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Matteo Verzobio

A recurrence relation for elliptic divisibility sequences

Abstract. In literature, there are two different definitions of elliptic
divisibility sequences. The first one says that a sequence of integers
{hn}n∈N is an elliptic divisibility sequence if it satisfies the recurrence
relation hm+nhn−mh2

r = hn+rhn−rh
2
m − hm+rhm−rh

2
n for all natural

numbers n ≥ m ≥ r. The second definition says that a sequence of
integers {βn}n∈N is an elliptic divisibility sequence if it is the sequence
of the square roots (chosen with an appropriate sign) of the denom-
inators of the abscissas of the iterates of a point on a rational ellip-
tic curve. It is well-known that the two sequences are not equivalent.
Hence, given a sequence of the denominators {βn}n∈N, in general the
relation βm+nβn−mβ2

r = βn+rβn−rβ
2
m − βm+rβm−rβ

2
n does not hold for

all n ≥ m ≥ r. We will prove that the recurrence relation above holds
for {βn}n∈N under some conditions on the indexes m, n, and r.

Keywords. Elliptic divisibility sequences, Recurrence sequences, Ellip-
tic curves.

Mathematics Subject Classification: Primary 11G05; Secondary
11B37, 11B39.

1 - Introduction

The goal of this paper is to make a remark on the definition of elliptic
divisibility sequences (also called EDS). In literature, there are two different
definitions of EDS. We want to show the link between these two definitions.

The first definition is due to Ward, in [6]. It is completely arithmetical.

D e f i n i t i o n A. A sequence of integers {hn}n∈N is an elliptic divisibility
sequence if it satisfies the following properties:

• h0 = 0;
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• h1 = 1;

• h2 divides h4;

• for all n ≥ m ≥ r,

(1) hm+nhn−mh2r = hn+rhn−rh
2
m − hm+rhm−rh

2
n.

In literature, there is an other definition of elliptic divisibility sequences.
This definition is more geometrical.

D e f i n i t i o n B. Let E be a rational elliptic curve defined by a Weierstrass
equation with integer coefficients, and let P ∈ E(Q). For every n ∈ N write

x(nP ) =
An(E,P )

B2
n(E,P )

with An(E,P ) and Bn(E,P ) two coprime integers and Bn(E,P ) ≥ 0. If nP =
O, the identity of the curve, then we put Bn(E,P ) = 0. Let ψn be the n-th
division polynomial of E, as defined in Definition 2.1. Define

βn(E,P ) = Sign(ψn(x(P ), y(P ))) · Bn(E,P )

B1(E,P )
.

We say that the sequence {βn(E,P )}n∈N is an elliptic divisibility sequence.

R ema r k 1.1. One can easily show that B1(E,P ) divides Bn(E,P ) for
every n and then the sequence of the βn(E,P ) is a sequence of integers.

The fact that the denominator of x(nP ) is a square follows from the fact
that the coefficients of the Weierstrass equation are integers.

R ema r k 1.2. The sequences {βn(E,P )}n∈N and {Bn(E,P )}n∈N are clearly
strictly related. In some papers the sequence of the Bn is studied instead of the
sequence of the βn. We will consider the sequences of the βn(E,P ) since it is
easier to relate them with the sequences of Definition A. In the definition of βn,
we divide by B1 in order to have the additional property β1(E,P ) = 1. Finally,
the choice of the sign of βn is necessary in order to link the two definitions of
EDS. The reason for this choice will become clear during the paper.

The study of the elliptic divisibility sequences is very interesting and has
applications in a lot of fields, as for example cryptography or logic. These
sequences are divisibility sequences. Recall that a sequence of integers {an}n∈N
is a divisibility sequence if

m | n =⇒ am | an.
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D e f i n i t i o n 1.3. Given a sequence of integers {an}n∈N, we say that the
sequence is an EDSA if it is an elliptic divisibility sequence as in Definition A.
We say that the sequence is an EDSB if it is an elliptic divisibility sequence as
in Definition B.

There exist some sequences that are both EDSA and EDSB. Anyway, it is
easy to show that the two definitions are not equivalent. The goal of this paper
is to show the relation between the two definitions.

First of all, we show an example of a sequence that is both an EDSA and
an EDSB.

E x amp l e 1.4. Consider the EDSA h1 = 1, h2 = 2, h3 = −1, and h4 =
−36. Observe that once one knows the value of hi for i ≤ 4, then every term can
be computed using the recurrence relation (1). Take E the elliptic curve defined
by the equation y2 = x3 + x+1 and P = (0, 1). Computing the first terms, we
obtain β1(E,P ) = 1, β2(E,P ) = 2, β3(E,P ) = −1, and β4(E,P ) = −36. For
example, since 2P = (1/4,−9/8) and ψ2(x, y) = 2y, we have

β2(E,P ) = Sign(ψ2(x(P ), y(P )))
B2(E,P )

B1(E,P )
= Sign(2y(P ))

√
4√
1
= 2.

Hence, for i ≤ 4, we have βi(E,P ) = hi. Using the work in the next pages and
in particular Theorem 1.9, it is possible to show that in general hn = βn(E,P ).

Anyway, in general it is not true that every EDSB is an EDSA. In the same
way, it is not true that every EDSA is an EDSB. We show two examples of this
fact.

E x amp l e 1.5. Consider the sequence an = n. This is an EDSA, by direct
computation. We can easily show that this sequence is not an EDSB. Suppose,
by absurd, that there exists E and P such that βn(E,P ) = n for every n ∈ N.
Since an �= 0 for n ≥ 1, we have that P is a non-torsion point. Using [4, Example
IX.3.3], we have that

lim
n→∞

log |βn(E,P )|
n2

= c > 0.

The constant c depends on E and P . Anyway, it is always strictly positive, if
P is a non-torsion point. Observe that

lim
n→∞

log n

n2
= 0

and then {n}n∈N cannot be an EDSB.
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E x amp l e 1.6. Let E be the elliptic curve defined by the equation y2 =
x3 + x + 6 and take the point P = (−1, 2) in E(Q). Consider the EDSB
{βn(E,P )}n∈N. One can compute that β1(E,P ) = 1, β2(E,P ) = 1, β3(E,P ) =
−1, β4(E,P ) = −3, and β5(E,P ) = 1. This is not an EDSA since it does not
satisfy (1). Indeed, if we put n = 3, m = 2, and r = 1 in (1) we should have

β5β
3
1 = β4β

3
2 − β1β

3
3 .

This is not true and then the sequence is not an EDSA.

The problem of understanding when an EDSA is an EDSB has been studied
in [6, Section IV]. We will give some details on this problem at the beginning
of Section 4.

Instead, we will focus on the problem of understanding when an EDSB is
an EDSA. This problem has been studied in [3].

T h e o r em 1.7 ( [3, Theorem 5.1.1]). Let E be an elliptic curve defined by
a Weierstrass equation with integer coefficients and let P ∈ E(Q) be a non-
torsion point. There exists a multiple Q of P such that {βn(E,Q)}n∈N is an
EDSA.

The goal of this paper is to answer the following question.

Qu e s t i o n 1.8. Given an EDSB that it is not an EDSA, how far is the
sequence from being an EDSA?

We know that β0 = 0, that β1 = 1, and that β2 divides β4 since it is a
divisibility sequence. So, if the sequence is not an EDSA, then Equation (1)
does not hold.

We want to show that every EDSB satisfies a subset of the equations in (1).
Indeed, we will prove the following theorem.

Th e o r em 1.9. Let E be an elliptic curve defined by a Weierstrass equation
with integer coefficients and let P ∈ E(Q) be a non-torsion point. Consider the
EDSB {βn}n∈N = {βn(E,P )}n∈N. Let n ≥ m ≥ r be three positive integers
such that two of them are multiples of M(P ), a constant that we will define in
Definition 3.2. Then,

βn+mβn−mβ2
r = βn+rβn−rβ

2
m − βm+rβm−rβ

2
n.

As we will explain in Remark 4.4, this theorem is a generalization of Theo-
rem 1.7.

As we noticed before, if {hn}n∈N is an EDSA and we know hi for i ≤ 4, then
we can compute hk for every k ∈ N, using the recurrence relation. Thanks to
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Theorem 1.9 we know that, if {βn(E,P )}n∈N is an EDSB and we know βi(E,P )
for i ≤ 4M(P ), then we can compute βk(E,P ) for every k ∈ N. Indeed, if
k > 4M(P ), then we put r = M(P ), m = 2M(P ), and n = k − 2M(P ) and
using the recurrence relation we can compute βk(E,P ) using the induction.

R ema r k 1.10. We used the hypothesis that E is defined by a Weierstrass
equation with integer coefficients because otherwise the sequence of the βn is not
in general a sequence of integers. We will deal with the case of an elliptic curve
defined by a Weierstrass equation without integer coefficients in Proposition
4.7.

R ema r k 1.11. The hypothesis that P is a non-torsion point is necessary
in order to prove the results of Section 3. Indeed, we are not able to prove the
results of that section without this hypothesis. In Corollary 4.6, we will prove
that Theorem 1.9 holds in the case when P is torsion point, if M(P ) = 1. For
some more considerations on the EDSB in the case when P is a torsion point,
see [3, Section 5.5]. Observe that, in the case when P is a torsion point, the
sequence βn(E,P ) is quite simple. Indeed, in this case, the sequence is periodic
with order small.

R ema r k 1.12. Sometimes, in Definition A, Equation (1) is given only
for r = 1. Anyway, as is proved in [6, Lemma 30.1], the two definitions are
equivalent.

2 - Division polynomials

The aim of this section is to introduce the division polynomials. Even if our
main theorem is for elliptic curves defined over Q, in the next two sections we
will work with elliptic curves defined over a number field K, in order to give
the most general results. We denote with OK the ring of integers of K. Define
M0

K as the set of all finite places of K. Given ν ∈ M0
K , we define Kν as the

completion of K with respect to ν.
Let E be an elliptic curve defined by the equation

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients in a number field K. Define the quantities

b2 = 4a2 + a21,(3)

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.
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Given a point P ∈ E(K) and n ∈ N, we want to show how to effectively
compute the coordinates of the point nP . In order to do so, we need to define
the so-called division polynomials.

D e f i n i t i o n 2.1. Let ψn ∈ Z[x, y, a1, a2, a3, a4, a6] be the sequence of poly-
nomials defined as follows:

• ψ0 = 0;

• ψ1 = 1;

• ψ2 = 2y + a1x+ a3;

• ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8;

• ψ4 = ψ2(2x
6+b2x

5+5b4x
4+10b6x

3+10b8x
2+(b2b8−b4b6)x+(b4b8−b26));

• ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 for n ≥ 2;

• ψ2nψ2 = ψnψn+2ψ
2
n−1 − ψnψn−2ψ

2
n+1 for n ≥ 3.

Recall that the coefficients bi are defined in (3) and depend only on the coeffi-
cients ai. These polynomials are the so-called division polynomials. For n ≥ 1,
define also the polynomials

(4) φn = xψ2
n − ψn+1ψn−1.

Observe that the points on the curve satisfy the equation

(5) (2y + a1x+ a3)
2 = 4x3 + b2x

2 + b4x+ b6.

This can be proved by substituting the coefficients bi with the coefficients ai
using the definitions given in (3) and obtaining the Weierstrass equation (2)
that defines the curve.

We will evaluate the polynomials of Definition 2.1 only on points of the
curve. For such points, it holds (5) and so in the polynomials we can substitute
(2y + a1x+ a3)

2 with 4x3 + b2x
2 + b4x+ b6.

For example,

ψ2
2 = (2y + a1x+ a3)

2 = 4x3 + b2x
2 + b4x+ b6.

L emma 2.2. Fix n ≥ 1.

• Using the substitution

(2y + a1x+ a3)
2 = 4x3 + b2x

2 + b4x+ b6,

we can assume that the polynomial φn does not depend on y. Therefore,
the polynomial φn is in Z[x, a1, a2, a3, a4, a6].
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• If n is odd, then the polynomial ψn is in Z[x, a1, a2, a3, a4, a6]. Instead, if
n is even, then ψn is a polynomial in Z[x, a1, a2, a3, a4, a6], multiplied by
(2y+a1x+a3). Therefore, using (2y+a1x+a3)

2 = 4x3+ b2x
2+ b4x+ b6,

we can assume that ψ2
n does not depend on y. So,

ψ2
n ∈ Z[x, a1, a2, a3, a4, a6]

for every n.

P r o o f. See [4, Exercise 3.7]. □

L emma 2.3. If the curve E is fixed, then the coefficients ai are fixed.
Therefore, we say that φn(x) and ψ2

n(x) depend only on x.

• The polynomial φn(x) is monic and has degree n2.

• The polynomial ψ2
n(x) has degree n2 − 1 and its leading coefficient is n2.

The zeros of this polynomial are the x-coordinates of the non-trivial n-
torsion points of E(Q).

• For every P ∈ E(K) that is not a n-torsion point, we have

x(nP ) =
φn(x(P ))

ψ2
n(x(P ))

.

P r o o f. See [4, Exercise 3.7]. □

Ex amp l e 2.4. Let E be the elliptic curve defined by the equation y2 =
x3+x. Then, by definition, ψ1 = 1, ψ2 = 2y, and ψ3 = 3x4+6x2−1. Moreover,

φ2 = xψ2
2 − ψ3ψ1 = 4xy2 − 3x4 − 6x2 + 1.

Using the substitution y2 = x3 + x, we obtain ψ2
2 = 4x3 + 4x and φ2 = x4 −

2x2 + 1. Therefore,

x(2P ) =
φ2(x(P ))

ψ2
2(x(P ))

=
x(P )4 − 2x(P )2 + 1

4x(P )3 + 4x(P )
.

Rema r k 2.5. The sequence {ψn(x(P ), y(P ))}n∈N is almost an EDSA. In-
deed, it satisfies every condition of Definition A, except for the condition that
the terms are integers. This follows from [4, Exercise III.7.g].
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Suppose now that E is defined over Q. Consider p a prime in Z and ν the
place associated with p. Suppose that ν(x(P )) ≥ 0. This happens if P does not
reduce to the identity modulo p. So, ν(φn(x(P ))) ≥ 0 and ν(ψ2

n(x(P ))) ≥ 0.
Recall that, as we defined in the introduction,

x(nP ) =
An(E,P )

B2
n(E,P )

.

Observe that

2ν(Bn(E,P )) = max{0,−ν(x(nP ))}
= max{0, ν(ψ2

n(x(P )))− ν(φn(x(P )))}
= ν(ψ2

n(x(P )))−min{ν(ψ2
n(x(P ))), ν(φn(x(P )))}.

From the previous equality, in order to study the sequence of the βn(E,P ) =
±Bn(E,P )/B1(E,P ), we need to study

min{ν(φn(x(P ))), ν(ψ2
n(x(P )))}.

In the next section, we will study this quantity.

3 - The sequence of the gcd

The goal of this section is to prove Proposition 3.12, that is necessary in
order to prove Theorem 1.9. Again, we will work assuming that the curve E is
defined over a number field K, in order to give the most general results.

Let ν ∈ M0
K , Kν be the completion of K with respect to ν, and P be the

prime associated with ν. Let

E0(Kν) = {M ∈ E(Kν) | M is not singular in E(FP)}

where M is the reduction of the point M in the reduced curve E(FP) modulo
P. With FP we denote the field OK/POK . This is a subgroup of E(Kν) and
E(Kν)/E0(Kν) is finite, thanks to [4, Corollary C.15.2.1].

D e f i n i t i o n 3.1. Let K be a number field, ν ∈ M0
K , and let E be an

elliptic curve defined by a Weierstrass equation with integer coefficients in Kν .
Let P ∈ E(Kν). Denote with r(P, P ) the order of P in E(Kν)/E0(Kν).

Recall that P is the prime associated with the finite valuation ν.
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D e f i n i t i o n 3.2. Let E be an elliptic curve defined by a Weierstrass equa-
tion with integer coefficients in K and let P ∈ E(K). Define

M(P ) := lcmP{r(P, P )}.

If P does not divide ∆, the discriminant of the curve, then E has good reduction
and therefore

E0(Kν) = E(Kν).

So, r(P, P ) �= 1 only for finitely many P and then M(P ) is a well-defined
positive integer.

The value of M(P ) can be bounded using [4, Corollary C.15.2.1]. For
example, if the j-invariant of the curve is integral, then M(P ) divides 12. Ob-
serve that the point Q = M(P )P is non-singular modulo every prime. Hence,
M(Q) = 1.

D e f i n i t i o n 3.3. Let E be an elliptic curve defined by a Weierstrass equa-
tion with integer coefficients in K and let P ∈ E(K). Let ν ∈ M0

K and n ∈ N.
If nP �= O, then define

gn,ν(P ) := min{ν(φn(x(P ))), ν(ψ2
n(x(P )))}.

Moreover, if nP = O, we put gn,ν(P ) = 0.

P r o p o s i t i o n 3.4. Let E be an elliptic curve defined by a Weierstrass
equation with integer coefficients in K. Let P ∈ E(K) and assume ν(x(P )) ≥ 0.
If r(P, P ) = 1, then

gn,ν(P ) = 0

for every n ∈ N.

P r o o f. See [1, Theorem A]. □
Thanks to the previous proposition, we know that gn,ν(P ) �= 0 only if

E is singular modulo P, assuming ν(x(P )) ≥ 0. Hence, we need to compute
gn,ν(P ) only in the case when E is singular modulo P, where P is the prime
associated with ν. We will show that the terms of the sequence gn,ν(P ) satisfies
a recurrence relation.

Now, we study gn,ν(P ) in the case r(P, P ) > 1.

T h e o r em 3.5 ( [2, Theorem 4]). Let E be an elliptic curve defined by a
Weierstrass equation with coefficients in OK . Let P be a non-torsion point of
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E(K) and assume ν(x(P )) ≥ 0. Let r = r(P, P ) > 1 and n > 0. Then,

(6) gn,ν(P ) =




µm2 if n = mr,

4µm2 ± 2(2ν(
ψk(x(P ), y(P ))

ψr−k(x(P ), y(P ))
) + µ)m

+2ν(ψk(x(P ), y(P ))) if n = 2mr ± k with 1 ≤ k < r,

where µ = gr,ν(P ).

Rema r k 3.6. The previous theorem, as far as we know, is correct, even
if the proof of this fact in [2] has a gap. We briefly show why the proof of
Theorem 4 in [2] is wrong and how to fix the problem. At the beginning of the
paper, it is claimed in Lemma 1 that if P ∈ E0(Kν) and ν(x(P )) < 0, then
ν(x(nP )) = ν(x(P ))− 2ν(n) for every n ≥ 1. This is not true, in general. For
example, if we take Kν = Q2, the curve E defined by the equation y2 + xy =
x3+x2−2x, the point P = (−1/4, 7/8), and n = 2, then the equation does not
hold. This mistake affects Theorem 1 and Theorem 3 of the paper, that are
false. Anyway, even if the proof of Theorem 4 uses Theorem 3, we can easily
prove the theorem replicating the work of [2], with a little adjustment.

Observe that, if P ∈ E0(Kν) and ν(x(P )) < 0, then ν(x(nP )) ≤ ν(x(P )) for
every n ≥ 1. This follows easily from Lemma 2.3. In order to prove Theorem
4, one just needs to replicate the work in [2] substituting Lemma 1 with the
previous observation. Using this substitution, one can prove an analogue of
Theorem 1 and 3. With the new versions of these theorems, the proof of
Theorem 4 still works. Therefore, [2, Theorem 4] is true.

In the case when E is in minimal form, there is a more explicit version of
the Theorem proved in [5, Theorem 1.1].

P r o p o s i t i o n 3.7. Let E be an elliptic curve defined by a Weierstrass
equation with integer coefficients in K and let P ∈ E(K) be a non-torsion
point. Let ν be a finite place and P be the prime associated with ν. Assume
ν(x(P )) ≥ 0. If m is a multiple of r(P, P ), then

gn+m,ν(P ) + g|n−m|,ν(P ) = 2(gn,ν(P ) + gm,ν(P )).

If m is a multiple of M(P ), then the equation holds for every ν.

P r o o f. If r(P, P ) = 1, then we conclude using Proposition 3.4. So, we
assume r(P, P ) > 1.

If n = m, then m = n = kr, where r = r(P, P ) > 1. So, using (6),

gn+m,ν(P ) + g|n−m|,ν(P ) = g2kr,ν(P ) = 4µk2 = 2(gkr,ν(P ) + gkr,ν(P )).
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In this case, the proposition holds.

Now, we assume that n �= m. Define n1 := max{n,m} and n2 := min{n,m}.
So, n1 > n2 and suppose that n2 is a multiple of r = r(P, P ). If n1 ≡ 0
mod r, then n1 = m1r and gn1,ν(P ) = µm2

1. In the same way, gn2,ν(P ) = µm2
2.

Therefore, using Theorem 3.5,

gn1+n2,ν(P ) = µ(m1 +m2)
2,

and

gn1−n2,ν(P ) = µ(m1 −m2)
2.

Now, it is easy to conclude observing that

(m1 +m2)
2 + (m1 −m2)

2 = 2m2
1 + 2m2

2.

So, we assume that n1 �≡ 0 mod r. We put n1 = 2rm1 ± k for 0 < k < r
and n2 = 2rm2 or n2 = r(2m2+1) since n2 ≡ 0 mod r. Put n3 = n1+n2 and
n4 = n1 − n2. We want to study

Ln1,n2 = gn1+n2,ν(P ) + gn1−n2,ν(P )− 2(gn1,ν(P ) + gn2,ν(P )).

We want to prove that Ln1,n2 = 0. We are going to use Theorem 3.5. For
notational convenience, we write ψk instead of ψk(x(P ), y(P )).

1. If n1 = 2m1r + k and n2 ≡ 0 mod (2r), then n3 = 2(m1 +m2)r + k and
n4 = 2(m1 −m2)r + k. So,

Ln1,n2 =4µ(m1 +m2)
2 + 2(2ν(

ψk

ψr−k
) + µ)(m1 +m2) + 2ν(ψk)

+ 4µ(m1 −m2)
2 + 2(2ν(

ψk

ψr−k
) + µ)(m1 −m2) + 2ν(ψk)

− 2(4µm2
1 + 2(2ν(

ψk

ψr−k
) + µ)m1 + 2ν(ψk))− 2(4µm2

2)

=0.

2. If n1 = 2m1r − k and n2 ≡ 0 mod (2r), then n3 = 2(m1 +m2)r − k and
n4 = 2(m1−m2)r−k. Repeating the proof as in the case 1, we can show
Ln1,n2 = 0.

3. If n1 = 2m1r+k and n2 = (2m2+1)r, then n3 = 2(m2+m1+1)r−(r−k)
and n4 = 2(−m2 +m1)r − (r − k). Repeating the proof as in the case 1,
we can show Ln1,n2 = 0.
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4. If n1 = 2m1r− k and n2 = (2m2 + 1)r, then n3 = 2(m1 +m2)r+ (r− k)
and n4 = 2(m1 −m2 − 1)r + (r − k). Repeating the proof as in the case
1, we can show Ln1,n2 = 0.

In the case when n1 is the multiple of r, the proof is identical. This concludes
the first part of the proof.

Assume now that m is a multiple of M(P ). Then, it is a multiple of r(P, P )
for every P and we conclude with the first part of the proposition. □

Rema r k 3.8. In the previous proposition, the hypothesis that m is a
multiple of r(P, P ) is necessary. For example, take E the elliptic curve defined
by the equation y2 = x3 + x + 6 and P = (−1, 2) ∈ E(Q). Let ν be the
place associated with 2 and then ν(x) = ord2(x). By definition, φ2(x) =
x4 − 2x2 − 48x+ 1 and ψ2

2(x) = 4(x3 + x+ 6). So, by direct computation,

g2,ν(P ) = min{ord2(φ2(x(P ))), ord2(ψ
2
2(x(P )))}

= min{ord2(48), ord2(16)}
= 4

and, in the same way, g3,ν(P ) = 12. Putting m = 1 and n = 2 we have

gn+m,ν(P ) + gn−m,ν(P )− 2gm,ν(P )− 2gn,ν(P )

=g3,ν(P ) + g1,ν(P )− 2g2,ν(P )− 2g1,ν(P )

=g3,ν(P )− 2g2,ν(P )

=4

and then the equation of the previous proposition does not hold. Observe that

d(x3 + x+ 6)

dx

∣∣∣
x=−1

= 3x2 + 1
∣∣∣
x=−1

= 4

and so P is singular modulo 2 since

d(x3 + x+ 6)

dx

∣∣∣
x=x(P )

≡ d(y2)

dy

∣∣∣
y=y(P )

≡ 0 mod 2.

In the same way 2P = (3,−6) is singular. Instead, 3P = (2, 4) is not singular
since

d(x3 + x+ 6)

dx

∣∣∣
x=2

= 3x2 + 1
∣∣∣
x=2

≡ 1 �≡ 0 mod 2.

So, in order to apply the previous proposition in this case we need to take m
multiple of 3.
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From now on and until the end of the section, we will assume that K = Q.
We show why the study of the gn,ν(P ) is important for the study of the sequence
βn(E,P ).

D e f i n i t i o n 3.9. Let u and v be two integers. Define φn(u, v) as the
homogenization of φn(x) evaluated in u and v, which is vn

2
φn(u/v). In the

same way, define ψ2
n(u, v) as the homogenization of ψ2

n(x).

R ema r k 3.10. The sequence ψ2
n(u, v) is the square of an EDSA. This

follows from [4, Exercise III.7.g].

E x amp l e 3.11. Let E be the elliptic curve defined by the equation y2 =
x3 + x. Then, ψ2

2 = 4x3 + 4x and φ2 = x4 − 2x2 + 1. So,

φ2(u, v) = v4φ2

(u
v

)
= v4

[(u
v

)4
− 2

(u
v

)2
+ 1

]
= u4 − 2u2v2 + v4

and

ψ2
2(u, v) = 4v3

[(u
v

)3
+

u

v

]
= 4u3 + 4uv2.

Let P be a non-torsion point in E(Q). There exist two integers u and v so
that

x(P ) =
u

v
with (u, v) = 1 and v > 0

and then

(7) x(nP ) =
φn(x(P ))

ψ2
n(x(P ))

=
vn

2
φn(x(P ))

vn2ψ2
n(x(P ))

=
φn(u, v)

vψ2
n(u, v)

.

For n > 0, define

(8) gn(P ) := gcd(φn(u, v), vψ
2
n(u, v)) > 0.

Moreover, put
g0(P ) = 1.

Observe that, if ν ∈ M0
Q, then

ν(gn(P )) = gn,ν(P )

where gn,ν(P ) is defined in Definition 3.3.
Recall that Bn(E,P ), as defined in the introduction, represents the square

root of the denominator of x(nP ) and that βn(E,P ) = Bn(E,P )/B1(E,P ).
Observe that B2

1(E,P ) = v. So, using (7),

(9) β2
n(E,P ) =

B2
n(E,P )

B2
1(E,P )

=
vψ2

n(u, v)

B2
1(E,P )gn(P )

=
ψ2
n(u, v)

gn(P )
.
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P r o p o s i t i o n 3.12. Let E be an elliptic curve defined by a Weierstrass
equation with integer coefficients. Let P ∈ E(Q) be a non-torsion point. Let
m,n ∈ N. If m is a multiple of M(P ), as defined in Definition 3.2, then

gn+m(P )g|n−m|(P ) = g2n(P )g2m(P ).

P r o o f. If p divides v, then

φk(u, v) ≡ uk
2 �≡ 0 mod p

since φk is monic from Lemma 2.3 and (u, v) = 1. So, ordp(gk(P )) = 0 for
every k ≥ 1. Suppose now that p does not divide v. If ν is the place associated
with p, then ν(x(P )) ≥ 0 and

ordp(gk(P )) = gk,ν(P ).

Therefore, we conclude using Proposition 3.7. □

4 - Proof of Theorem 1.9

Recall that a sequence of integers is an EDSA if it is a sequence as in
Definition A and it is an EDSB if it is a sequence as in Definition B.

Let E be a rational elliptic curve defined by a Weierstrass equation with
integer coefficients and let P ∈ E(Q). Let x(P ) = u/v with u and v coprime
integers. Recall that v is a square and let v1/2 be the positive square root of v.
Define

hn := v
n2−1

2 ψn(x(P ), y(P )),

where ψn is defined in Definition 2.1. This is a sequence of integers. As is
shown in [4, Exercise 3.7.g], the sequence of the hn is an EDSA.

Almost every EDSA is a sequence of the hn for some elliptic curve E and a
point P . Indeed, we have the following theorem, due to Ward.

Th e o r em 4.1 ( [6, Theorem 12.1]). Let {hn}n∈N be a non-singular EDSA
with h2h3 �= 0. So, there exists an elliptic curve E and a point P ∈ E(Q) such
that, if we put x(P ) = u/v with u and v coprime integers and v > 0, then

hn = v
n2−1

2 ψn(x(P ), y(P )).

For a definition of non-singular EDSA, see [6, Section 19].
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Let hn be an EDSA as in the previous theorem and take E and P as in the
theorem. Hence, for (9),

h2n = vn
2−1ψ2

n(x(P )) =
B2

n(E,P )gn(P )

B2
1(E,P )

= β2
n(E,P )gn(P ).

Observe that hn and βn(E,P ) have the same sign and then

hn = βn(E,P )
√
gn(P ).

So, given a non-singular EDSA, every term of the sequence is equal to the term
of the EDSB {βn(E,P )}n∈N, multiplied by

√
gn(P ).

Now, we want to show that every EDSB βn(E,P ) is similar to an EDSA. Re-
call that gn(P ) is defined in Equation (8) and that the sequence {βn(E,P )}n∈N
is defined in Definition B. Observe that gn(P ) is a square thanks to (9).

L emma 4.2. Let E be a rational elliptic curve defined by a Weierstrass
equation with integer coefficients. Let P ∈ E(Q) with x(P ) = u/v for u and v
two coprime integers and with v > 0. Let w =

√
v > 0 and define the sequence

(10) hn = wn2−1ψn(x(P ), y(P )).

Since gn(P ) is a square, define
√
gn(P ) as the positive square root of gn(P ).

Then,

(11) βn(E,P ) =
hn√
gn(P )

.

P r o o f. Observe that

h2n = vn
2−1ψ2

n(x(P )) = ψ2
n(u, v) ∈ Z.

Then, the sequence of the hn is a sequence of integers. Moreover, by definition,
the sign of βn(E,P ) agrees with the sign of hn. Using (9),

h2n
gn(P )

=
ψ2
n(u, v)

gn(P )
=

(Bn(E,P )

B1(E,P )

)2
= β2

n(E,P ).

Taking the square root, we conclude. □

In general, the sequence of the βn is not an EDSA, as we showed in Example
1.6. Recall that, as we said in Definition A, given an EDSA {hn}n∈N, we have

hm+nhn−mh2r = hn+rhn−rh
2
m − hm+rhm−rh

2
n
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for all n ≥ m ≥ r. We will show an EDSB satisfies a subset of these equations.

Now, we are ready to prove Theorem 1.9. Recall that M(P ) is defined in
Definition 3.2.

P r o o f. [Proof of Theorem 1.9] As is shown in [4, Exercise 3.7.g], the se-
quence

ψn := ψn(x(P ), y(P ))

satisfies

ψn+mψn−mψ2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n for all n ≥ m ≥ r.

Therefore, using the definition of hn in Lemma 4.2,

hn+mhn−mh2r =w(n+m)2−1ψn+mw(n−m)2−1ψn−mw2r2−2ψ2
r

=w2n2+2m2+2r2−4(ψn+mψn−mψ2
r )

=w2n2+2m2+2r2−4(ψn+rψn−rψ
2
m − ψm+rψm−rψ

2
n)

=w(n+r)2−1ψn+rw
(n−r)2−1ψn−rw

2m2−2ψ2
m

− w(m+r)2−1ψm+rw
(m−r)2−1ψm−rw

2n2−2ψ2
n

=hn+rhn−rh
2
m − hm+rhm−rh

2
n

for all n ≥ m ≥ r. So, we have

(12) hn+mhn−mh2r = hn+rhn−rh
2
m − hm+rhm−rh

2
n

and then, dividing both sides by gr(P )gn(P )gm(P ) we obtain

hn+mhn−m

gn(P )gm(P )
· h2r
gr(P )

=
hn+rhn−r

gn(P )gr(P )
· h2m
gm(P )

− hm+rhm−r

gm(P )gr(P )
· h2n
gn(P )

.

Define,

Ln,m :=
gm+n(P )gn−m(P )

g2n(P )g2m(P )
.

Using Lemma 4.2, we substitute hn with βn
√
gn(P ) and we obtain

βn+mβn−m

√
Ln,mβ2

r = βn+rβn−rβ
2
m

√
Ln,r − βm+rβm−rβ

2
n

√
Lm,r.

Now, we conclude using Proposition 3.12 since Ln,m = Lm,r = Ln,r = 1. □
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C o r o l l a r y 4.3. Let E be a rational elliptic curve defined by a Weierstrass
equation with integer coefficients. Let P ∈ E(Q) be a non-torsion point that is
non-singular modulo every prime. Then the EDSB {βn(E,P )}n∈N is an EDSA.
In particular, given a non-torsion point P , there exists a multiple Q of P such
that {βn(E,Q)}n∈N is an EDSA.

P r o o f. If P is non-singular modulo every prime, then M(P ) = 1 and
we are done using Theorem 1.9. Observe that the point Q = M(P )P is non-
singular modulo every prime. Hence, the sequence {βn(E,Q)}n∈N is an EDSA,
using the first part of the corollary. □

Rema r k 4.4. The previous corollary is equivalent to Theorem 1.7. Any-
way, the two proofs of this result are completely different. Our theorem is a
generalization since it studies also the case when M(P ) �= 1.

R ema r k 4.5. In general, we cannot replace the constant M(P ) with a
smaller positive integer in Theorem 1.9. We show an example of this fact.

Let E be the elliptic curve defined by the equation y2 = x3+x+6 and take
P = (−1, 2). Consider the EDSB {βn}n∈N = {βn(E,P )}n∈N. The point P is
non-singular modulo every prime except modulo 2. As we showed in Remark
3.8, r(P, 2) = 3 and then M(P ) = 3. Thanks to Theorem 1.9, we know that

(13) βn+mβn−mβ2
r = βn+rβn−rβ

2
m − βm+rβm−rβ

2
n

if at least two of the indexes are multiples of 3. In order to show that we cannot
replace M(P ) with a smaller constant, we just need to show that the equation
does not hold for r = 2, m = 4, and n = 6. Using the definition, we compute
that β2 = 1, β4 = −3, β6 = 8, β8 = −93, and β10 = 463. Hence, Equation (13)
does not holds for these values and then we cannot replace M(P ) with 1 or 2
in Theorem 1.9.

Now, we briefly deal with the problem when P is a torsion point.

C o r o l l a r y 4.6. Let E be a rational elliptic curve defined by a Weierstrass
equation with integer coefficients and let P ∈ E(Q) be a torsion point. Assume
that M(P ) = 1. Consider the EDSB {βn}n∈N = {βn(E,P )}n∈N. For all n ≥
m ≥ r,

βn+mβn−mβ2
r = βn+rβn−rβ

2
m − βm+rβm−rβ

2
n.

P r o o f. Using Proposition 3.4, we have that gn(P ) = 1 for every n ∈ N.
Hence, using (11),

βn = hn.
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As we proved in (12), we have

hn+mhn−mh2r = hn+rhn−rh
2
m − hm+rhm−rh

2
n.

for all n ≥ m ≥ r. Hence, for all n ≥ m ≥ r,

βn+mβn−mβ2
r = βn+rβn−rβ

2
m − βm+rβm−rβ

2
n.

□

If one wants to deal with the problem when P is a torsion point andM(P ) �=
1, then it is necessary to obtain an analogue of Theorem 3.5 in the case when
P is a torsion point.

Now, we briefly deal with the case when E is not defined by a Weierstrass
equation with integer coefficients. Let E be a rational elliptic curve and let P
be a non-torsion point on E(Q). Define βn = βn(E,P ) as in Definition B, i.e.

βn = Sign(ψn(x(P ), y(P ))) · Bn(E,P )

B1(E,P )
.

With Bn(E,P ) we denote the positive square root of the denominator of x(nP ).
As we said before, in general, the sequence βn(E,P ) is not a sequence of inte-
gers. For example, if E is defined by the equation y2 = x3 + 7−4x + 7−6 and
P = (0, 7−3), then β4(E,P ) = −36

√
7. Anyway, we can find an analogue of

Theorem 1.9 even in the case when E is not defined by a Weierstrass equation
with integer coefficients.

P r o p o s i t i o n 4.7. Let E be a rational elliptic curve and let P be a non-
torsion point on E(Q). Define βn = βn(E,P ) as before. There exists a constant
M(P ) such that, if n ≥ m ≥ r are three positive integers such that two of them
are multiples of M(P ), then

βn+mβn−mβ2
r = βn+rβn−rβ

2
m − βm+rβm−rβ

2
n.

P r o o f. It is easy to show that there exists an elliptic curve E′, defined by a
Weierstrass equation with integer coefficients, and an isomorphism ϕ : E′ → E
in the form ϕ(x′, y′) = (x′/u2, y′/u3) for u ∈ Z>0. Let P

′ = ϕ−1(P ). So,

An(E,P )

B2
n(E,P )

= x(nP ) =
x(nP ′)

u2
=

An(E
′, P ′)

u2B2
n(E

′, P ′)

and then

Bn(E,P ) =
uBn(E

′, P ′)√
gcd(An(E′, P ′), u2)

.
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Hence, using the definition of βn, we have

βn(E,P ) = βn(E
′, P ′)

Bn(E,P )

Bn(E′, P ′)

B1(E
′, P ′)

B1(E,P )
(14)

= βn(E
′, P ′)

u√
gcd(An(E′, P ′), u2)

B1(E
′, P ′)

B1(E,P )
.

Put βn = βn(E,P ) and β′
n = βn(E

′, P ′). Since E′ is defined by a Weierstrass
equation with integer coefficients, there is a constant M(P ′) such that if n ≥
m ≥ r are three positive integers such that two of them are multiples of M(P ′),
then

β′
n+mβ′

n−mβ′2
r = β′

n+rβ
′
n−rβ

′2
m − β′

m+rβ
′
m−rβ

′2
n .

This follows from Theorem 1.9.

Let nu be the smallest positive index such that Bnu(E
′, P ′) ≡ 0 mod u.

Let k and j be two positive integers. Observe that

gcd
(
Ak(E

′, P ′), u2
)
= gcd

(
Aj(E

′, P ′), u2
)

if k ≡ j mod nu or k ≡ −j mod nu. This follows easily form the fact that
x(kP ′) = x(−kP ′) and from the explicit formula to compute the abscissa of
the sum of two points.

Let ck be such that βk = ckβ
′
k, that can be computed using (14). For the

previous observation we have ck = cj if k ≡ j mod nu or k ≡ −j mod nu.
Put

M(P ) = lcm(M(P ′), nu).

Let n ≥ m ≥ r and assume that n and m are both multiples of M(P ). Then, by
definition, M(P ) is a multiple of M(P ′) and it is a multiple of nu. Therefore,
cnu = cn = cm = cm±n and cr = cm±r = cn±r. Moreover since M(P ) is a
multiple of M(P ′), we have

β′
n+mβ′

n−mβ′2
r = β′

n+rβ
′
n−rβ

′2
m − β′

m+rβ
′
m−rβ

′2
n .

Hence,

βn+mβn−mβ2
r = cn+mcn−mc2rβ

′
n+mβ′

n−mβ′2
r

= c2nu
c2rβ

′
n+rβ

′
n−rβ

′2
m − c2nu

c2rβ
′
m+rβ

′
m−rβ

′2
n

= c2mcn+rcn−rβ
′
n+rβ

′
n−rβ

′2
m − c2ncm+rcm−rβ

′
m+rβ

′
m−rβ

′2
n

= βn+rβn−rβ
2
m − βm+rβm−rβ

2
n.
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The cases when n and r are both multiples of M(P ) or when r and m are both
multiples of M(P ) are identical. So, we have

βn+mβn−mβ2
r = βn+rβn−rβ

2
m − βm+rβm−rβ

2
n

and we are done. □
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