded by the existence of a distinguished connection. More
precisely

Th e o r em 3.9 ( [24,49]). Let (M,J, g) be an almost-Hermitian manifold.
It is locally homogenous if and only if it admits a Hermitian connection with
parallel torsion and parallel curvature.

A connection as in the previous theorem is called a Hermitian Ambrose-
Singer connection. Moreover, by the proof of this theorem, it follows that
Hermitian Ambrose-Singer connections are in one-to-one correspondence with
the choice of a reductive decomposition for the Hermitian Nomizu algebra, i.e.
a choice of a complement m for the isotropy algebra killJ,g0 inside killJ,g that is
invariant under the adjoint representation. One of this choice has already been
discussed in the previous section.

Second, it is possible to recognize a locally homogeneous almost-Hermitian
manifold by means of a finite set of algebraic tensors on a tangent space. To
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this purpose, fix p ∈ M and for any k ≥ 0 set

(3.9) j(k) :=
{
A ∈ u(TpM,Jp, gp) : A ·

(
(Dg)iRm(g)p

)
= 0 for 0 ≤ i ≤ k ,

A ·
(
(Dg)jJp

)
= 0 for 1 ≤ j ≤ k + 2

}
.

Since
(
j(k)

)
k∈Z≥0

is a filtration of the finite dimensional Lie algebra u(TpM,Jp,

gp), there exists a first integer kJ,g such that j(kJ,g) = j(kJ,g+1). It is called the
Hermitian-Singer invariant of (M,J, g) by [15]. Notice that, by adapting [54,
Thm 4.1], whose proof can be found in [37, proof of Thm 2.1], and [54, Prop
4.3], it is possible to prove that j(k) = j(kJ,g) for any k ≥ kJ,g.

R ema r k 3.10 (Open question, 1). In the same spirit of [34], it will be
interesting to construct examples of:

i) locally homogeneous almost-Hermitian spaces with arbitrarily high Her-
mitian Singer invariant;

ii) pairs of locally homogeneous almost-Hermitian spaces with Hermitian
Singer invariant k, that are not locally pseudo-holomorphically isometric,
which have the same Riemannian curvature up to order k and the same
almost-complex structure up to order k + 2.

For later purposes, for any positive integer m we set

(3.10) ȷ(m) := max{kJ,g : (M,J, g) alm.Herm. loc. hom.with dimRM ≤ 2m}.

Notice that m → ȷ(m) is non-decreasing and 0 ≤ ȷ(m) ≤ m2 − 1.

For any m, s ∈ N with s ≥ ȷ(m) + 2, we define X̃ s(m) to be the set of all
the (2s+3)-tuples

(J1, . . ., Js+2)⊕ (R0, R1, . . ., Rs) ∈ E(1)(m, s)⊕ E(2)(m, s) ,

with

E(1)(m, s) :=
⊕

1≤k≤s+2

(⊗k(R2m)∗ ⊗ so(2m)
)
,

E(2)(m, s) :=
⊕

0≤k≤s

(⊗k(R2m)∗ ⊗ Λ2(R2m)∗ ⊗ so(2m)
)
,

satisfying the subsequent conditions (X1) and (X2).
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(X1) The following eight identities hold:

i) ⟨R0(Y1∧Y2)V1, V2⟩st = ⟨R0(V1∧V2)Y1, Y2⟩st ,

ii) SY1,Y2,V1
⟨R0(Y1∧Y2)V1, V2⟩st = 0 ,

iii) ⟨R1(X1|Y1∧Y2)V1, V2⟩st = ⟨R1(X1|V1∧V2)Y1, Y2⟩st ,

iv) SY1,Y2,V1
⟨R1(X1|Y1∧Y2)V1, V2⟩st = 0 ,

v) SX1,Y1,Y2
⟨R1(X1|Y1∧Y2)V1, V2⟩st = 0 ,

vi) Rk+2(X1, X2, X3, . . .Xk+2|Y1∧Y2)−Rk+2(X2, X1, X3, . . .Xk+2|Y1∧Y2)

= −
(
R0(X1∧X2) ·Rk

)
(X3, . . .Xk+2|Y1∧Y2)

for any 0 ≤ k ≤ s− 2 ,

vii) J2(X1, X2)− J2(X2, X1) = −R0(X1∧X2) · Ist ,

viii) Jk+2(X1, X2, X3, . . .Xk+2)− Jk+2(X2, X1, X3, . . .Xk+2)

= −
(
R0(X1∧X2) · Jk

)
(X3, . . .Xk+2|Y1∧Y2)

for any 1 ≤ k ≤ s ,

where so(2m) acts on the tensor algebra on R2m by derivation.

(X2) For any 1 ≤ k ≤ s, the maps

αk(A) := (A · Ist, A · J1, . . ., A · Jk+1)⊕ (A ·R0, A ·R1, . . ., A ·Rk−1) ,

βk(X) := (X⌟J1, . . ., X⌟Jk+2)⊕ (X⌟R1, X⌟R2, . . ., X⌟Rk) ,

with A ∈ so(2m) and X ∈ R2m, verify

βk(R2m) ⊂ αk−1(so(2m)) for any ȷ(m) + 2 ≤ k ≤ s ,

ker(αk) = ker(αk+1) for any ȷ(m) ≤ k ≤ s− 1 .

Notice that X̃ s(m) is invariant under the standard left action of U(m), and
hence

D e f i n i t i o n 3.11. Let m, s ∈ N with s ≥ ȷ(m) + 2. We call Hermitian
s-tuples of rank m the elements of the quotient space X s(m) := U(m)\X̃ s(m).

This definition is motivated by the following result, which is the almost-
Hermitian analogue of [37, Thm 3.1]:
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Th e o r em 3.12 ( [15]). Let (M2m, J, g) be a locally homogeneous almost-
Hermitian space. Let also p ∈ M be a point, u : R2m → TpM a unitary frame
and s ≥ ȷ(m) + 2 an integer. Then

(
u∗

(
DgJ

)
p, . . ., u

∗((Dg)s+2J
)
p

)

⊕
(
u∗Rm(g)p, u

∗(Dg Rm(g)
)
p, . . ., u

∗((Dg)sRm(g)
)
p

)

defines a Hermitian s-tuple of rank m which is independent of p and u. Con-
versely, for any Hermitian s-tuple θs ∈ X s(m) of rank m, there exists a locally
homogeneous almost-Hermitian space (Mm, J, g), uniquely determined up to a
local pseudo-holomorphic isometry, such that

θs =
[(
u∗

(
DgJ

)
p, . . ., u

∗((Dg)s+2J
)
p

)

⊕
(
u∗Rm(g)p, u

∗(Dg Rm(g)
)
p, . . ., u

∗((Dg)sRm(g)
)
p

)]

for some p ∈ M and u : R2m → TpM unitary frame.

4 - Almost-Hermitian geometric models

4.1 - The class of almost-Hermitian geometric models

In this section, following [10, 44], we introduce a special class of locally
homogeneous almost-Hermitian spaces, namely

D e f i n i t i o n 4.1. A 2m-dimensional almost-Hermitian geometric model is
a locally homogeneous almost-Hermitian distance ball (B, Ĵ , ĝ) =(Bĝ(o, π), Ĵ , ĝ)
of radius π, dimension dimRB = 2m, with bounded sectional curvature | sec(ĝ)|
≤ 1 and injectivity radius at the center o ∈ B equal to injo(B, ĝ) = π.

From now on, up to pulling back the metric via the Riemannian exponential
map Exp(ĝ)o, any almost-Hermitian geometric model will be always assumed to
be of the form (B2m, Ĵ , ĝ), whereB2m := Bst(0, π) ⊂ R2m is the 2m-dimensional
Euclidean ball of radius π, the standard coordinates of B2m will be always
assumed to be normal for ĝ at 0 and Ĵ |0 = Ist. In particular, the geodesics
starting from 0 ∈ B2m are precisely the straight lines and the Riemannian
distance from the center equals dĝ(0, x) = |x|st for any x ∈ B2m. Hence,
Bĝ(0, r) = Bst(0, r) for any 0 < r ≤ π.

For latter purposes, we prove that local pseudo-holomorphic isometries can
be extended in the following way:
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L emma 4.2. Let (B2m, Ĵ1, ĝ1) and (B2m, Ĵ2, ĝ2) be two almost-Hermitian
geometric models and ssume that there exists 0 < ε < π and a pointed pseudo-
holomorphic isometry f : (Bst(0, ε), Ĵ1, ĝ1) → (Bst(0, ε), Ĵ2, ĝ2). Then, f ex-
tends analytically to a pointed pseudo-holomorphic isometry f̃ : (B2m, Ĵ1, ĝ1) →
(B2m, Ĵ2, ĝ2).

P r o o f. Let us define the map

f̃ : B2m → B2m , f̃ := Exp(ĝ2)0 ◦ df |0 ◦ Exp(ĝ1)−1
0 .

Then, by construction, it follows that f̃ is real-analytic diffeomorphism satis-
fying f̃(x) = f(x) for any x ∈ Bst(0, ε) and f̃∗ĝ2 = ĝ1. We now consider the
function

h : B2m → R , h(x) :=
∣∣ df̃(x) ◦ J1(x) ◦ (df̃(x))−1 − J2(f̃(x))

∣∣2
ĝ2

and we observe that it is real-analytic. Moreover h(x) = 0 for any x ∈ Bst(0, ε)
and so it follows that h(x) = 0 for any x ∈ B2m. This completes the proof. □

Following [10, Lemma 1.3 and Lemma 1.4] and the proof of Lemma 4.2,
one can also prove the following

L emma 4.3. Let (B2m, Ĵ , ĝ) be an almost-Hermitian geometric model.
Then

(4.1) injx(B
2m, ĝ) = π − |x|st for any x ∈ B2m .

Moreover, fix x, y ∈ B2m and set rx,y := π − max{|x|st, |y|st}. Then, any
pointed pseudo-holomorphic isometry f : (Bĝ(x, ε), Ĵ , ĝ) → (Bĝ(y, ε), Ĵ , ĝ) can
be uniquely extended to a pointed pseudo-holomorphic isometry f̃ defined on
Bĝ(x, rx,y).

One of the main properties of the class of almost-Hermitian geometric mod-
els is the fact that they give rise to a good parametrization for the moduli
space of locally homogeneous almost-Hermitian spaces up to local pseudo-
holomorphic isometries. More precisely, the following existence result holds
true.

T h e o r em 4.4. Let (M2m, J, g) be a locally homogeneous almost-Hermitian
space with | sec(g)| ≤ 1. Then, there exists a 2m-dimensional almost-Hermitian
geometric model (B2m, Ĵ , ĝ) that is locally pseudo-holomorphically isometric to
(M2m, J, g). The almost-Hermitian geometric model is unique up to pseudo-
holomorphic isometry.
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P r o o f. Fix a point p ∈ M . By [44, Theorem A], there exists a 2m-
dimensional, smooth, locally homogeneous Riemannian distance ball (B2m, ĝ)
with | sec(ĝ)| ≤ 1 and inj0(B

2m, ĝ) = π, together with a smooth diffeomorphism

ϕ : Bst(0, ε) ⊂ B2m → U ⊂ M

verifying ϕ(0) = p and ϕ∗g = ĝ. Then, it is easy to check that Ĵ := (dϕ)−1◦J◦dϕ
can be extended to the whole ball B2m and gives rise to an almost-Hermitian
geometric model (B2m, Ĵ , ĝ). Finally, the uniqueness follows from Theorem
3.12 and Lemma 4.2. □

4.2 - Cheeger-Gromov convergence of almost-Hermitian geometric models

In the Riemannian setting, geometric models are introduced to provide a
right framework to study convergence in the Cheeger-Gromov topology even
without a lower bound on the injectivity radius. Indeed, it is well-known
by [12,13] that there exist families of Riemannian manifolds that collapse with
bounded curvature. The idea of studying limits of such families in the Cheeger-
Gromov topology was originally conceived in the seminal works by [21, 33],
where the notion of Riemannian groupoids is used. Remarkably, when restrict-
ing to Riemannian homogeneous spaces, this construction reduces to consider
geometric models.

Firstly, we give the following definition of convergence, which generalizes
the usual notion of pointed convergence for complete Riemannian manifolds
(see e.g. [46]) to the case of incomplete almost-Hermitian manifolds. In the
following, the Banach spaces Ck,α(B) are defined following [20, p. 52] for any
bounded ball B ⊂ R2m.

D e f i n i t i o n 4.5. A sequence (B2m, Ĵ (n), ĝ(n)) of 2m-dimensional almost-
Hermitian geometric models is said to converge in the pointed Ck,α-topology to a
2m-dimensional almost-Hermitian geometric model (B2m, Ĵ (∞), ĝ(∞)) if, for any

0 < δ < π, there exists a sequence of Ck+1,α-embeddings ϕ
(n)
δ : Bst(0, π − δ) →

B2m such that ϕ
(n)
δ (0) = 0 for any n ∈ N and

∥∥∥(ϕ(n)∗
δ ĝ(n)

)
ij
−

(
ĝ(∞)

)
ij

∥∥∥
Ck,α(Bst(0,π−δ))

→ 0 ,

∥∥∥((dϕ(n)
δ )−1 ◦ Ĵ (n) ◦ (dϕ(n)

δ )
)i
j
−

(
Ĵ (∞)

)i
j

∥∥∥
Ck,α(Bst(0,π−δ))

→ 0

as n → +∞, for any 1 ≤ i, j ≤ 2m.
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Then we observe that, by means of [44, Corollary 3.8] and Proposition 2.5,
the following convergence result holds true in the set of all the almost-Hermitian
geometric models.

T h e o r em 4.6. Let (B2m, Ĵ (n), ĝ(n)) be a sequence of 2m-dimensional al-
most-Hermitian geometric models and assume that there exist an integer k ≥ 0,
a parameter t ∈ R and a constant K > 0 such that, for any n ∈ N,

k∑
i=0

∣∣(∇(n) t)iΩt(Ĵ (n), ĝ(n))
∣∣
ĝ(n) +

k+1∑
j=0

∣∣(∇(n) t)jT t(Ĵ (n), ĝ(n))
∣∣
ĝ(n) < K .

Then, (B2m, Ĵ (n), ĝ(n)) subconverges to a limit 2m-dimensional almost-Hermi-
tian geometric model (B2m, Ĵ (∞), ĝ(∞)) in the pointed Ck+1,α-topology, for any
0 < α < 1.

P r o o f. By Proposition 2.5, there exists a constant C = C(m, k, t,K) such
that, for any n ∈ N,

(4.2)
k∑

i=0

∣∣((Dĝ(n)
)iRm(ĝ(n))

)∣∣
ĝ(n) < C ,

k+2∑
j=1

∣∣((Dĝ(n)
)j Ĵ (n)

)∣∣
ĝ(n) < C .

By the first inequality in (4.2) and [44, Corollary 3.8], up to pass to a subse-
quence, we can assume that the sequence of Riemannian distance balls (B2m,
ĝ(n)) converges to a 2m-dimensional, smooth, locally homogeneous Riemannian
distance ball (B2m, ĝ(∞)) in the pointed Ck+1,α-topology, for any 0 < α < 1,
with | sec(ĝ(∞))| ≤ 1 and inj0(B

2m, ĝ(∞)) = π. In other words, we can fix any

0 < δ < π and find a sequence of Ck+2,α-embeddings ϕ
(n)
δ : Bst(0, π− δ) → B2m

such that ϕ
(n)
δ (0) = 0 and

(4.3)
∥∥∥(ϕ(n)∗

δ ĝ(n)
)
ij
−

(
ĝ(∞)

)
ij

∥∥∥
Ck+1,α(Bst(0,π−δ))

→ 0

as n → +∞, for any 1 ≤ i, j ≤ 2m.

Actually, the intertwining embeddings ϕ
(n)
δ can be assumed to be smooth.

Indeed, we can approximate each ϕ
(n)
δ with a smooth map ϕ̃

(n)
δ : Bst(0, π−δ) →

B2m, satisfying ϕ̃
(n)
δ (0) = 0, in the Ck+2,α-norm, i.e.

max
1≤ℓ≤2m

∥∥∥(ϕ̃(n)
δ − ϕ

(n)
δ

)ℓ∥∥∥
Ck+2,α(Bst(0,π−δ))

≤ ε(n)

for some constant ε(n) > 0. Notice that the condition of being embedding is
open, see e.g. [23, Ch 2, Thm 1.4], and so, up to take ε(n) small enough, the
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map ϕ̃
(n)
δ is an embedding as well. Moreover, a direct computation shows that

there exists a constant C > 0, that does not depend on n, such that

∥∥∥(ϕ̃(n)∗
δ ĝ(n)

)
ij
−

(
ĝ(∞)

)
ij

∥∥∥
Ck+1,α(Bst(0,π−δ))

≤ C
(
ε(n) +

∥∥∥(ϕ(n)∗
δ ĝ(n)

)
ij
−

(
ĝ(∞)

)
ij

∥∥∥
Ck+1,α(Bst(0,π−δ))

)

for any 1 ≤ i, j ≤ 2m. Therefore, letting ε(n) → 0, this shows that (4.3) holds

also with ϕ̃
(n)
δ in place of ϕ

(n)
δ .

By (4.2), the tensors (dϕ
(n)
δ )−1 ◦ Ĵ (n) ◦ (dϕ

(n)
δ ) are uniformly bounded in

the Ck+2-norm on the compact set Bst(0, π − δ). Then, by the Ascoli-Arzelà
Theorem, up to pass to a subsequence, there exists a (1, 1)-tensor field Ĵ (∞) on
Bst(0, π − δ) of class Ck+1,α such that

∥∥∥((dϕ(n)
δ )−1 ◦ Ĵ (n) ◦ (dϕ(n)

δ )
)i
j
−

(
Ĵ (∞)

)i
j

∥∥∥
Ck+1,α(Bst(0,π−δ))

→ 0

as n → +∞, for any 1 ≤ i, j ≤ 2m (see e.g. the proof of [14, Corollary 3.15]).
By letting δ → 0+ and using a Cantor diagonal argument, we obtain a well
defined limit tensor field Ĵ (∞) on the whole ball B2m. Since (ĝ(n), Ĵ (n)) is an
almost-Hermitian structure on B2m for any n ∈ N, it follows that (ĝ(∞), Ĵ (∞))
is an almost-Hermitian structure on B2m. In virtue of Lemma 4.3, one can
mimic the proof of [10, Theorem 2.6] and show that (B2m, ĝ(∞), Ĵ (∞)) is a
locally homogeneous almost-Hermitian space. Finally, in order to prove that the
tensor Ĵ (∞) is smooth, and hence real-analytic, one can proceed as in the proof
of [44, Theorem B] by two steps. Firstly, in virtue of Lemma 4.3, one constructs
a locally compact and effective local topological group of pseudo-holomorphic
isometries acting transitively on (B2m, ĝ(∞), Ĵ (∞)) around the origin. Then,
by the local Myers-Steenrod Theorem [42, Theorem A], this turns out to be
a transitive local Lie group of pseudo-holomorphic isometries and hence the
thesis follows. □

Rema r k 4.7 (Open question, 2). Let us stress that, in contrast with the
Riemannian case, this is not a compactness theorem (compare with [44, The-
orem B]). In fact, even though the limit space is real-analytic, we do not have
control on the top order covariant derivative of the limit almost-complex struc-
ture, even for k = 0. We ask whether it is possible to refine Definition 4.1 and
get new estimates in order to obtain a compactness result.
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5 - The space of locally homogeneous almost-Hermitian spaces

5.1 - A parametrization for locally homogeneous almost-Hermitian spaces

For any m, q ∈ Z with m ≥ 1 and 0 ≤ q ≤ m2, we indicate with H
loc,alm-C
q,m

the moduli space of unitary transitive Lie algebras of rank (q,m) up to iso-
morphisms and we indicate with Halm-C

q,m the subset of moduli space of regular

ones. Similarly, with H
loc,C
q,m (resp. HC

q,m) denotes the subset of integrable uni-
tary transitive Lie algebras (resp. the regular ones). We fix a decomposition
Rq+2m = Rq⊕R2m and the corresponding diagonal embedding of GL(q)×U(m)
into GL(q+2m). Accordingly, we denote by prR2m : Rq+2m → R2m the induced
natural projection onto the second factor. We define

Wq,m :=
(
GL(q)× U(m)

)∖(
Λ2(Rq+2m)∗ ⊗ Rq+2m

)
,

where GL(q)×U(m) acts on Λ2(Rq+2m)∗⊗Rq+2m on the left by change of basis.
Following [29], one can prove that the map

Ψq,m : Hloc,alm-C
q,m → Wq,m , (g = h+m, I, ⟨ , ⟩) → µ := u∗

(
[·, ·]g

)
,

where u : Rq+2m → g is any adapted linear frame for (g = h+m, I, ⟨ , ⟩), is well
defined, injective and that its image contains precisely the elements µ ∈ Wq,m

which verify the following conditions:

(h1) µ satisfies the Jacobi condition and µ(Rq,Rq) ⊂ Rq, µ(Rq,R2m) ⊂ R2m;

(h2) ⟨µ(Z,X), Y ⟩st = ⟨X,µ(Z, Y )⟩st for any X,Y ∈ R2m, Z ∈ Rq;

(h3) µ(Z, IstX) = Istµ(Z,X) for any X ∈ R2m, Z ∈ Rq;

(h4)
{
Z ∈ Rq : µ(Z,R2m) = {0}

}
= {0}.

The image of Hloc,C
q,m is characterized by the further condition

(h5) prR2m

(
µ(IstX, IstY )− µ(X,Y )

)
= IstprR2m

(
µ(IstX,Y ) + µ(X, IstY )

)
for

any X,Y ∈ R2m.

R ema r k 5.1. We point out that, while conditions (h1), (h2), (h3), (h5) are
closed, condition (h4) is open. However, following [29], the following fact holds:

for any element µ̃ ∈ Wq,m \Hloc,alm-C
q,m satisfying conditions (h1), (h2) and (h3),

there exist a unique integer 0 ≤ q′ < q and a decomposition Rq = Rq−q′ ⊕ Rq′

such that Rq−q′ =
{
Z ∈ Rq : µ(Z,R2m) = {0}

}
and

(µ̃)|q′,m := prRq′+2m ◦ (µ̃|Rq′+2m×Rq′+2m) ∈ H
loc,alm-C
q′,m ,

where Rq′+2m = Rq′ ⊕ R2m and prRq′+2m : Rq+2m → Rq′+2m is the projection

with respect to the decomposition Rq+2m = Rq−q′ ⊕ Rq′+2m.
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From now on, we identify H
loc,alm-C
q,m with its image through Ψq,m and, for

any µ ∈ H
loc,alm-C
q,m ≃ Ψq,m(Hloc,alm-C

q,m ), we set

gµ := (Rq+2m, µ) , hµ := (Rq, µ|Rq×Rq)

so that (gµ = hµ+R2m, Ist, ⟨ , ⟩st) is the unitary transitive Lie algebra uniquely
associated to the bracket µ. We also set

(5.1)

Hloc,alm-C
m :=

m2⋃
q=0

Hloc,alm-C
q,m , Halm-C

m :=

m2⋃
q=0

Halm-C
q,m ,

Hloc,C
m :=

m2⋃
q=0

Hloc,C
q,m , HC

m :=

m2⋃
q=0

HC
q,m .

The set Hloc,alm-C
q,m parametrizes the moduli space of the equivalence classes

of m-dimensional locally homogeneous almost-Hermitian spaces, up to local
equivariant pseudo-holomorphic isometries, in the following way.

Th e o r em 5.2. For any unitary transitive Lie algebra µ ∈ H
loc,alm-C
m , there

exist a pointed locally homogeneous almost-Hermitian space ((M,J, g), p) and
an injective homomorphism φ : gµ → killJ,g such that

φ(hµ) ⊂ killJ,g0 , φ(R2m) = mg ,

φ|R2m ◦ Ist ◦ (φ|R2m)−1 = IJ , ((φ|R2m)−1)∗⟨ , ⟩st = ⟨ , ⟩g ,

where (killJ,g = killJ,g0 +mg, IJ , ⟨ , ⟩g) is the Hermitian Nomizu algebra of (M,J, g)
at p, as in (3.8). The space (M,J, g) is uniquely determined up to a local equiv-
ariant pseudo-holomorphic isometry. Moreover, J is integrable if and only if
µ ∈ H

loc,C
m , and (M,J, g) is locally equivariantly pseudo-holomorphically iso-

metric to a globally homogeneous almost-Hermitian space if and only if µ is
regular.

P r o o f. The analogue statement in the category of locally homogeneous
Riemannian spaces follows from [50, Lemma 3.5 and Prop 4.4]. Here, we just
sketch the construction of the pointed locally homogeneous almost-Hermitian
space associated to an element µ ∈ H

loc,alm-C
m . Let Gµ be the unique simply

connected Lie group with Lie(Gµ) = gµ and Hµ ⊂ Gµ the connected Lie sub-
group with Lie(Hµ) = hµ, which is closed in Gµ if and only if µ is regular.
Then one can consider the local quotient of Lie groups Gµ/Hµ, which admits a
unique suitable real-analytic manifold structure (see e.g. [42, Sect 6]). More-
over, by means of the standard local action of Gµ on Gµ/Hµ, one can construct
a uniquely determined invariant almost-Hermitian structure (Jµ, gµ) on Gµ/Hµ

such that (R2m, Ist, ⟨ , ⟩st) ≃ (TeµHµGµ/Hµ, Jµ|eµHµ , gµ|eµHµ). □
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5.2 - Gauduchon connections of locally homogeneous almost-Hermitian
spaces

For any µ ∈ H
loc,alm-C
q,m , we will refer to all the geometric data of (Gµ/Hµ, Jµ,

gµ) by writing µ, for example, Dµ will denote the Levi-Civita connection and

D̃µ will denote its Hermitian Ambrose-Singer connection, uniquely determined
by the fixed reductive decomposition gµ = hµ + R2m. Moreover, we consider
the orthogonal decomposition

(5.2)
µ = (µ|hµ∧gµ) + µhµ + µR2m ,

with µhµ : R2m ∧ R2m → hµ , µR2m : R2m ∧ R2m → R2m ,

with respect to the the ad(hµ)-invariant product ⟨ , ⟩′µ on gµ introduced in Re-
mark 3.8. We denote by Fµ ∈ Λ3(R2m)∗ the three-form corresponding to dc ωµ,
which is given by

Fµ(X,Y, Z) = −⟨µR2m(IstX, IstY ), Z⟩st − ⟨µR2m(IstY, IstZ), X⟩st
− ⟨µR2m(IstZ, IstX), Y ⟩st .

We also denote by Nµ the Nijenhuis tensor, which is given by

Nµ(X,Y ) = −µR2m(IstX, IstY ) + µR2m(X,Y ) + IstµR2m(IstX,Y )

+ IstµR2m(X, IstY ) .

According to (2.2), we consider the decomposition Fµ = (Fµ)+ + (Fµ)−. By
[19, Eqns (1.2.1) and (2.2.4)], we have

(Fµ)−(X,Y, Z) = ⟨Nµ(X,Y ), Z⟩st + ⟨Nµ(Y, Z), X⟩st + ⟨Nµ(Z,X), Y ⟩st ,
(Fµ)+(X,Y, Z) = −⟨µR2m(X,Y ), Z⟩st − ⟨µR2m(Y, Z), X⟩st − ⟨µR2m(Z,X), Y ⟩st

+ ⟨µR2m(IstX,Y ), IstZ⟩st + ⟨µR2m(IstY, Z), IstX⟩st
+ ⟨µR2m(IstZ,X), IstY ⟩st + ⟨µR2m(X, IstY ), IstZ⟩st
+ ⟨µR2m(Y, IstZ), IstX⟩st + ⟨µR2m(Z, IstX), IstY ⟩st .

Fix a parameter t ∈ R and look at the Gauduchon connection ∇t,µ. Let us
consider now the (1, 2)-tensors

Sµ := D̃µ −Dµ , At,µ := D̃µ −∇t,µ ,

which can be identified with linear maps

Sµ : R2m → so(2m) , At,µ : R2m → u(m) .
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For the operator Sµ, by [25, Ch X, Thm 3.3]), we have

(5.3) ⟨Sµ(X)Y, Z⟩st = −1
2⟨µR2m(X,Y ), Z⟩st − 1

2⟨µR2m(Z,X), Y ⟩st
− 1

2⟨µR2m(Z, Y ), X⟩st .

For the operator At,µ, by (2.3), we have

⟨At,µ(X)Y, Z⟩st = ⟨Sµ(X)Y, Z⟩st + t+1
4 (Fµ)+(X, IstY, IstZ)

+ t−1
4 (Fµ)+(X,Y, Z) + 1

4⟨N
µ(Y, Z), X⟩st + 1

2(F
µ)−(X,Y, Z) .

Then, by [25, Thm 2.3, Ch X], the Riemannian curvature is explicitly given by
(5.4)
Rm(µ)(X,Y ) = adµ

(
µhµ(X,Y )

)
|R2m − [Sµ(X), Sµ(Y )]− Sµ(µR2m(X,Y )) ,

and, analogously, the t-Gauduchon curvature and torsion are given by

(5.5)
T t(µ)(X,Y ) = −At,µ(X)Y +At,µ(Y )X − µR2m(X,Y ) ,

Ωt(µ)(X,Y ) = adµ
(
µhµ(X,Y )

)
|R2m − [At,µ(X), At,µ(Y )]−At,µ(µR2m(X,Y )) .

Moreover, we recall that any Gµ-invariant tensor field Q on Gµ/Hµ is parallel
with respect to D̃µ, see e.g. the proof of [25, Prop 2.7, Ch X]. Therefore, for
the covariant derivatives DµQ and ∇t,µQ, we have

(5.6) X⌟DµQ = −Sµ(X) ·Q , X⌟∇t,µQ = −At,µ(X) ·Q .

5.3 - A potpourri of topologies in the moduli space

We are going to introduce some topologies on the moduli space H
loc,alm-C
m .

The first one is the so-called algebraic convergence, that is

D e f i n i t i o n 5.3. A sequence (µ(n)) ⊂ H
loc,alm-C
q,m is said to converge alge-

braically to µ(∞) ∈ H
loc,alm-C
m if one of the following conditions is satisfied:

i) µ(∞) ∈ H
loc,alm-C
q,m and µ(n) → µ(∞) in the standard topology induced by

Wq,m;

ii) µ(∞) ∈ H
loc,alm-C
q′,m for some 0 ≤ q′ < q and there exists µ̃(∞) ∈ Wq,m \

H
loc,alm-C
q,m such that µ(n) → µ̃(∞) in the standard topology of Wq,m and

(µ̃(∞))|q′,m = µ(∞) as in Remark 5.1.



400 daniele angella and francesco pediconi [28]

For the second notion of convergence, we notice that Theorem 3.12 and
Theorem 5.2 give rise to a well defined map

Hloc,alm-C
m → X s(m) , µ → θs(µ)

that assigns to any µ ∈ H
loc,alm-C
m the corresponding Hermitian s-tuples θs(µ)

of (Gµ/Hµ, Jµ, gµ), for any s ≥ ȷ(m)+2 (see Subsection 3.3). Let us notice that
this map is surjective but not injective. In fact, it holds that θs(µ1) = θs(µ2)
for some, and hence for any, s ≥ ȷ(m)+2 if and only if kill(µ1) = kill(µ2). Then,
the so-called infinitesimal convergence is defined as follows.

D e f i n i t i o n 5.4. A sequence (µ(n)) ⊂ H
loc,alm-C
m is said to converge

s-infinitesimally to µ(∞) ∈ H
loc,alm-C
m , for some s ≥ ȷ(m)+2, if θs(µ(n)) →

θs(µ(∞)) as n → +∞ in the standard topology of X s(m). If (µ(n)) converges
s-infinitesimally to µ(∞) for any s ≥ ȷ(m) + 2, then (µ(n)) is said to converge
infinitesimally to µ(∞).

By the previous observation, uniqueness of limit has to be intended in the
following way: if a sequence (µ(n)) ⊂ H

loc,alm-C
m converges s1-infinitesimally

to µ
(∞)
1 and s2-infinitesimally to µ

(∞)
2 for some integers s2 ≥ s1 ≥ ȷ(m) + 2,

then kill(µ
(∞)
1 ) = kill(µ

(∞)
2 ). We also mention that our notion of infinitesimal

convergence is equivalent to the original notion introduced by Lauret in [29,
Sect 6] and [32, Sect 3.4]. Moreover, since the infinitesimal convergence involves
only the germs on the almost-Hermitian structures at the origin, it turns out
that it is weaker than the algebraic convergence topology, i.e.

P r o p o s i t i o n 5.5. Let q,m ∈ Z with m ≥ 1 and 0 ≤ q ≤ m2. If (µ(n)) ⊂
H

loc,alm-C
m converges algebraically to µ(∞) ∈ H

loc,alm-C
m , then (µ(n)) converges

infinitesimally to µ(∞).

P r o o f. Assume that (µ(n)) ⊂ H
loc,alm-C
m converges algebraically to µ(∞) ∈

H
loc,alm-C
m . From (5.3), it follows that Sµ(n) → Sµ(∞)

in the standard Euclidean
topology. Therefore, the proof follows from (5.4) and (5.6). □

Notice that, in the Riemannian case, the converse assertion of Proposition
(5.5) does not hold true. A counterexample consisting on a sequence of Ricci
flow blow-downs on the universal cover of SL(2,R) is discussed in [9, Ex 9.1].
The phenomenon of sequences that converge infinitesimally but do not admit
any convergent subsequence in the algebraic topology is called algebraic collapse
[9, Sect 5].

The last topology we consider in the moduli space H
loc,alm-C
m is the pointed

convergence topology (see e.g. Definition 4.5). More precisely, by means of
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Theorem 4.4, for any element µ ∈ H
loc,alm-C
m with | sec(µ)| ≤ 1, there ex-

ists a unique, up to equivariant pseudo-holomorphic isometry, 2m-dimensional
almost-Hermitian geometric model (Bµ, Ĵµ, ĝµ) in the class µ. For the sake of
notation, we set

Hloc,alm-C
m (1) := {µ ∈ Hloc,alm-C

m : | sec(µ)| ≤ 1}

and we observe that, for any µ ∈ H
loc,alm-C
m , there exists a rescaling constant

c > 0 such that c ·µ ∈ H
loc,alm-C
m (1), where the R>0-action on the moduli space

H
loc,alm-C
m , according to the decomposition (5.2), is given by

(c · µ)|hµ∧gµ := µ|hµ∧gµ , (c · µ)hµ := 1
c2
µhµ , (c · µ)R2m := 1

cµR2m .

Indeed, the space (Gc·µ/Hc·µ, Jc·µ, gc·µ) turns out to be locally equivariantly
pseudo-holomorphically isometric to (Gµ/Hµ, Jµ, c

2gµ), and so sec(c · µ) =
1
c sec(µ).

Let us notice now that, by the very definition, the convergence in the pointed
Cs+2-topology of a sequence of geometric models in H

loc,alm-C
m (1) implies the s-

infinitesimal convergence. Concerning the opposite implication, the following
weaker version holds true.

T h e o r em 5.6. If a sequence (µ(n)) ⊂ H
loc,alm-C
m (1) converges (s + 1)-

infinitesimally to µ(∞) ∈ H
loc,alm-C
m (1) for some integer s ≥ ȷ(m) + 2, then the

corresponding geometric models (Bµ(n) , Ĵµ(n) , ĝµ(n)) converge to the geometric

model (Bµ(∞) , Ĵµ(∞) , ĝµ(∞)) in the pointed Cs+2,α-topology for any 0 ≤ α < 1.

P r o o f. Assume that (µ(n)) ⊂ H
loc,alm-C
m (1) converges (s+1)-infinitesimally

to µ(∞) ∈ H
loc,alm-C
m (1) for some integer s ≥ ȷ(m) + 2. Then, by Proposition

2.5 and Theorem 4.6, one can pass to a subsequence (µ(ni)) ⊂ (µ(n)) such
that the associated almost-Hermitian geometric models (Bµ(ni) , Ĵµ(ni) , ĝµ(ni))

converge to a limit geometric model in the pointed Cs+2,α-topology for any
0 ≤ α < 1 as i → +∞. By Theorem 3.12, any convergent subsequence
of (Bµ(n) , Ĵµ(n) , ĝµ(n)) in the pointed Cs+2,α-topology necessarily converges to

the almost-Hermitian geometric model (Bµ(∞) , Ĵµ(∞) , ĝµ(∞)) of µ(∞). This im-

plies that the full sequence (Bµ(n) , Ĵµ(n) , ĝµ(n)) converges in the pointed Cs+2,α-

topology to (Bµ(∞) , Ĵµ(∞) , ĝµ(∞)). □

As a direct corollary, we obtain

C o r o l l a r y 5.7. A sequence (µ(n)) ⊂ H
loc,alm-C
m (1) converges infinitesi-

mally to µ(∞) ∈ H
loc,alm-C
m (1) if and only if the corresponding geometric models

(Bµ(n) , Ĵµ(n) , ĝµ(n)) converge to the geometric model (Bµ(∞) , Ĵµ(∞) , ĝµ(∞)) in the
pointed C∞-topology.
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We end this section by summarizing the various topologies in the following
diagram

algebraic conv

Prop 5.5

�� ��
infinitesimal conv

��

�� Cor 5.7 �� C∞-pointed conv
of geom models

��

s-infinitesimal conv
Thm 5.6 with k=s+1

�� Ck,α-pointed conv
of geom models

k=s+2

��

and by collecting some open problems.

R ema r k 5.8 (Open questions, 3).

i) Find an explicit example of algebraic collapse for locally homogeneous
almost-Hermitian spaces.

ii) Show that, in real dimension 2m > 2, the s-infinitesimal convergence
is strictly weaker than the (s + 1)-infinitesimal convergence for any s ≥
ȷ(m) + 2. In the Riemannian case, this has been proven in [43, Theorem
C] by using a slight modification of Berger spheres.

iii) We do not know whether the s-infinitesimal convergence is equivalent to
the convergence of geometric models in the pointed Cs+2-topology. In
contrast to the other questions, this is open also in the Riemannian case.

6 - Examples of explicit computations of Gauduchon curvatures

6.1 - The Iwasawa threefold

Consider the Iwasawa manifold

M := Heis(3;Z[i])\Heis(3;C) ,

namely, the compact 3-dimensional complex manifold defined as the quotient
of the 3-dimensional complex Heisenberg group

Heis(3;C) :=







1 z1 z3

1 z2

1


 ∈ GL(3;C) : z1, z2, z3 ∈ C




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by the cocompact discrete subgroup Heis(3;Z[i]) := Heis(3;C) ∩ GL(3;Z[i]).
Denote by J the complex structure of M induced by the natural left-invariant
complex structure of Heis(3;C).

Let g be a locally homogeneous Hermitian structure on (M,J). Fix (e0, . . . ,
e5) unitary frame for TM with respect to (J, g), and denote by (e0, . . . , e5) the
dual coframe for T ∗M . The general structure equations are

(6.1) µ(e0, e2) = αe4 , µ(e0, e3) = αe5 , µ(e1, e2) = αe5 , µ(e1, e3) = −αe4 ,

depending on parameters α ∈ R>0. Note that any such Hermitian metric is
balanced in the sense of Michelsohn, namely, dω2 = 0.

R ema r k 6.1. Equations (6.1) can be derived as follows. Consider the
standard left-invariant coframe of (1, 0)-forms on Heis(3;C) given by

φ1 := dz1 , φ2 := dz2 , φ3 := dz3 − z1 dz2 ,

and notice that the structure equations, with respect to this coframe, are

dφ1 = 0 , dφ2 = 0 , dφ3 = −φ1 ∧ φ2 .

Then, by [56, p 1032], the fundamental (1, 1)-form associated to any left-
invariant Hermitian metric g on Heis(3;C) has the form

2ω = −ir2φ1 ∧ φ̄1 − iσ2φ2 ∧ φ̄2 − iτ2φ3 ∧ φ̄3 +
(
uφ1 ∧ φ̄2 − ūφ2 ∧ φ̄1

)
,

where r, σ, τ ∈ R>0 and u ∈ C are such that r2σ2 > |u|2. By changing frame to
make it (J, g)-unitary, (6.1) follows by setting

α =
√

r2

r2σ2−|u|2 · τ
r .

In particular, the standard Hermitian metric corresponds to parameter α = 1.

By using formulas in Section 5.2, we can compute all the relevant geometric
data of (M,J, g). We clearly have that Nµ = 0, hence (Fµ)− = 0 and (Fµ)+ =
Fµ. Moreover, Fµ has the following non-zero components, up to symmetries:

Fµ(e0, e2, e4) = Fµ(e0, e3, e5) = Fµ(e1, e2, e5) = −Fµ(e1, e3, e4) = −α .
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It is straighforward to compute

Sµ(e0) =
α
2




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 −1 0 0




, Sµ(e1) =
α
2




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0




,

Sµ(e2) =
α
2




0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0




, Sµ(e3) =
α
2




0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0




,

Sµ(e4) =
α
2




0 0 −1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, Sµ(e5) =
α
2




0 0 0 −1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

and

A
t,µ

(e0) =
α(t−1)

2




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0




, A
t,µ

(e1) =
α(t−1)

2




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 1 0 0 0




,

A
t,µ

(e2) =
α(t−1)

2




0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0




, A
t,µ

(e3) =
α(t−1)

2




0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0




,

A
t,µ

(e4) = A
t,µ

(e5) = 0 .

In particular, it is easy to check that the Chern connection (corresponding to
parameter t = 1) is flat. Finally, we compute the Gauduchon curvature: the
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non-zero components are

Ω
t
(µ)(e0, e1) =

α2(t−1)2

2




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0




,

Ω
t
(µ)(e0, e2) =

α2(t−1)2

4




0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

Ω
t
(µ)(e0, e3) =

α2(t−1)2

4




0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

Ω
t
(µ)(e1, e2) =

α2(t−1)2

4




0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

Ω
t
(µ)(e1, e3) =

α2(t−1)2

4




0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

Ω
t
(µ)(e2, e3) =

α2(t−1)2

2




0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0




.

The first Gauduchon-Ricci form is zero. The second Gauduchon-Ricci
form is

ρt,(2)(µ) = α2(t−1)2

2




0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 2
0 0 0 0 −2 0




.

Finally, the Gauduchon scalar curvature is clearly 0. One can also compute
the torsion T t(µ), its covariant derivates ∇t,µT t(µ), as well as the covariant
derivatives ∇t,µΩt(µ), etc.
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6.2 - The Kodaira surface

We consider the primary Kodaira surface, see e.g. [6]. It is known that it is
a compact quotient of the Lie group

(6.2) G := Heis(3;R)× R ,

where Heis(3;R) denotes the 3-dimensional real Heisenberg group, by means of
the co-compact lattice Γ := Heis(3;Z)× Z. The group G can be endowed with
a left-invariant complex structure J0, that is unique up to linear equivalence,
that moves to the quotient M := Γ\G. The compact complex surface (M,J)
has Kodaira dimension 0, odd first Betti number, and trivial canonical bundle.

Arguing as in Remark 6.1, any locally homogeneous Hermitian structure
(J0, g) is described by the unitary frame (e0, e1, e2, e3) with structure equations

µ(e0, e1) =
α
r e0 −

β
r e1 −

v
r2
e3 , µ(e0, e2) = −α2

v e0 +
αβ
v e1 +

α
r e3 ,

µ(e0, e3) = −αβ
v e0 +

β2

v e1 +
β
r e3 , µ(e1, e2) =

αβ
v e0 − β2

v e1 − β
r e3 ,

µ(e1, e3) = −α2

v e0 +
αβ
v e1 +

α
r e3 ,

µ(e2, e3) =
(α2+β2)αr

v2
e0 − (α2+β2)βr

v2
e1 − α2+β2

v e3 ,

depending on parameters r, v ∈ R>0, α, β ∈ R. In particular, the standard
Hermitian structure corresponds to r = v = 1 and α = β = 0 (see e.g. [2]).
With respect to this frame, the Fµ form is

Fµ = −
(
α2

v + β2

v + v
r2

)
e0 ∧ e1 ∧ e3 +

( (α2+β2)αr
v2

+ α
r

)
e0 ∧ e2 ∧ e3

−
( (α2+β2)βr

v2
+ β

r

)
e1 ∧ e2 ∧ e3 .

As before, we can explicitly compute the Levi-Civita connection, the Gaudu-
chon connections, and their related geometric quantities, see Appendix A.2 for
the relevant SageMath code.
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As an example, the Chern connection (t = 1) is given by:

A
t=1,µ

(e0) =




0 −α
r

(α2−β2)r2−v2

2 r2v

αβ
v

α
r

0 −αβ
v

(α2−β2)r2−v2

2 r2v

− (α2−β2)r2−v2

2 r2v

αβ
v

0 α
r

−αβ
v

− (α2−β2)r2−v2

2 r2v
−α

r
0




,

A
t=1,µ

(e1) =




0 β
r

−αβ
v

(α2−β2)r2+v2

2 r2v

− β
r

0 − (α2−β2)r2+v2

2 r2v
−αβ

v

αβ
v

(α2−β2)r2+v2

2 r2v
0 − β

r

− (α2−β2)r2+v2

2 r2v

αβ
v

β
r

0




,

A
t=1,µ

(e2) =




0 0


α2+β2


r2+v2

2 rv2 β −


α2+β2


r2+v2

2 rv2 α

0 0


α2+β2


r2+v2

2 rv2 α


α2+β2


r2+v2

2 rv2 β

−


α2+β2


r2+v2

2 rv2 β −


α2+β2


r2+v2

2 rv2 α 0 0

α2+β2


r2+v2

2 rv2 α −


α2+β2


r2+v2

2 rv2 β 0 0




,

A
t=1,µ

(e3) =




0 −α2+β2

v


α2+β2


r2−v2

2 rv2 α


α2+β2


r2−v2

2 rv2 β

α2+β2

v
0 −


α2+β2


r2−v2

2 rv2 β


α2+β2


r2−v2

2 rv2 α

−


α2+β2


r2−v2

2 rv2 α


α2+β2


r2−v2

2 rv2 β 0 α2+β2

v

−


α2+β2


r2−v2

2 rv2 β −


α2+β2


r2−v2

2 rv2 α −α2+β2

v
0




.

It is easy to see that the first Chern-Ricci form vanishes, and the second
Chern-Ricci form is given by:

ρ
t=1,(2)

(µ) =




0 −L1
2L2

2r4v4 −L1
2α

r3v3 −L1
2β

r3v3

L1
2L2

2 r4v4 0
L1

2β

r3v3 −L1
2α

r3v3

L1
2α

r3v3 −L1
2β

r3v3 0
L1

2L2
2 r4v4

L1
2β

r3v3
L1

2α

r3v3 −L1
2L2

2 r4v4 0




,

where we put

L1 := α2r2 + β2r2 + v2 , L2 := α2r2 + β2r2 − v2 .

Finally, the Gauduchon scalar curvature is given by

scalt(µ) = − (α2r2+β2r2+v2)
3

r4v4
(t− 1) ,

which vanishes for the Chern connection.
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6.3 - The Kodaira-Thurston almost-complex 4-manifold

We consider the same differentiable manifold M = Γ\G as in the previous
Section, where G is as in (6.2). It is known that G admits another left-invariant
almost-complex structure J1, which is non-integrable, that induces an almost-
Kählerian structure on the quotient M , see e.g. [51,53].

In Appendix A.3, we will construct an orthogonal frame (w0, w1, w2, w3)
such that J1w0 = w2, J1w1 = w3, whose structure equations depend on r, σ ∈
R>0 and u := x+ iy ∈ C such that r2σ2 > x2 + y2. We will also compute the
Gauduchon curvatures.

A - SageMath code

In this Appendix, we collect the SageMath [48] code that we used for the
explicit computations of Section 6. The code is available at https://github.
com/danieleangella/locally-homogeneous-hermitian.git.

A.1 - The Iwasawa threefolds (see Section 6.1)

The following SageMath code has been tested on CoCalc:

sage : v e r s i on ( )
SageMath ve r s i on 9 . 3 , Re lease Date : 2021�05�09

We will make use of the following functions, to simplify matrices and forms
depending on parameters:

sage : def simp mat (A, d i c ={}):
l i s t a =[ ]
for b in A. l i s t ( ) :

try :
l i s t a . append (b . subs ( d i c ) . f a c t o r ( ) )

except :
l i s t a . append (b)

try :
return ( matrix (A. nrows ( ) ,A. n co l s ( ) , l i s t a ) )

except :
return (A)

sage : def simp form ( phi , d i c ={}):
return (sum( [ phi . i n t e r i o r p r o du c t (b ) . c o n s t a n t c o e f f i c i e n t ( ) .

subs ( d i c ) . f a c t o r ( )�b
for b in E. ba s i s ( ) ] ) )

We construct the exterior algebra generated by e0, . . . , e5, with Lie bracket
determined by the structure equations in (6.1):
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sage : n = 6
sage : E = Exter io rAlgebra (SR, ’ e ’ , n )
sage : = var ( ” alpha ” )
sage : d = E. coboundary ({

( 0 , 2 ) : alpha �E. gens ( ) [ 4 ] ,
( 0 , 3 ) : alpha �E. gens ( ) [ 5 ] ,
( 1 , 2 ) : alpha �E. gens ( ) [ 5 ] ,
( 1 , 3 ) : �alpha �E. gens ( ) [ 4 ] ,

})

We save the structure constants in the following dictionary:

sage : mu = {( a , b ) : sum( [ d ( c ) . i n t e r i o r p r o du c t ( a�b)� c
for c in E. gens ( ) ] )

for a in E. gens ( ) for b in E. gens ( )}

We also define the following function, to compute the Lie bracket:

sage : def Lie (x , y ) :
return (sum( [ x . i n t e r i o r p r o du c t ( a ) . c o n s t a n t c o e f f i c i e n t ( )

�y . i n t e r i o r p r o du c t (b ) . c o n s t a n t c o e f f i c i e n t ( )
�mu[ ( a , b ) ] for a in E. gens ( )

for b in E. gens ( ) ] ) )

The almost-complex structure is given as follows:

sage : j = matrix (2 , [ 0 , �1 ,1 ,0 ] )
sage : Jmat=b lo ck d i agona l mat r i x ( [ j for k in range (n / 2 ) ] )
sage : J = E. l i f t morph i sm (Jmat )

It is easy to check that the almost-complex structure is integrable:

sage : Ni j={(a , b ) : Lie ( J ( a ) , J (b))�Lie ( a , b)�J ( Lie ( J ( a ) , b )
+Lie ( a , J (b ) ) )

for a in E. gens ( ) for b in E. gens ( )}
sage : [ Ni j [ ( a , b ) ] for a in E. gens ( ) for b in E. gens ( )

i f Nij [ ( a , b ) ] != 0 ]
[ ]

We compute Fµ:

sage : F = �J (d(sum( [E . gens ( ) [ 2 � j ]� J (E. gens ( ) [ 2 � j ] )
for j in range (n / 2 ) ] ) ) )

sage : F
�alpha � e0� e2� e4 � alpha � e0� e3� e5 � alpha � e1� e2� e5 + alpha � e1� e3� e4

We compute the Levi-Civita connection Sµ:

sage : S = {x : simp mat ( matrix (n , n ,
[�1/2�mu[ ( x , y ) ] . i n t e r i o r p r o du c t ( z ) . c o n s t a n t c o e f f i c i e n t ( )
�1/2�mu[ ( z , x ) ] . i n t e r i o r p r o du c t ( y ) . c o n s t a n t c o e f f i c i e n t ( )
�1/2�mu[ ( z , y ) ] . i n t e r i o r p r o du c t ( x ) . c o n s t a n t c o e f f i c i e n t ( )
for z in E. gens ( ) for y in E. gens ( ) ] ) ) for x in E. gens ( )}

and the Gauduchon connection At,µ:
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sage : = var ( ” t ” )
sage : A = {x : simp mat ( matrix (n , n ,

[ S [ x ] [ E . gens ( ) . index (y ) ,E . gens ( ) . index ( z ) ]
+(t+1)/4�F. i n t e r i o r p r o du c t ( x�J (y )�J ( z ) ) . c o n s t a n t c o e f f i c i e n t ( )
+(t�1)/4�F. i n t e r i o r p r o du c t ( x�y�z ) . c o n s t a n t c o e f f i c i e n t ( )
for y in E. gens ( ) for z in E. gens ( ) ] ) ) for x in E. gens ( )}

The Chern connection can be obtained by setting t = 1:

sage : ACh = {x : simp mat (A[ x ] , { t : 1} ) for x in A. keys ( )}

For example, we can print the LATEX code for Sµ as

sage : for a in S . keys ( ) :
print ( r ”Sˆ\mu(%s)=%s” % ( l a t ex ( a ) , l a t e x (S [ a ] ) ) , ”\n” )

Finally, we compute the Gauduchon curvature:

sage : Omega = {(x , y ) : simp mat (A[ y ]�A[ x]�A[ x ]�A[ y ]
�(sum( [ matrix (n , n ,
[mu[ ( x , y ) ] . i n t e r i o r p r o du c t ( c ) . c o n s t a n t c o e f f i c i e n t ( )�b
for b in A[ c ] . l i s t ( ) ] ) for c in E. gens ( ) ] )
i f not mu[ ( x , y)]==0 else ze ro matr ix (n ) ) )
for x in E. gens ( ) for y in E. gens ( )}

It suffices to change A by S in the code above to compute the Riemannian
curvature. Moreover, the Chern curvature can be computed as:

sage : OmegaCh = {b : simp mat (Omega [ b ] , { t : 1} ) for b in Omega . keys ( )}

The first and the second Gauduchon-Ricci forms can be computed as:

sage : rho1 = 1/2� simp mat ( matrix (n , n ,
[sum( [ Omega [ (E. gens ( ) [ i ] ,E . gens ( ) [ j ] ) ] [ 2 � k ,2� k+1]
for k in range (n / 2 ) ] )
for i in range (n ) for j in range (n ) ] )
+matrix (n , n , [ sum( [
J (E. gens ( ) [ i ] ) . i n t e r i o r p r o du c t (u ) . c o n s t a n t c o e f f i c i e n t ( )
�J (E. gens ( ) [ j ] ) . i n t e r i o r p r o du c t ( v ) . c o n s t a n t c o e f f i c i e n t ( )
�Omega [ ( u , v ) ] [ 2 � k ,2� k+1]
for u in E. gens ( ) for v in E. gens ( )
for k in range (n / 2 ) ] )
for i in range (n ) for j in range (n ) ] ) )

sage : rho2 = 1/2�( simp mat (sum(
[Omega [ (E. gens ( ) [ 2 � j ] ,E . gens ( ) [ 2 � j +1 ] ) ]
for j in range (n / 2 ) ] )
+sum( [ J (E. gens ( ) [ 2 � j ] )
. i n t e r i o r p r o du c t (u ) . c o n s t a n t c o e f f i c i e n t ( )
�J (E. gens ( ) [ 2 � j +1])
. i n t e r i o r p r o du c t ( v ) . c o n s t a n t c o e f f i c i e n t ( )
�Omega [ ( u , v ) ] for u in E. gens ( )
for v in E. gens ( ) for j in range (n / 2 ) ] ) ) )

In particular, the first and the second Chern-Ricci curvatures are both zero, as
shown by computing:
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sage : rho1Ch = simp mat ( rho1 , { t : 1} )
sage : rho2Ch = simp mat ( rho2 , { t : 1} )

Finally, the scalar curvature is computed either as:

sage : s c a l = 2�sum( [ rho2 [2� j , 2� j +1] for j in range (n / 2 ) ] )

or as:

sage : s c a l = 2�sum( [ rho1 [2� j , 2� j +1] for j in range (n / 2 ) ] )

giving zero. (We stress here that we can use the built-in methods simplify full
or factor of sage.symbolic.expression.Expression.)

A.2 - The Kodaira surface (see Section 6.2)

We can perform the computations for the Kodaira surface as in the previous
Section, with small changes, starting by setting the dimension:

sage : n = 4

Here the code to construct the differential:

sage : f 3 = �alpha � r �E. gens ( ) [ 0 ]+ beta � r �E. gens ( ) [ 1 ]+ v�E. gens ( ) [ 3 ]
sage : d = E. coboundary ({

( 0 , 1 ) : �1/r ˆ2� f3 ,
( 0 , 2 ) : alpha /( r �v )� f3 ,
( 0 , 3 ) : beta /( r �v )� f3 ,
( 1 , 2 ) : �beta /( r �v )� f3 ,
( 1 , 3 ) : alpha /( r �v )� f3 ,
( 2 , 3 ) : �(alphaˆ2+beta ˆ2)/( vˆ2)� f 3

})

A.3 - The Kodaira-Thurston almost-complex 4-manifold (see Section 6.3)

We can perform the computations as in the previous Sections. We present
here the code in order to compute the complex structure equations.

We start from the standard real frame (e0, e1, e2, e3) with structure equa-
tions determined by [e0, e1] = −e3:

sage : n = 4
sage : E = Exter io rAlgebra (SR, ’ e ’ , n )
sage : d = E. coboundary ({

( 0 , 1 ) : �E. gens ( ) [ 3 ] ,
( 0 , 2 ) : 0 ,
( 0 , 3 ) : 0 ,
( 1 , 2 ) : 0 ,
( 1 , 3 ) : 0 ,
( 2 , 3 ) : 0

})
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sage : print ( [ d (b) for b in E. gens ( ) ] )
[ 0 , 0 , 0 , �e0� e1 ]

The non-integrable almost-complex structure is given by Je0 = e2 and
Je1 = e3:

sage : Jmat=block matr ix ( [ [ z e ro matr ix ( 2 ) , � i d en t i t y ma t r i x ( 2 ) ] ,
[ i d en t i t y ma t r i x ( 2 ) , z e ro matr ix ( 2 ) ] ] )

sage : J = E. l i f t morph i sm (Jmat )
sage : print ( [ J (b) for b in E. gens ( ) ] )
[ e2 , e3 , �e0 , �e1 ]

We check the non-integrability:

sage : Ni j={(a , b ) : �J ( Lie ( J ( a ) , b)+Lie ( a , J (b))+Lie ( J ( a ) , J (b))�Lie ( a , b ) )
for a in E. gens ( ) for b in E. gens ( )}

sage : [ Ni j [ ( a , b ) ] for a in E. gens ( ) for b in E. gens ( )
i f Nij [ ( a , b ) ] != 0 ]
[ e1 , e1 , �e1 , �e1 , e1 , �e1 , �e1 , e1 ]

We construct the coframe of (1, 0)-forms φ1 := e0 − ie2, φ1 := e1 − ie3, where
(e0, e1, e2, e3) denotes the dual basis of (e0, e1, e2, e3):

sage : varphi = [E. gens ( ) [ j ]� I �J (E. gens ( ) [ j ] ) for j in range (n / 2 ) ]
sage : barvarphi = [E. gens ( ) [ j ]+ I �J (E. gens ( ) [ j ] ) for j in range (n / 2 ) ]
sage : varphi
[ e0 � I �e2 , e1 � I � e3 ]

Notice that the convention by SageMath for the action of the complex structure
on the dual differs from our notation:

sage : a l l ( [ J (b)==I �b for b in varphi ] )
True
sage : a l l ( [ J (b)==�I �b for b in barvarphi ] )
True

We check that the structure equations in this coframe are

sage : [ d (b) for b in varphi ]
[ 0 , I � e0� e1 ]

namely,

dφ1 = 0 , dφ2 = i
4

(
φ1 ∧ φ2 + φ1 ∧ φ̄2 − φ2 ∧ φ̄1 + φ̄1 ∧ φ̄2

)
.

The generic almost-Hermitian metric is given by

2ω = −ir2φ1 ∧ φ̄1 − iσ2φ2 ∧ φ̄2 + uφ1 ∧ φ̄2 − ūφ2 ∧ φ̄1 ,

where r, σ ∈ R>0 and u ∈ C satisfy r2σ2 > |u|2 (compare with Remark 6.1).
The following code will allow us to derive the g-orthonormal frame with respect
to the generic metric g associated to ω and J :
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sage : = var ( ” r sigma x y” )
sage : omega = 1/2�(� I � r ˆ2� varphi [ 0 ] � barvarphi [ 0 ]

�I � sigmaˆ2� varphi [ 1 ] � barvarphi [ 1 ]
+(x+I �y )� varphi [ 0 ] � barvarphi [ 1 ]
�(x�I �y )� varphi [ 1 ] � barvarphi [ 0 ] )

sage : P = matrix (n , n , [
omega . i n t e r i o r p r o du c t ( a�J (b ) ) . c o n s t a n t c o e f f i c i e n t ( )
for a in E. gens ( ) for b in E. gens ( ) ] )

sage : def s c a l a r p r oduc t ( a , b ,P=P) :
return ( a . t ranspose ( )�P�b ) [ 0 , 0 ]

sage : def GS( e ) :
ftmp = [ ]
for j in range ( len ( e ) ) :

ftmp . append ( e [ j ]�sum( [ s c a l a r p r oduc t ( e [ j ] , ftmp [ k ] ) /
s c a l a r p r oduc t ( ftmp [ k ] , ftmp [ k ] ) � ftmp [ k ]
for k in range (0 , j ) ] ) )

f = [1/ sq r t ( s c a l a r p r oduc t ( ftmp [ j ] , ftmp [ j ] ) ) � ftmp [ j ]
for j in range ( len ( e ) ) ]
return ( f )

sage : fmat = GS( [ i d en t i t y ma t r i x (n ) [ : , j ] for j in range (n ) ] )
sage : f = [sum( [ emat [ j ] [ k , 0 ] �E. gens ( ) [ k ] for k in range (n ) ] )

for j in range (n ) ]

We now make the frame w also (J, g)-unitary:

sage : w = [1/ sq r t ( 2 )� ( f [ j ]�J ( f [ j ] ) )
for j in [ 0 , 3 ] ]+ [ 1 / sq r t ( 2 )� ( f [ j ]+J ( f [ j ] ) )
for j in [ 0 , 3 ] ]

namely, it is orthonormal and J acts as J(w0) = w2, J(w1) = w3:

sage : a l l ( [ matrix (n , n , [
omega . i n t e r i o r p r o du c t (b�J ( c ) ) . c o n s t a n t c o e f f i c i e n t ( )
. s i m p l i f y f u l l ( )
for b in w for c in w])== id en t i t y ma t r i x (n ) ]
+ [ J (w[0 ])�w[2]==0 , J (w[1 ])�w[3]==0])

True

We are now able to compute the structure equations with respect to the
(J, g)-unitary frame (w0, w1, w2, w3):

sage : muw = {( a , b , c ) : Lie (w[ a ] , w[ b ] ) . i n t e r i o r p r o du c t (w[ c ] ) .
c o n s t a n t c o e f f i c i e n t ( )
for a in range (n ) for b in range (n ) for c in range (n)}

We can now construct the Lie algebra by using these structure equations:

sage : r e s e t ( ’E ’ )
sage : E = Exter io rAlgebra (SR, ’ e ’ , n )
sage : s t r u c t e q = {( j , k ) : sum( [mue [ ( j , k , h ) ] �E. gens ( ) [ h ]

for h in range (n ) ] ) for j in range (n )
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for k in range (n)}
sage : d = E. coboundary ({ ( a , b ) : sum( [muw[ ( a , b , c ) ] �E. gens ( ) [ c ]

for c in range (n ) ] ) for a in range (n )
for b in range (n )} )

We check that the Jacobi identity is satisfied:

sage : a l l ( [ d (d(b))==0 for b in E. gens ( ) ] )
True

We now proceed by constructing the variables mu, F, Nij, S. We note that
the almost-Hermitian structure is almost-Kähler, namely, dω = 0. We need
to modify the formula for A, in order to include the terms coming from the
non-vanishing Nijenhuis tensor:

sage : A = {x : simp mat ( matrix (n , n , [
S [ x ] [ E . gens ( ) . index (y ) ,E . gens ( ) . index ( z ) ]
+(t+1)/4�F. i n t e r i o r p r o du c t ( x�J (y )�J ( z ) ) . c o n s t a n t c o e f f i c i e n t ( )
+(t�1)/4�F. i n t e r i o r p r o du c t ( x�y�z ) . c o n s t a n t c o e f f i c i e n t ( )
+1/4�Nij [ ( y , z ) ] . i n t e r i o r p r o du c t ( x ) . c o n s t a n t c o e f f i c i e n t ( )
for y in E. gens ( ) for z in E. gens ( ) ] ) ) for x in E. gens ( )}

We also compute the variables ACh, the curvatures Omega and OmegaCh, the
Ricci forms Ric1 and Ric2, Ric1Ch and Ric2Ch, the scalar curvature scal:

sage : l a t e x ( s c a l . s i m p l i f y f u l l ( ) )
�\ f r a c { r ˆ{2}}{ r ˆ{4} \ sigma ˆ{4} � 2 \ , r ˆ{2} \ sigma ˆ{2} xˆ{2}

+ xˆ{4} + yˆ{4} � 2 \ , {\ l e f t ( r ˆ{2} \ sigma ˆ{2}
� xˆ{2}\ r i g h t )} yˆ{2}}

Ac k n ow l e d gm e n t s. This note has been written for the special volume
collecting the Proceedings of the meeting “Cohomology of Complex Manifolds
and Special Structures, II” that was held in Levico Terme on July 5-9, 2021.
The authors are grateful to the Organizers of the meeting, Costantino Medori,
Massimiliano Pontecorvo, Adriano Tomassini, for the kind invitation and the
fruitful atmosphere in Levico, and to CIRM-FBK for the support.
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[40] F. Panelli and F. Podestà, Hermitian curvature flow on compact homoge-
neous spaces, J. Geom. Anal. 30 (2020), 4193–4210.



[45] locally homogeneous almost-hermitian spaces 417

[41] F. Pediconi, Geometric aspects of locally homogeneous Riemannian spaces,
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