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Statistical structures, a-connections and Generalized Geometry

Abstract. The main purpose of this paper is to describe how statistical
structures fit perfectly into Generalized Geometry. Firstly, we will briefly
present the properties of generalized pseudo-calibrated almost complex
structures induced by statistical structures. Then we will characterize
the integrability of generalized almost complex structures with respect
to the bracket defined by the a-connection, finding conditions under
which the concept of integrability is a-invariant. Finally, we consider
a pair of generalized dual quasi-statistical connections (@,@*) on the
generalized tangent bundle TM & T*M and we provide conditions for
TM @ T*M with the a-connections (V(®), V(=®)) induced by (V,V*)
to be conjugate Ricci-symmetric.
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1 - Introduction

Statistical manifolds were introduced by S. Amari in 1985 ([3], [2]). They
are manifolds of probability distributions and they constitute a bridge between
Differential Geometry, Information Geometry and Theoretical Physics. More-
over, in the framework of Machine Learning, statistical manifolds turned out
to be useful for classifying patients with Alzheimer’s disease ([7]).

Basically, a statistical structure on a smooth manifold M consists of a
pseudo-Riemannian metric g and a torsion-free affine connection V such that
Vg is a Codazzi tensor field. To every statistical structure (g, V) one can nat-
urally associate a dual statistical structure (g, V*), and, (g, V, V*) defines a
family of connections called a-connections.
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The main purpose of this paper is to describe how statistical structures fit
perfectly into Generalized Geometry.

Generalized Geometry consists in to translate problems from the tangent
bundle T'M of M to the generalized tangent bundle T M ¢ T*M of M, in order
to study different geometrical objects from the same point of view.

Examples are given by Dirac structures introduced by A. Weinstein and T.
Courant in 1990 ([6]), in order to unify Poisson and pre-symplectic structures.
Other examples are given by generalized complex structures introduced by N.
Hitchin in 2003 ([10]), and further investigated by M. Gualtieri ([9]), in order
to unify complex and symplectic structures.

In this framework, we will firstly describe generalized pseudo-calibrated al-
most complex structures induced by statistical structures. Then we will charac-
terize the integrability of generalized almost complex structures with respect to
the bracket defined by the a-connection, finding conditions under which the con-
cept of integrability is a-invariant. Finally, we will define a pair of generalized
dual quasi-statistical connections (@, @*) on the generalized tangent bundle
TM & T*M and we provide conditions for T'M @ T* M with the a-connections
(V(@), V=) induced by (V, V*) to be conjugate Ricci-symmetric.

2 - Statistical manifolds. Examples

Let M be a smooth manifold, let TM be the tangent bundle and T*M the
cotangent bundle of M and denote by C*°(T'M) (respectively, by C*(T*M))
the smooth sections of TM (respectively, of T*M).

Definition 2.1. Let g be a pseudo-Riemannian metric on M and let V
be a torsion-free affine connection on M. Then (g,V) is called a statistical
structure on M (and (M, g, V) a statistical manifold) if the Codazzi equation

is satisfied, for any XY, Z € C>°(TM).

Remark 2.2. If we denote by C' the cubic form defined as C'(X,Y, Z) :=
(Vxg)(Y,Z), for X,Y,Z € C°(TM), we remark that (M, g, V) is a statistical
manifold if and only if C' is totally symmetric.

2.1 - A trivial example

Let (M, g) be a pseudo-Riemannian manifold and let V be the Levi-Civita
connection of g. Then C'= 0 and (M, g, V) is a statistical manifold.
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Remark 2.3. A statistical manifold is a generalization of a pseudo-Rie-
mannian manifold.

2.2 - Hypersurfaces in R™H1

Let M be a locally convex hypersurface in R"!, let g, h, be respectively
the first and the second fundamental forms of M and let V be the Levi-Civita
connection of g. Then h is a Riemannian metric on M and the Codazzi equation

(Vxh)(Y, Z) = (Vyh)(X, Z)

holds, for any X,Y,Z € C*°(T'M). Thus, (M, h,V) is a statistical manifold.

2.3 - Hessian manifolds

Definition 2.4. An affine manifold is a smooth manifold provided with
a flat, torsion-free, affine connection.

Definition 2.5. Let (M, V) be an affine manifold. A Riemannian metric
g on M is said to be a Hessian metric if g is locally expressed by the Hessian of
a locally smooth function f, i.e., g = V2f = Vdf. In this case, (g, V) is called
a Hessian structure and (M, g, V) is called a Hessian manifold.

Proposition 2.6. A Hessian manifold is a statistical manifold.

Proof. For g := Vdf, we have
9(Y, 2) := (Vydf)(Z) =Y (df (2)) — df (Vy Z)
and
(Vxg)(Y,2) = X(9(Y, 2)) —g(VxY,Z) —g(Y,Vx Z)
= XY (df(2))) = X(df (Vy Z)) = (VxY)(df(Z)) + df (Vvyy Z)—
=Y (df(Vx2)) +df(VyVxZ),

for any X,Y,Z € C°(TM).

As V is torsion-free and flat, we get

(VXQ)(Yv Z) - (VYQ)(Xv Z)

= ([X,Y] =VxY + Vv X)Z(f) + (([Vy,Vx] = Viy,x)Z)(f) = 0,
for any X, Y, Z € C>*(TM). O
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2.4 - Holomorphic statistical manifolds

Definition 2.7. Let (M,g,J) be a Kéhler manifold and let V be a
torsion-free affine connection on M. Then (M, g, J, V) is called a holomorphic
statistical manifold if

1. (M,g,V) is a statistical manifold, and

2. w=yg(-,J-) is a V-parallel 2-form on M.

Remark 2.8. A holomorphic statistical manifold is a generalization of a
Kahler manifold and, if V is flat, then (M, g, J, V) is a special Kdhler manifold

([8])-

2.5 - Norden manifolds

Norden manifolds, also called anti-Kéahlerian manifolds, were introduced by
Norden in 1960 ([14]). They have applications both in Mathematics and in
Theoretical Physics.

Definition 2.9. (M,g,J) is called a Norden manifold if g is a pseudo-
Riemannian metric and J is a g-symmetric almost complex structure on M, i.e.,

J:TM —TM, J?> = —T and g(JX,Y) = g(X, JY), for any X,Y € C®(TM).

Denote by g the metric defined by (X, Y):= ¢g(X, JY), for X, Y e C*°(T'M),
and called the twin metric defined by (g, J).
Let V be a torsion-free affine connection on M and let dV be the exterior

differential operator associated to V, defined for any (tangent bundle valued
p-form) T' € C*(A\'T*M @ TM) by:

p+1
(dVT) (X1 Xpa1) = =)
In particular, for T'= J, we have:
(dVI)(X,Y):= (VxJ)Y — (VyJ)X,
for X, Y € C°(TM).

(=) (Vx,T) (X1, o0, Xiy ooy Xpi1)-

Examples of statistical structures can be obtained by certain almost complex
structures, namely a direct computation gives the following.

Proposition 2.10. Let (M, g, J) be a Norden manifold, let V be the Levi-
Civita connection of g and let g be the twin metric defined by (g,J). Then
(M, q,V) is a statistical manifold if and only if

avJ =0.
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Remark 2.11. If J is integrable and V is flat, then (M, J, V) is a special
complex manifold ([1]).

3 - Quasi-statistical manifolds. Examples

Definition 3.1. Let (M, g) be a pseudo-Riemannian manifold and let V
be an affine connection on M with torsion tensor TV. Then (g, V) is called a
quasi-statistical structure on M (and (M, g, V) a quasi-statistical manifold, or
statistical manifold admitting torsion) if d¥ g = 0, where

(dV9)(X,Y,Z) := (Vxg)(Y. Z) — (Vyg)(X, Z) + g(TV (X.Y), Z),
for X,Y,Z € C*(T'M).
Examples of quasi-statistical manifolds can be constructed by means of a

pseudo-Riemannian manifold (M, g) and a positive smooth function f on M.
Indeed we have the following.

Proposition 3.2. Let M be a smooth manifold, let g, V and f be respec-
tively a pseudo-Riemannian metric, an affine connection and a positive smooth
function on M. Define V :=V — %df ® I and g := %g. Then:

v_pv_ L B - _ 1 1o
T8 =TV + S @df —df &), Vg=3Vo+3df@g
Moreover: . .
dvg= fdvg.
Proof. For X|Y,Z € C>*(T M) we have:
TY(X,Y) = TV(X.Y) + }(Y(f)x _X()Y)
(Vxa)(Y,Z) = }(vxgm 7)+ fng(f)g(Y, 7).
Then:
(d%9)(X.Y. 2) = }(dvgxx, Y, 7) + }(X(f)g(Y, 7) - Y()3(X. 2)
LY ()g(X.2) - X(g(Y. 2)) = }(dvgxx, v,7. O

Corollary 3.3. (M,g,V) is a quasi-statistical manifold if and only if

(M, g,V) is a quasi-statistical manifold.
Corollary 3.4. Let (M,g) be a pseudo-Riemannian manifold and let V

be the Levi-Civita connection of g. Then (g, V) is a quasi-statistical structure
on M.
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4 - Dualistic structures and a-connections

Definition 4.1. Let M be a smooth manifold and let g be a pseudo-
Riemannian metric on M. Two affine connections V and V* on M are said to
be dual connections with respect to g if

X(9(Y,2)) = g(VxY,Z) + g(Y,Vx Z),
for any X,Y,Z € C*°(TM) and we call (g, V,V*) a dualistic structure.
A direct computation gives the following.

Lemma 4.2. If g is a pseudo-Riemannian metric on M and V is an affine
connection on M, then the dual connection V* satisfies:

VXY =VxY +g ' ((Vxg)(Y)), ViB=VxB—(Vxg)lg " (8)),

for any X, Y € C®(TM) and f € C®(T*M), where g : TM — T*M is
identified to the flat musical isomorphism of g.

Moreover, if (g,V) is a quasi-statistical structure, then the dual connection
V* satisfies:
TV =0, V'¢g=—-Vy.

In particular, if (M,g,V) is a statistical manifold, then (M, g,V*) is a statis-
tical manifold, too.

Lemma 4.3. If (M,g,J,V) is a holomorphic statistical manifold, then
J(VyY)=VxJY,
for any X,Y € C*(TM).

Proposition 4.4. Let (M,g,J) be a Norden manifold, let V be the Levi-
Civita connection of g and let § be the twin metric defined by (g,J). Then
(9, V,V*) defines a dualistic structure with the dual connection V* given by:

VyY =VxY - J(VxJ)Y),
for any X, Y € C°(TM). In particular, we get:
V*J =-V.J.

For the quasi-statistical structure (g, V) and V* the dual connection of V,

we consider the family of a-connections on M, for a € R:
1+« l-«
= \% V*.
2 + 2

Remark that the dual connection of V(@) is V(=)

v .
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5 - Generalized Geometry
5.1 - Some geometrical structures on TM & T*M

Let E :=TM & T*M be the generalized tangent bundle of M. On E we
consider the natural indefinite metric:

<X+nY+p8>= —%(U(Y) + B(X))

and the natural symplectic structure:

1

(X +0.Y + ) = =5 (n(¥) = BX)),

for X, Y € C°(TM) and n, 8 € C*(T*M).
Furthermore, given an affine connection V on M, we define the V-bracket,
[, ], as:
(X +nY+pblv:=[X,Y]+ VxS —Vyn,
for X, Y € C*®°(TM) and n,5 € C*(T*M).

5.2 - Generalized almost complex structures

DefinitiAon 5.1. A generalized almost complex structure on M is an en-
domorphism J : E — E such that J2= 1.

Definition 5.2. ([12]) A generalized almost complex structure J is called
pseudo-calibrated if it is (-,-)-invariant and if the bilinear symmetric form de-
fined by (-, J. -) is non degenerate. Moreover, J is called calibrated if it is pseudo-
calibrated and (-, j) is positive definite.

From the definition, we get the following block matrix form of a generalized
pseudo-calibrated almost complex structure:

F_(H —(I+H*)g™
- g —H* )

where ¢ is a pseudo-Riemannian metric on M, H : TM — TM is a g-
symmetric operator and H* : T*M — T*M is the dual operator of H defined
by H*(n)(X) :=n(H (X)), for X € C>°(T'M) and n € C>(T"M).

If J is calibrated, then g is a Riemannian metric, namely:

g(X)(Y) = g(X,Y) = 2(X, JY).
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5.3 - V-integrability of generalized almost complex structures

Lemma 5.3. Let J: E— E be a generalized almost complex structure on
M and let R
NY(J): C*®(E) x C®(E) — C*(E),

NY (D) (o,7) = [Jo, Jrly — J[Jo, 1)y — Jlo, J7]v — [0, 7]y,

for o,7 € C*(E). Then NY(J) is a skew-symmetric tensor field called the
Nijenhuis tensor of J with respect to V.

Let EC := (TM@®T*M)®C be the ‘complexified generalized tangent bundle.
The splitting into +i eigenspaces of .J is denoted by E® := E}’O $5) Egil with

E%l = E}’O. Let P, : EC — E;O and P_ : EC — E%l be the projection
operators Py = (I F iJ). Then the following holds.

Lemma 5.4. For any o,7 € C®(E®), we have:

~

1
Py[Ps(0), Pa(r)]y = — P(NY (7)(o,7)).
Corollary 5.5. For any affine connection V on M, we have that E;O
and E%l are |-, -|v-involutive if and only if Nv(j) =0.
Definition 5.6. A generalized almost complex structure J on M is called

V-integrable if NV (J) = 0.

5.4 - Quasi-statistical Geometry fits perfectly into Generalized Geometry

Proposition 5.7. Let (M,g) be a pseudo-Riemannian manifold and let
V be an affine connection on M. Then the generalized almost complex structure

defined by g:
/\._ 0 79_1
7= <9 0 >

is V-integrable if and only if (M, g, V) is a quasi-statistical manifold.

Theorem 5.8 ([13]). Let (M,g,J) be a Norden manifold and let V be an
affine connection on M. Then the pseudo-calibrated generalized almost complex

structure defined by (g, J):
J 0
1 <9 —J*)

)
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is V-integrable if and only if, for any X, Y € C*>°(T M), the following conditions
hold:
N(J)=0

(ijj) + J(ij) =0
(dVg)(JX,Y) + (dVg)(X,JY) = g((dV J)(X,Y)) = 0.
Corollary 5.9. Let (M,g,J) be a Norden manifold, let V be the Levi-
Civita connection of g and let g be the twin metric defined by (g, J). If (M, §,V)
is a statistical manifold, then J is V-integrable if and only if, for any X €
C>®(TM), the following condition holds:
(VJ)(J) + J(ij) =0.

0

In particular, J= <;j g

) is V-integrable if and only if J = <g _(?]*> 18
V-integrable.

Proof. Wehave dVg=0,dVg=0,dVJ =0and (VyxJ)+J(VxJ)=0
which furthermore give N(J) = 0. O

Lemma 5.10. For a torsion-free affine connection ¥V and an almost com-
plex structure J,

(VuxJ) = J(VxJ) =0
{ dVI)(X,Y)=0
for any X, Y € C®°(TM) if and only if
VJ =0.

Definition 5.11. ([11]) (M, g, J) is called a Kdhler-Norden manifold if it
is a Norden manifold such that VJ = 0, where V is the Levi-Civita connection
of g.

Corollary 5.12. Let (M,g,J) be a Norden manifold, let V be the Levi-
Civita connection of g and let g be the twin metric defined by (g, J). If (M, g, V)
15 a statistical manifold, then the following conditions are equivalent:

1. J is V-integrable
2. J is V-integrable;
moreover the following are equivalent:

3. (M,g,J) is a Kihler-Norden manifold
4. (M,g,J) is a Kdhler-Norden manifold

and 3., or 4., implies 1. and 2..
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5.5 - V@) _integrability of generalized almost complex structures

Let (M, g,V) be a statistical manifold, let V* be the dual connection of V
and let [+, ]y be the bracket defined by V(). Then:

(X +1,Y + Blgw@ = [X, Y]+ V&8 - vi?)y

= [X 0,7 +Bly — 5 {(Vxa)(g™ (8) ~ (Vra)g™ ()},

for any X,Y € C*°(T'M) and n,3 € C*(T*M).

Proposition 5.13. Let (M, g) be a pseudo-Riemannian manifold and let
V be an affine connection on M. Then the generalized almost complex structure

defined by g:
J = <g 0 )

is V(@) _integrable for any o € R if and only if (M, g,V) is a statistical manifold.

Proof. For X, Y € C*®(T'M) we have:

~

NYOD)EY) = TVX ) + 2L (Txg) (V) — (Tya) (X))

1+«

NV (DX, g(Y) = —g(TV(X,Y)) — {(Vxg)(Y) — (Vyg)(X)}

NV (F)(g(X),g(V)) = ~TV(X, ) - T

9 H{(Vx9)(Y) = (Vyg)(X)},
thus the statement. ]

Let (M,g,J) be a Norden manifold and let V be a torsion-free affine con-
nection on M. We consider the tensor field F' defined by:

F(X,Y,Z) = g((VxJ)Y, Z),

for X,Y,Z € C°°(TM), which is very important in the classification of almost
complex structures and it is related to the theory of a-connections.

Remark 5.14. V.J is g-symmetric, i.e., g((VxJ)Y,Z) = g(Y,(VxJ)Z),
for any X,Y,Z € C°°(TM), if and only if F' satisfies:

F(-7X7Y) :F(wYaX)’

for any X, Y € C*(T'M).
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Proposition 5.15 ([5]). Let (M,g,J,V) be a Norden and statistical man-

ifold. Let J= < ;Z 7(3]* > be the generalized almost complex structure induced
by (g,J). Then the Nijenhuis tensor field of J with respect to [ Jow satisfies:
NY(T) = NV (),
for any o € R, if and only if the tensor field F' satisfies:
FX,)Y,2)+ FY,Z,X)-F(X,2,Y)-F(Y,X,Z) =0,
for any X,Y,Z € C>®(TM).

Corollary 5.16. Let (M,g,J,V) be a Norden and statistical manifold
such that VJ is g-symmetric. Then the Nijenhuis tensor field of the generalized
almost complex structure J with respect to [-, |y ) satisfies:

NY(T) = NV (),
for any a € R.
In particular, the definition of integrability for J is a-invariant.

Proposition 5.17. Let (M, g, J) be a Norden manifold such that (M, g, V)
s a statistical manifold, where V is the Levi-Civita connection of g and g is the

twin metric defined by (g,J). Let J = < g _E)]*

complex structure induced by (g, J). Then the Nijenhuis tensor field of J with
respect to [-, |y satisfies:

> be the generalized almost

if and only if F satisfies:
F(X75Y) :F(YaaX)a
for any X, Y € C(TM).

In particular, this holds if and only if (M, g, J) is a Kéhler-Norden manifold,
namely, under the above hypothesis, a direct computation gives the following.

Remark 5.18.
F(X,,Y)=F(Y,,X) < J({(VxJ)Y)=(VxJ)JY,

or equivalently, if and only if
VJ =0,

i.e., if and only if (M, g, J) is a Kéhler-Norden manifold.
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6 - Generalized statistical structures

Let V be a torsion-free affine connection on M and let V be the affine
connection on TM & T* M defined by:

Vxin(Y +8) =VxY + Vx8,

for X, Y € C°(TM) and n,8 € C*(T*M).

Remark 6.1. For any 0,7 € C°(TM & T*M), TV (0,7) := Vor — V0 —
[o,T]v = 0.

Definition 6.2. Let g be a non degenerate bilinear form on T'M & T*M.
Then (§, V) is called a generalized statistical structure if d¥§ = 0, where

(@¥9)(o,7,v) = (Vi) (1, 1) — (V24) (o, 1),
for o, 7,v € C°(TM & T*M).

Proposition 6.3. Let g be the indefinite metric < -,- > or the natural
symplectic structure (-,-) on TM ® T*M. Then Vg = 0. As a consequence,
(9,V) is a generalized statistical structure.

Proof. Leto=X+n,171=Y +5,v=2+, where X,Y,Z € C*(TM)
and n, B,y € C®°(T*M). We have:

~2(Veg)(1,v) = =2{X (3(r,v)) = §(VxT,v) = §(7, VxV)}

= X(B(2) £1(Y)) = {(VxP)(Z) £(VxY)} = {B(Vx 2) £ (Vx7)(Y)}
= {X(B(2))-B(Vx2)=(VxP)(Z)}HX(v(Y))—(VxY)=(Vx)(Y)} = 0.0

7 - Generalized quasi-statistical structures

Let g be a pseudo-Riemannian metric on M. We define the bilinear form g
on TM & T*M by:

(X +n,Y +B):=g(X,Y) +g(g~"(n),97(8)),

for X, Y € C°(TM) and n,8 € C*(T*M).
Furthermore, given an affine connection V on M, we define the affine con-
nection V on T'M & T*M by:

Vxin(Y 4 B) := VxV +g(Vx(g71(B))).
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Definition 7.1. Let g be a pseudo-Riemannian metric and let V be an
affine connection on M. Let V be the affine connection on M & T* M induced
by (g,V) and let ¢ be a non degenerate bilinear form on TM @ T*M. Then
(9, @) is called a generalized quasi-statistical structure if d¥§ = 0, where

(dV9)(0,7,v) = (Vi) (r,v) — (V,§)(0,0) + §(TV (7). v),

~ A~

for o,7,v € C°(T'M & T*M) and T@(O',T) =V, —V,0—[0,7T]v.

Theorem 7.2 ([4]). Let g be the indefinite metric < -,- > or the symplectic

structure (-,-) on TM & T*M. Then (§,V) is a generalized quasi-statistical
structure if and only if (M, g, V) is a quasi-statistical manifold.

A~

Proposition 7.3 ([4]). (¢,V) is a generalized quasi-statistical structure
if and only if (M,g,V) is a quasi-statistical manifold.

Now we can define the dualistic structure (§, V, V*) and the family of con-
nections {V(®},cg on TM @ T*M, called generalized a-connections:

A 14+~ l—a_-
(a),: *
AVARCE > V + 5 V™.

We immediately have that the dual connection of V@ g v(=a),

Definition 7.4. Let (M,g) be a pseudo-Riemannian manifold with a
dualistic structure (g, V,V*). Then (M,gq,V,V*) is called conjugate Ricci-
symmetric if RicY = RicV ", where Ric is the Ricci curvature tensor of g.

After computing the Ricci curvature tensors, we get the following.

Proposition 7.5 ([5]). Let g be a pseudo-Riemannian metric on M, let V

be an affine connection and let (¢, V) be the generalized structure on TM &T* M
induced by (g,V). If Vg =0, then

RicV'™ (X +0,Y + 8) = RicV (X, Y) = RicV " (X +1,Y + ),

for any X, Y € C*(TM), n,B € C®(T"M) and any o« € R, i.e., (TM & T" M,
J, \WOR V(_a)) 18 conjugate Ricci-symmetric.
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