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Lacunary polynomial compositions

Abstract. This work is a study of polynomial compositions having a
fixed number of terms. We outline a recursive method to describe these
characterizations, give some particular results and discuss the general
case. In the final sections, some applications to Universal Hilbert Sets
generated by closed forms of linear recurrence relations and to integer
perfect powers having few digits in their representation in a given scale
x ≥ 2 are provided.
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Introduction

A lacunary polynomial (also called sparse polynomial) is a polynomial where
the number of terms is assumed fixed, with no control on the value of the
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degrees and coefficients of said terms. For instance, we may write g(X) =
a1X

l1 + · · ·+ akX
lk for a lacunary polynomial with at most k different terms,

where k is fixed and a1, . . . , ak and l1, . . . , lk can be taken with no restriction.
This assumption on the number of terms of a polynomial is equivalent to a
bound on the polynomial’s complexity. For instance, a non-constant monomial
only admits one root (that is, zero), while the set of roots of a given polynomial
having exactly two terms has a very simple structure, since these roots can only
differ by some nth roots of unit.

This focus on the number of terms of a polynomial rather than the values of
these terms or their degree, naturally brings some open questions, regarding in
particular the behaviour of these polynomials under composition. For instance,
Erdős and Rényi independently conjectured (see [5], [11]) the existence of a
bound for the number of terms of the square of a given polynomial having a fixed
number k of terms, depending only on k. Later, this was proved by Schinzel
(see [14]) in a more general setting, providing a lower bound for the number of
terms of a lacunary power P (T )d, where P (T ) is a lacunary polynomial. In the
same work, he further conjectured that a bound could be found for the number
of terms of the polynomial composition f(g(X)), depending on the number of
terms of both polynomials involved. Schinzel’s conjecture has then been proved
by Zannier ( [17]), developing completely different methods from those used by
Schinzel.

In this work, we will further extend this setting by studying lacunary poly-
nomials obtained as composition of a Laurent polynomial g(X1, . . . , Xσ) in
σ ≥ 1 indeterminates, with a classic univariate polynomial f(T ). Our motiva-
tion stems from some applications of this question in some arithmetic contexts.
For this purpose, after an overview on this problem, we will focus on some
special cases, according to our needs. The general Question is the following:

Qu e s t i o n 1. Let σ ≥ 1 and ρ ≥ 0 be integers, let g(X1, . . . , Xσ) ∈
C[X±1

1 , . . . , X±1
σ ] be a Laurent polynomial in the indeterminates X = (X1, . . . ,

Xσ), and let f(T ) ∈ C[T ], which we can assume monic without loss of general-
ity.
Determine for which polynomials f and g the identity

(1) f(g(X)) = a1X
l1
1 + . . .+ aσX

lσ
σ + aσ+1T1(X) + . . .+ aσ+ρTρ(X)

holds, for l1, . . . , lσ positive integers, a1, . . . , aσ+ρ ∈ C and T1, . . . , Tρ ∈ C[X±1
1 ,

. . . , X±1
σ ] monomials in X1, . . . , Xσ.

Notice that, while this formulation may appear very specific at first sight, it
is actually quite generic. In order to see this, consider a polynomial composition
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of the form

f(g(X1, . . . , Xσ)) = a1T1(X1, . . . , Xσ) + . . .+ akTk(X1, . . . , Xσ),

where T1, . . . , Tk are monomials inX1, . . . , Xσ. Among those monomials, we can
choose a setM of multiplicative independent terms with maximal cardinality σ,
and then choose a new set of indeterminates Y1, . . . , Yσ such that each element
of M becomes a power Y li

i , where the exponents li are chosen so that all
exponents of the original composition are still in Z. With this substitution, it
is very easy to check that a generic polynomial composition can be associated
to an identity of the form (1).

We study some particular cases of this question, starting with lacunary
polynomial powers (f(T ) = Tm, Section 1) and then, leveraging the results
obtained, we will investigate the general case, considering polynomial compo-
sitions with few monomials Ti(X1, . . . , Xσ) (solving the cases ρ ∈ 1, 2, Section
3). This choice is motivated by an application to a question concerning closed
forms of linear recurrence relations and Universal Hilbert Sets, which we will
first describe in Section 2. Also, in the Appendix, we provide a brief applica-
tion of our results on lacunary polynomial powers to perfect powers having few
non-zero digits in their representation in a fixed scale, coming from a work of
Corvaja and Zannier ([2]).

1 - Polynomial powers with few terms

Consider a lacunary polynomial power P (T )d having exactly k non-zero
terms. We can assume without loss of generality that the term of degree zero
is 1, i.e.

P (T )d = 1 +
k−1∑
i=1

ξiT
li .

The following remark will allow us to make some further assumptions in our
study.

R ema r k 2. 1) If P (T )d = 1 +
k−1∑
i=1

ξiT
li, take the polynomial Q(T ) =

d

√
1

ξk−1
T lk−1P (T−1). Then Q(T )d = 1+

(
k−2∑
i=1

ξi
ξk−1

T lk−1−li

)
+ 1

ξk−1
T lk−1.

Rearranging the indices appearing in this equation in a way such that
the exponents of Q(T )d are in increasing order, we see that the

⌈
k−1
2

⌉
th

exponent of Q(T )d is lk−1− lk−1−� k−1
2

� ≥ lk−1− l� k−1
2

�; thus, by swapping
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P (T ) with Q(T ), we can first assume that l� k−1
2

� ≥
lk−1

2 , and then deduce

the remaining cases using the relation between P (T ) and Q(T ).

2) Assume that P (T ) = 1 +

degP (T )∑
i=l1

aiT
i contains at least one term whose

degree is not a multiple of l1, and let r be the smallest such degree. Then
P (T )d has a term of degree r, that is, r ∈ {l2, . . . , lk−1}.

The first step of our study consists in limiting the value of d in function
of the number of terms of the power P (T )d. The next result can be deduced
from known Theorems of Zannier and Schinzel ( [14], [15]); we include here an
elementary proof.

P r o p o s i t i o n 3. Let d ≥ 2 and k ≥ 2 be integers, and let ξ1, . . . , ξk−1 ∈
C \ {0} and l1 < l2 < · · · < lk−1 be positive integers. Consider a polynomial

P (T ) ∈ C[T ] such that P (T )d = 1 +

k−1∑
i=1

ξiT
li. Then d ≤ k − 1, and moreover,

if d = k − 1, then P (T ) = 1 + ξ1
d T

l1.

P r o o f . Clearly, all root multiplicities of P (T )d are divisible by d. Take a
root α of P (T )d, and let λd be its multiplicity. Then, using the substitution

Q(T ) = P (T )d, we have that all derivatives Q(α) = djQ
dT j vanish for every

j = 1, . . . , λd− 1. On the other hand

djQ

dT j
=

k−1∑
i=1

ξili(li − 1) . . . (li − j + 1)T li−j .

Thus, the condition djQ
dT j = 0 for every j = 1, . . . , λd − 1 can be naturally

translated in a system consisting of λd − 1 equations. By multiplying the ith
equation by T i (remember that P (0) �= 0) we obtain the equivalent system




k−1∑
i=1

ξiliT
li = 0,

k−1∑
i=1

ξili(li − 1)T li = 0,

. . .
k−1∑
i=1

ξili(li − 1) . . . (li − λd+ 2)T li = 0.

.
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At this stage, a solution of this system induces a solution of the associated linear
system over Ck in the indeterminates T l1 , . . . , T lk−1 , and the matrix associated
to this linear system can be easily reduced to a Vandermonde matrix, whose
determinant is non-vanishing: then, if λd > k − 1, this linear system admits
only the trivial solution T l1 = · · · = T lk−1 = 0, which is not admissible since
P (0) �= 0; therefore d ≤ k − 1.

Furthermore, arguing in the same way, if d = k − 1 we have λ = 1, hence
all roots of Q(T ) have multiplicity d and all roots of P (T ) are simple. More-
over, every solution of the linear system obtained from the vanishing condition
on derivatives has the form µ(αl1 , . . . , αlk−1), with µ ∈ C. Consider a root
β of P (T ) distinct from α, there exists µ ∈ C such that (βl1 , . . . , βlk−1) =

µ(αl1 , . . . , αlk−1). Therefore, since Q(α) = 0, clearly 1 = −
k−1∑
i=1

ξiα
li , while on

the other hand Q(β) = 0 yields 0 = 1 + µ

(
k−1∑
i=1

ξiα
li

)
= 1− µ, that is, µ = 1.

Then βli = αli for every i = 1, . . . , k− 1, implying that there exists a mth root
of unity ζ such that β = ζα, where m is such that m|li for every i = 1, . . . , k−1.
Then we obtain that P (T ) has at most l1 roots. Thus, since those roots are all
simple, it easily follows that m = l1 = degP (T ). The remaining claims follow
immediately.

Another tool we need is a generalization of the Vandermonde’s identity.
Remember that, for a real number r ∈ R that is not a negative integer, and for
n ∈ N, the binomial coefficient

(
r
n

)
is defined as(

r
n

)
:= r(r−1)(r−2)...(r−n+1)

n! , and is such that the Binomial Theorem expansion

(1 + x)r = 1 +

+∞∑
i=1

(
r

i

)
xi holds. Then, by expanding the right side of the

identity (1 + x) = (1 + x)
1
d . . . (1 + x)

1
d , and noticing that all terms of degree

greater than 1 of the expansion must vanish, we obtain the following lemma.

L emma 4. Let d and n be integers greater than 1. Then

∑
x1+···+xd=n

(
1/d

x1

)(
1/d

x2

)
. . .

(
1/d

xd

)
= 0.

Leveraging these preliminary results, we can prove the main result of this
Section, that is, a characterization for complex polynomials P (T ) ∈ C[T ] having
at most five terms.
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P r o p o s i t i o n 5. Let d ≥ 2 and k ≤ 5 be positive integers, and let
ξ1, . . . , ξk−1 ∈ C\{0} and l1 < l2 < · · · < lk−1 be positive integers. Assume that

P (T ) ∈ C[T ] is a complex polynomial such that P (T )d = 1 +
k−1∑
i=1

ξiT
li. Then

the following tables describe the admissible values for coefficients and exponents
of P (T ) and P (T )d.

1) If k = 5:

d l2 l3 l4 ξ2 ξ3 ξ4 P (T )

4 2l1 3l1 4l1
3
8ξ

2
1

1
16ξ

3
1

1
256ξ

3
1 1 + 1

4ξ1T
l1

3 3l1 5l1 6l1 − 5
27ξ

3
1

1
81ξ

5
1 − 1

729ξ
6
1 1 + 1

3ξ1T
l1 − 1

9ξ
2
1T

2l1

2 4l1 5l1 6l1
5
64ξ

4
1 − 1

64ξ
5
1

1
256ξ

6
1 1 + 1

2ξ1T
l1 − 1

8ξ
2
1T

2l1 + 1
16ξ

3
1T

3l1

2 3l1 5l1 6l1 − 5
32ξ

4
1

1
256ξ

5
1

19
1024ξ

6
1 1 + 1

2ξ1T
l1 − 1

8ξ
2
1T

2l1 − 1
64ξ

3
1T

3l1

2 4l1 7l1 8l1
7
64ξ

4
1 − 1

512ξ
7
1

1
4096ξ

8
1 1 + 1

2ξ1T
l1 − 1

8ξ
2
1T

2l1 + 1
16ξ

3
1T

3l1 + 1
64ξ

4
1T

4l1

2 2l1 5l1 6l1
5
4ξ

2
1 −1

4ξ
5
1

1
16ξ

6
1 1 + 1

2ξ1T
l1 + 1

2ξ
2
1T

2l1 − 1
4ξ

3
1T

3l1

Table 1

d l2 l3 l4 ξ2 ξ3 ξ4 P (T )

2 2l1 3l1 4l1 −1
8ξ

3
1 +

1
2ξ1ξ2

(
−1

8ξ
2
1 +

1
2ξ2

)2
1 + 1

2ξ1T
l1 +

(
1
2ξ2 −

1
8ξ

2
1

)
T 2l1

Table 2

2) If k = 4:

d l2 l3 ξ2 ξ3 P (T )

2 3l1 4l1 −1
8ξ

3
1 − 1

64ξ
4
1 1 + 1

2ξ1T
l1 − 1

8ξ
2
1T

2l1

3 2l1 3l1
1
3ξ

2
1

1
27ξ

3
1 1 + 1

3ξ1T
l1

Table 3

3) If k = 3:
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d l2 ξ2 P (T )

2 2l1
1
4ξ

2
1 1 + 1

2ξ1T
l1

Table 4

P r o o f . The last two items are a reformulation of ( [2, Lemma 2.1]).
Assume k = 5. By Proposition 3 we have d ≤ 4. Hence we have to study

the three cases d = 2, 3, 4: in each case, we will focus on determining P (T ), and
then the parameters can be deduced from the expansion of P (T )d. Moreover,
thanks to Remark 2, we can assume that l2 ≥ l4

2 first, and then deduce the
remaining solutions.
d = 4 . By Proposition 3 we immediately obtain P (T ) = 1 + 1

4ξ1T
l1 .

d = 3 . Since degP (T ) = l4
3 < l4

2 ≤ l2, from the second part of Remark 2
it follows that there exist m ≥ 1, positive integers 1 = σ1 < σ2 < · · · < σm

and α1, . . . , αm ∈ C \ {0} such that P (T ) = 1 +

m∑
i=1

αiT
σil1 . Taking ρ(T ) =

ξ1 + ξ2T
l2−l1 + ξ3T

l3−l1 + ξ4T
l4−l1 and comparing the terms of degree σil1 of

P (T ) with those of the binomial expansion

(1 + T l1ρ(T ))
1
3 = 1 +

+∞∑
i=1

(
1/3

i

)
T il1ρ(T )i,

we have αi =
(
1/3
σi

)
ξσi
1 .

Let r be the smallest positive integer such that P (T ) has no term of degree
rl1 (clearly rl1 ≤ l4

3 + l1). From the minimality of r we can deduce that the
coefficient of degree rl1 of P (T )3 is equal to






p+q+s=r∑
p,q,s∈N

(
1/3

p

)(
1/3

q

)(
1/3

s

)
− 3

(
1/3

r

)
 ξr1,

which is non-zero by Lemma 4. Therefore rl1 ≥ l2 ≥ l4
2 , which implies l4

2 ≤
l4
3 + l1 and l4 ≤ 6l1. Hence degP (T ) ≤ 2l1, and since P (T ) must contain
at least three different terms (since otherwise P (T )3 would have at most four
terms), then P (T ) = 1 + 1

3ξ1T
l1 − 1

9ξ
2
1T

2l1 .

d = 2 . We have degP (T ) = l4
2 ≤ l2; let us distinguish two cases.

• l2 > degP (T ) . Arguing as in the case d = 3, we can infer that P (T ) =

1+
m∑
i=1

αiT
σil1 , with αi =

(
1/2
σi

)
ξσi
1 ; actually l1| gcd(l2, l3, l4) and l1| l42 , and
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moreover, since P (T ) has at least three terms whose degree is lower than
l2, we must have l2 ≥ 3l1 and l4 ≥ 6l1.

Now, let r be the smallest positive integer such that P (T ) has no term of
degree rl1. Then, as before, we easily obtain that rl1 ≥ l2 >

l4
2 . Therefore

m = l4
2l1

≥ 3 and P (T ) = 1 +
m∑
i=1

αiT
ili , with αi =

(
1/2
i

)
ξi1.

In this setting, P (T )2 has terms of degree 0, l1, l4, l4 − l1. Moreover, the
term of degree l4

2 + l1 of P (T )2 is equal to
[(

m+1∑
i∈N

(
1/2

i

)(
1/2

m+ 1− i

))
− 2

(
1/2

m+ 1

)]
ξm+1
1 ,

which is non-zero by Lemma 4, and the term of degree l4 − 2l1 of P (T )2

is (
2

(
1/2

m

)(
1/2

m− 2

)
+

(
1/2

m− 1

)2
)
ξ2m−2
1 ,

which is again non-zero because
(
1/2
m

)
and

(
1/2
m−2

)
have the same sign (no-

tice that m ≥ 3).

Hence, two integers belonging to the set {0, l1, l42 + l1, l4 − 2l1, l4 − l1, l4}
must coincide. It is simple to show that the only possible equality is
l4
2 + l1 = l4 − 2l1, which yields l4 = 6l1, m = 3 and P (T ) = 1 + 1

2ξ1T
l1 −

1
8ξ

2
1T

2l1 + 1
16ξ

3
1T

3l1 .

• l2 = degP (T ) . Again, following the proof of the case d = 3, we can

deduce that P (T ) is a finite subsum of the infinite sum 1+

(
+∞∑
i=1

αiT
il1

)
+

1

2
ξ2T

l2 , with αi =
(
1/2
i

)
ξi1.

First, assume that l1 is not a divisor of l2. Then, if σml1 is the greatest
degree multiple of l1 among the terms of P (T ), P (T )2 must have terms
of degree 2l2, l2 + σml1, 2σml1, l2, l1, 0 (which are all pairwise distinct),
contradicting our hypotheses. Then l1|l2.
Next, consider the smallest positive integer r such that P (T ) has no
term of degree rl1: arguing as above, we can easily obtain that rl1 ≥ l2.
Moreover, since degP (T ) = l2, by studying the term of degree l2 of the
expansion of P (T )2 we obtain

P (T ) = 1 +

(
m∑
i=1

αiT
il1

)
+

1

2
ξ2T

l2 , m =
l4
2l1

, αi =

(
1/2

i

)
ξi1.
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Therefore, it is straightforward to see that P (T )2 has non-zero terms of
degrees 0, l1, l2, 2l2 − l1, 2l2 (which are all pairwise distinct): thus, these
must be the only terms of P (T )2.

At this point, we will reach a contradiction by considering the terms of
degree l2+ l1 and 2l2−2l1 obtained expanding the square P (T )2. In fact:

– The coefficient of the term of degree l2+l1 is equal to −2
(
1/2
m+1

)
ξm+1
1 +

1
2ξ1ξ2, according to Lemma 4.

– The coefficient of the term of degree 2l2 − 2l1 is

[
2

(
1/2

m

)(
1/2

m− 2

)
+

(
1/2

m− 1

)2
]
ξ2m+2
1 +

(
1/2

m− 2

)
ξm−2
1 ξ2.

Clearly, if one of those coefficients is non-zero, the associated degree must
be among the ones listed before. Thus we have two possible cases:

1) If at least one of those coefficients is non-zero, then the associated
degree must belong to {0, l1, l2, 2l2 − l1, 2l2}. It is trivial to check
that if the associated degree is l1+ l2, we must have l1+ l2 = 2l2− l1,
while if this degree is 2l2 − 2l1 then we must have 2l2 − 2l1 = l2;
in both cases we deduce from the equality that l2 = 2l1, that is,
P (T ) = 1 + 1

2ξ1T
l1 +

(
1
2ξ2 −

1
8ξ

2
1

)
T 2l1 .

2) If both coefficients are non-zero, we can solve for ξ2 in one of the
two equations, and then, substituting in the other one, we obtain

ξ2 = 4

(
1/2

m+ 1

)
ξml1
1 and

4

(
1/2

m+ 1

)
= −2

(
1/2

m

)
−

(
1/2

m− 1

) 1
2 −m+ 2

m− 1
,

or equivalently, that

4
(
1
2 −m+ 1

) (
1
2 −m

)
m(m+ 1)

= −
2
(
1
2 −m+ 1

)
m

−
1
2 −m+ 2

m− 1
.

This is a cubic equation in m, whose roots are 1
2 , 3, 4. Then, in this

case we have the two solutions:

– m = 3, ξ2 = 4
(
1/2
4

)
ξ3l11 and P (T ) = 1 + 1

2ξ1T
l1 − 1

8ξ
2
1T

2l1 −
1
64ξ

3
1T

3l1 .

– m = 4, ξ2 = 4
(
1/2
5

)
ξ4l11 P (T ) = 1+ 1

2ξ1T
l1 − 1

8ξ
2
1T

2l1 + 1
16ξ

3
1T

3l1 +
1
64ξ

4
1T

4l1 .
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The previous cases describe all polynomials P (T ) whose power has five terms,
and such that l2 ≥ l4

2 . Then, we only have to study the case l2 < l4
2 . For

that purpose, thanks to Remark 2 we know that there is a polynomial Q(T ),
associated to P (T ) and such that Q(T )d = 1 + ξ′1T

l′1 + ξ′2T
l′2 + ξ′3T

l′3 + ξ′4T
l′4 ,

with l′2 >
l′4
2 . Therefore, Q(T ) must be one of the solutions obtained in the

previous cases; however, there is only one solution satisfying l′2 >
l′4
2 , that is,

Q(T ) = 1 + 1
2ξ

′
1T

l′1 − 1
8ξ

′2
1 T

2l′1 + 1
16ξ

′3
1 T

3l′1 , which yields P (T ) = 1 + 1
2ξ1T

l1 +
1
2ξ

2
1T

2l1 − 1
4ξ

3
1T

3l1 , thus concluding our proof.

2 - Closed forms of linear recursions and Universal Hilbert Sets

Let A ⊆ C be a ring. Denote by EA the ring of complex functions defined

over N of the form α(n) =
k∑

i=1

ciα
n
i , with k ≥ 2, c1, . . . , ck ∈ Q and α1, . . . , αk ∈

A. In this work, A will usually be either Z or Q; in these cases, we further
denote by E+

A the subring formed by functions having only positive roots αi.
These functions are closed forms for linear recurrence relations of order k having
only simple roots, and the behaviour of these functions under composition and
exponentiation is the main subject of several papers (see [4,6,16]). Our interest
in this topic stems from the characterization presented in [4], which in turn
was motivated by a question posed by Yasumoto in [16], asking whether the
set {2n + 3n} is a Universal Hilbert Set, that is, a set H such that for every
polynomial P (X,Y ) ∈ Q[X,Y ] irreducible over Q, the specialized polynomial
P (h, Y ) ∈ Q[Y ] is irreducible for every h ∈ H, except at most for a finite set
of values.

Our work is based on the following characterization proved by Corvaja and
Zannier.

T h e o r em 6 ([4, Theorem 4]). For α ∈ E+
Z , the following conditions are

equivalent:

i) α(N) is a Universal Hilbert Set;

ii) there exist no integer d ≥ 2, a polynomial P (X) ∈ Q[X] of degree d and
an element β ∈ EZ such that α′ = P (β), where α′(n) = α(dn).

This result allowed the authors to prove a generalization of Yasumoto’s
question.

C o r o l l a r y 7 ([4, Corollary 3]). Let α(n) =

k∑
i=1

ciα
n
i ∈ E+

Z be such that
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α1, . . . , αn ∈ Z+ are multiplicatively independent. Then the set α(N) is a Uni-
versal Hilbert Set.

Write α(n) =
∑k

i=1 ciα
n
i ∈ E+

Z , and assume that α(N) is not a Universal
Hilbert Set. Therefore, by the previous result there must exist a polynomial
P (T ) ∈ Q[T ] of degree d and β(n) =

∑h
j=1 fjβ

n
j ∈ EZ such that α′ = P (β),

where α′(n) = α(dn), thus obtaining an identity of the form

(2) P (β) =
k∑

i=1

ciα
dn
i =

k∑
i=1

ci(α
d
i )

n.

We can choose among the integers β1, . . . , βh a subset of multiplicatively
independent integers with maximal cardinality σ ≥ 1, which we can rename
for simplicity {β1, . . . , βσ}. Then, the maximality condition guarantees that if
we add another element βσ+1 to this subset, the elements of the new set will
not be multiplicatively independent, and must therefore satisfy a relation of

the form

σ+1∏
i=1

βmi
i = 1 for some suitable integers m1, . . . ,mσ+1 ∈ Z. Repeating

these steps for all other elements βσ+1, . . . , βh we obtain a set of equations of
the form

(3) βmii
i = βmi1

1 βmi2
2 . . . βmiσ

σ

for i = σ + 1, . . . , h, and mi1, . . . ,miσ,mii ∈ Z.
On the other hand, from identity (2), we obtain that each element of the

form αd
i must be a term of the expansion of P (β), and can be thus expressed

as a monomial in β1, . . . , βh, which, in light of (3), is actually a monomial in
β1, . . . , βσ, yielding something of the form

(4) αd
i = βvi1

1 βvi2
2 . . . βviσ

σ ,

for i = 1, . . . , k, and vi1, . . . , viσ ∈ Q.

In order to turn (2) in a polynomial identity, we can send the term associated
to each element of our subset {β1, . . . , βσ} to a power (βj)

n �→ Y
rj
j . Hence, we

can deduce from (3) and (4) the image (βi)
mii �→ Ti(Y1, . . . , Yσ), and that

there exists M ∈ Z+ such that (αd
i )

M has integer exponents in the terms of
equation (4), and hence [(αd

i )
M ]n �→ Ri(Y1, . . . , Yσ) (notice that the exponents

of the monomials Ti and Ri might be negative). Next, we choose integers rj
such that we can pick monomials T̃i(Y1, . . . , Yσ) and R̃i(Y1, . . . , Yσ) satisfying
T̃i(Y1, . . . , Yσ)

mii = Ti(Y1, . . . , Yσ) and R̃i(Y1, . . . , Yσ)
M = Ri(Y1, . . . , Yσ), thus

obtaining (βi)
n �→ T̃i(Y1, . . . , Yσ) and (αd

i )
n �→ R̃i(Y1, . . . , Yσ).
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Using the described map, β(n) becomes a certain polynomial G(Y1, . . . , Yσ),
while identity (2) yields a polynomial composition

P (G(Y1, . . . , Yσ)) =
k∑

i=1

ciR̃i(Y1, . . . , Yσ).

Clearly, we can choose a set M of multiplicative independent monomials
with maximal cardinality σ, and map these monomials to a set of indetermi-
nates Y1, . . . , Yσ such that each element of M becomes a power Y li

i , where the
exponents li are chosen so that all exponents of our composition are still in Z.
With this change of variables, we can easily see that this problem actually asks
for solutions of our main question.

Let k = σ+ρ be the number of terms of the composition f(g(X1, . . . , Xσ)).
In the context given by Question 1, Corollary 7 deals with the case ρ = 0; thus,
in order to extend their result, we have to study Question 1 for fixed (small)
values of ρ.

Also, it is worth noticing that all invariants related to our study are depend-
ing only on the cardinality σ of the set of multiplicatively independent elements
chosen. Thus, in some steps, we can pick a suitable set (with the same car-
dinality) of elements without losing information. Therefore in our results we
will only list a subset of solutions such that any other solution can be obtained
with an appropriate change of variables (dictated by the set of multiplicatively
independent elements used).

3 - Small values of ρ

Here, we will investigate the equation

(1) f(g(X)) = a1X
l1
1 + . . .+ aσX

lσ
σ + aσ+1T1(X) + . . .+ aσ+ρTρ(X)

for small values of ρ.

R ema r k 8. The only solution of equation (∗) for ρ = 0 is σ = 1, f(T ) =
T s, g(X1) = cXa

1 , since a solution with ρ = 0 and σ > 1 would produce a
counterexample to Corollary 7.

Take a polynomial composition f(g(X1, . . . , Xσ)) with at least σ + 1 terms
(i.e. ρ ≥ 1). This composition must include some monomials T (X1, . . . , Xσ).
We focus on the case where there are few such monomials.

Our approach is recursive. Starting from the equation

(*) f(g(X)) = a1X
l1
1 + · · ·+ aσX

lσ
σ + aσ+1T1(X1, . . . , Xσ) + . . .

+ aσ+ρTρ(X1, . . . , Xσ)
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for a fixed value of ρ, we look for a specialization for one variable, say, Xσ, as
a function of the others, such that equation (∗) is reduced to the equation

(**) f(g̃(X)) = a1X
l1
1 + · · ·+ aσ′X

lσ′
σ′ + aσ′+1T1(X1, . . . , Xσ′) + . . .

+ aσ′+ρ′Tρ′(X1, . . . , Xσ′)

where both parameters σ′ and ρ′ are strictly lower than σ and ρ. Thus, assuming
that equation (∗∗) has already been solved for all values of ρ′ up to ρ − 1, we
can deduce from that solution the polynomials f(T ) and g̃(X1, . . . , Xσ′), and
deduce the value of σ from σ′, ρ′ and our specialization. With this information
we try to deduce the inner polynomial g(X1, . . . , Xσ), solving our equation.

We use this approach to deal with the cases ρ = 1, 2.

P r o p o s i t i o n 9. Let σ ≥ 1 be an integer, g(X1, . . . , Xσ) ∈ C[X±1
1 , . . . ,

X±1
σ ] be a Laurent polynomial in the indeterminates X = (X1, . . . , Xσ), and

let f(T ) ∈ C[T ] be such that

f(g(X)) = a1X
l1
1 + · · ·+ aσX

lσ
σ + aσ+1T1(X),

with l1, . . . , lσ positive integers, a1, . . . , aσ+1 ∈ C and T1 ∈ C[X±1
1 , . . . , X±1

σ ]
monomial in X1, . . . , Xσ.

Then, up to a suitable change of variables, we have one of the following:

1) σ = 1, f(T ) = Tm1 + cTm2, g(X1) = S
√
a1X

r
1 , with m1r = l1, m2r = l2,

c = a2a
−m2

m1
1 .

2) σ = 2, f(T ) = T 2, g(X1, X2) =
√
a1X

l1
2
1 +

√
a2X

l2
2
2 .

P r o o f . First, assume that σ = 1, that is, f(g(X1)) = a1X
l1
1 + a2X

l2
1 .

Let D1, D2, d1 be respectively, the maximum, second maximum and minimum
degree of the polynomial g. Similarly, let m1 and m2 be, respectively, the
maximum and minimum degree of f (hence D1 ≥ D2 ≥ d1 and m1 ≥ m2). We
can expand f(g(X1)) as

f(g(X1)) =
∑
j∈If

fj


∑

i∈Ig

giX
i
1




j

,

and the expansion on the right has only one term for each of the degrees m1D1,
(m1− 1)D1+D2 and m2d1 (or m1d1 if d1 < 0); thus, at least two among those
degrees must coincide. However, we can easily show that this can happen only
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if D1 = D2 = d1, that is, if g(X1) is a monomial bXr
1 , and f(T ) = Tm1 + cTm2 .

Thus, we obtain b = s
√
a1 and m1r = l1,m2r = l2, c2b

s = a2.

Assume then σ > 1, and write T1(X1, . . . , Xσ) = Xv1
1 . . . Xvσ

σ . We look for
a specialization, depending on the values of vi:

1) If there is an index i such that li �= vi, hence, assuming that this index is
σ, we impose the identity aσX

lσ
σ = −aσ+1T1(X1, . . . , Xσ). Since lσ �= vσ,

this equation yields a specialization of the form Xσ = T̃ (X1, . . . , Xσ−1)
(where we can assume that the exponents of T̃ are integers, up to changing
the variables Xi with some suitable roots).

2) If li = vi for every i = 1, . . . , σ, then the change of variables Yi = X li
i

maps the equation in

f(g(Y1, . . . , Yσ)) = a1Y1 + · · ·+ aσYσ + aσ+1Y1 . . . Yσ.

In this case, we choose Yσ = 0.

In both cases, the specialization is such that the original equation is reduced
to the identity

f(g̃(X1, . . . , Xσ−1)) = a1X
l1
1 + · · ·+ aσ−1X

lσ−1

σ−1 .

Then, from Remark 8 it follows that σ − 1 = 1, f(T ) = T s and g̃(X1) = bXr
1 .

Hence,

f(g(X1, X2)) = g(X1, X2)
s = a1X

l1
1 + a2X

l2
2 + a3T1(X1, X2).

Define a function ϕ : C[X1, X2] → C[T ], depending on T1(X1, X2), defined
by the images of the two indeterminates ϕ(X1) = Tm1 and ϕ(X2) = Tm2 , such
that all terms involved in the expansion of g(X1, X2)

s are mapped to different
terms. Hence, with this mapping, the previous equation becomes

P (T )s = a1T
ω1 + a2T

ω2 + a3T
ω3 .

It has been proved (see Proposition 5, or [2, Lemma 2.1]) that the only
solution of this equation is s = 2 and P (T ) is a binomial. Therefore, g(X1, X2)
is also a binomial, where the two terms are multiplicatively independent, and
there is no cancellation in the expansion of g(X1, X2)

2. Hence, it suffice to
apply a suitable change of variables such that those two multiplicatively inde-
pendent terms become powers of the two indeterminates X1 and X2 (with a

slight notation abuse) to conclude that g(X1, X2) =
√
a1X

l1
2
1 +

√
a2X

l2
2
2 .
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P r o p o s i t i o n 10. Let σ ≥ 2 be an integer, g(X1, . . . , Xσ) ∈ C[X±1
1 , . . . ,

X±1
σ ] a Laurent polynomial in the indeterminates X = (X1, . . . , Xσ), and let

f(T ) ∈ C[T ] be such that

(*) f(g(X)) = a1X
l1
1 + · · ·+ aσX

lσ
σ + aσ+1T1(X) + aσ+2T2(X),

with l1, . . . , lσ positive integers, a1, . . . , aσ+2 ∈ C and T1, T2 ∈ C[X±1
1 , . . . , X±1

σ ]
distinct monomials in X1, . . . , Xσ.

Then, up to a suitable change of variables, we have one of the following:

1) σ = 2, g(X1, X2) = 3
√
a1X

l1
3
1 + 3

√
a2X

l2
3
2 , f(T ) = T 3.

2) σ = 2, g(X1, X2) =
√
a1X

l1
2
1 +

√
a2X

l2
2
2 + i 4

√
4a1a2X

l1
4
1 X

l2
4
2 , f(T ) = T 2.

P r o o f . First, we can assume, up to a rearrangement, that the indetermi-
nate Xσ appears in T1 and T2 with different exponents (not necessarily non-
zero), that is, there exist integers mσ1 �= mσ2 such that T1 = Xmσ1

σ T̃1 and
T2 = Xmσ2

σ T̃2, with T̃1, T̃2 monomials not containing Xσ. Hence, if we impose
that aσ+1X

mσ1
σ T̃1 = −aσ+2X

mσ2
σ T̃2 and solve for Xσ, we obtain a specializa-

tion Xσ = ãT̃ , where T̃ is a monomial in X1, . . . , Xσ−1 with rational exponents.
However, we can assume without loss of generality (by changing X1, . . . , Xσ−1

with some suitable roots) that these exponents are integers, i.e. T̃ is a Laurent
monomial in X1, . . . , Xσ−1.

With this specialization, we can turn equation (∗) in another equation

(**) f(g̃(X)) = a1X
l1
1 + · · ·+ aσ−1X

lσ−1

σ−1 + aσã
lσ T̃ lσ

in at most σ− 1 indeterminates, where g̃(X1, . . . , Xσ−1) = g(X1, . . . , Xσ−1, T̃ ),
and such that ρ′ ≤ 1 (notice that T̃ might coincide with one of the monomials
X li

i ). We are now in the hypotheses of Remark 8 and Proposition 9, hence we
have the following cases:

1) If T̃ lσ = X li
i for some i and aσã

lσ = −ai, then these two terms cancel
out. Thus we fall in the case considered in Remark 8, yielding σ− 2 = 1,
f(T ) = T s. Then, equation (∗) becomes

(E1) g(X)s = a1X
l1
1 + a2X

l2
2 + a3X

l3
3

+ a4T1(X1, X2, X3) + a5T2(X1, X2, X3).

2) If T̃ lσ = X li
i for some i and aσã

lσ �= −ai, then these two terms can be
merged in a single non-zero term. Then, again by Remark 8 we deduce
that σ − 1 = 1 and f(T ) = T s, thus yielding

(E2) g(X1, X2)
s = a1X

l1
1 + a2X

l2
2 + a3T1(X1, X2) + a4T2(X1, X2).
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3) Lastly, if the exponents of T̃ lσ are different from those of the other terms
of equation (∗∗), we can study equation (∗∗) by applying Proposition 9,
obtaining two cases associated to the two solutions described therein.

a) σ − 1 = 1, f(T ) = T s1 + cT s2 , thus the equation becomes

(E3) f(g(X1, X2)) = a1X
l1
1 +a2X

l2
2 +a3T1(X1, X2)+a4T2(X1, X2).

b) σ − 1 = 2, f(T ) = T 2, yielding again equation (E1), with s = 2.

Then, to conclude our study, we have to examine those three equations:

1) First, consider the equation

(E1) g(X)s = a1X
l1
1 + a2X

l2
2 + a3X

l3
3

+ a4T1(X1, X2, X3) + a5T2(X1, X2, X3).

With a suitable parametrization of the form Xi → Tmi - such that all
terms of equation (E1) have distinct images - we can turn our equation
to the following polynomial identity in the single indeterminate T

P (T )s = a1T
ω1 + a2T

ω2 + a3T
ω3 + a4T

ω4 + a5T
ω5 .

Clearly, we can assume without loss of generality that ω1 = 0, a1 = 1,
thus falling under the hypotheses of Proposition 5. Hence the solutions
of this last equation are described in the following Tables:

s ω3 ω4 ω5 a3 a4 a5 P (T )

4 2ω2 3ω2 4ω2
3
8a

2
2

1
16a

3
2

1
256a

3
2 1 + 1

4a2T
ω2

3 3ω2 5ω2 6ω2 − 5
27a

3
2

1
81a

5
2 − 1

729a
6
2 1 + 1

3a2T
ω2 − 1

9a
2
2T

2ω2

2 4ω2 5ω2 6ω2
5
64a

4
2 − 1

64a
5
2

1
256a

6
2 1 + 1

2a2T
ω2 − 1

8a
2
2T

2ω2 + 1
16a

3
2T

3ω2

2 3ω2 5ω2 6ω2 − 5
32a

4
2

1
256a

5
2

19
1024a

6
2 1 + 1

2a2T
ω2 − 1

8a
2
2T

2ω2 − 1
64a

3
2T

3ω2

2 4ω2 7ω2 8ω2
7
64a

4
2 − 1

512a
7
2

1
4096a

8
2 1 + 1

2a2T
ω2 − 1

8a
2
2T

2ω2

+ 1
16a

3
2T

3ω2 + 1
64a

4
2T

4ω2

2 2ω2 5ω2 6ω2
5
4a

2
2 −1

4a
5
2

1
16a

6
2 1 + 1

2a2T
ω2 + 1

2a
2
2T

2ω2 − 1
4a

3
2T

3ω2

Table 5
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d ω3 ω4 ω5 a3 a4 a5 P (T )

2 2ω2 3ω2 4ω2 −1
8a

3
2 +

1
2a2a3

(
−1

8a
2
2 +

1
2a3

)2
1 + 1

2a2T
ω2

+
(
1
2a3 −

1
8a

2
2

)
T 2ω2

Table 6

Now, notice that since g(X1, X2, X3)
s contains the 3 multiplicatively in-

dependent terms X li
i , then g(X1, X2, X3) also must contain at least three

multiplicatively independent terms. Moreover, if g(X1, X2, X3) has ex-
actly three terms, these must be all multiplicatively independent, thus
there are no cancellations in the expansion of g(X1, X2, X3)

s, which then
will have at least

(
4
2

)
= 6 terms. Hence, looking at the Tables we can

deduce that s = 2, and g(X1, X2, X3) has 4 or 5 terms. Since in both
cases there must be exactly three multiplicatively independent terms, we
can map those three terms each in a power of one indeterminate, thus
obtaining an equation of the form

g(X1, X2, X3) = c1X
α1
1 + c2X

α2
2

+ c3X
α3
3 + c4R1(X1, X2, X3) + c5R2(X1, X2, X3)

(where g(X1, X2, X3) has four terms if and only if R1 = R2). Then,
expanding g(X1, X2, X3)

2 it is easy to check that among the terms de-
pendent on R1, R2 we cannot impose equalities such that there are only
five terms left in the end.

2) Consider now the equation

(E2) g(X1, X2)
s = a1X

l1
1 + a2X

l2
2 + a3T1(X1, X2) + a4T2(X1, X2).

Similarly, using a suitable parametrization, depending on T1 and T2, of
the form X1 → Tm1 , X2 → Tm2 such that no terms of (E2) have the
same image, we reduce our equation to

P (T )s = a1T
ω1 + a2T

ω2 + a3T
ω3 + a4T

ω4 .

Again, we can assume without loss of generality that ω1 = 0, a1 = 1.
Thus, as a consequence of Proposition 5, we have the following solutions:

s ω3 ω4 P (T )

2 3ω2 4ω2 1 + 1
2a2T

ω2 − 1
8a

2
2T

2ω2

3 2ω2 3ω2 1 + 1
3a2T

ω2



200 a. moscariello [18]

Essentially, these two solutions can be described as the cube of a binomial,
and the square of a special trinomial. Next, we examine in detail these
two cases:

• If s = 3, and g(X1, X2) is a binomial, since the two terms of g(X1, X2)
must be multiplicatively independent (because g(X1, X2)

3 has two
multiplicatively independent terms), we can assume without loss of
generality (up to a suitable change of variables) that g(X1, X2) =
c1X

α1
1 + c2X

α2
2 , which immediately yields the first solution.

• If s = 2, and g(X1, X2) is a trinomial, as before, there must be
at least two multiplicatively independent terms in g(X1, X2). On
the other hand, clearly the three terms cannot be multiplicatively
independent (since in this case the square would have six terms).
Moreover, we deduce from the table that in P (T )2 the square of the
middle term cancels out with the mixed product of the other two.
Thus, reflecting this in our original equation, we can assume, up to
a suitable change of variables, that g(X1, X2) has the form

g(X1, X2) = c1X
α1
1 + c2X

α2
2 + c3R(X1, X2),

with R(X1, X2) distinct from the other two terms, and such that one
of the following conditions hold (up to a rearrangement):

a) 2c2c3X
α2
2 R(X1, X2) = − c21X

2α1
1 , that is, R(X1, X2) =

X2α1
1 X−α2

2 , c3 = − c21
2c2

.

b) c23R
2(X1, X2) = −2c1c2X

α1
1 Xα2

2 , which implies R(X1, X2) =

X
α1
2

1 X
α2
2

2 , c3 =
√
−2c1c2.

However, it is easy to see that these two solutions are equivalent
up to a change of variables, obtained by mapping R(X1, X2) to one
indeterminate (or to an appropriate root). Therefore, expanding the
square yields the second solution.

3) Finally, consider now the equation

(E3) f(g(X1, X2)) = a1X
l1
1 + a2X

l2
2 + a3T1(X1, X2) + a4T2(X1, X2),

with f(T ) = T s1 + αT s2 , s1 > s2 ≥ 1. In this context, we have
g̃(X1) = cXr

1 , where g̃(X1) = g(X1, T̃ ), and X2 = T̃ is obtained from
(∗). In particular, T̃ is a monomial in the single indeterminate X1, that
is, T̃ = t1X

γ1
1 . But since g(X1, X

γ1
1 ) = cXr

1 , the terms (disregarding
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the coefficients) of g(X1, X2) must necessarily be contained in the sum∑
i∈Z

Xr−iγ1
1 Xi

2. At this point, write

g(X1, X2) =
∑
i∈I

Xr−iγ1
1 Xi

2,

and consider f(g(X1, X2)) = g(X1, X2)
s1 + αg(X1, X2)

s2 . We want to
prove that the two polynomials g(X1, X2)

s1 and g(X1, X2)
s2 have no com-

mon term: in fact, if such a monomial XN1
1 XN2

2 exists, there must be
i1, . . . , is1 and j1, . . . , js2 such that




(r − γ1i1) + · · ·+ (r − γ1is1) = N1,

i1 + · · ·+ is1 = N2,

(r − γ1j1) + · · ·+ (r − γ1js2) = N1,

j1 + · · ·+ js2 = N2,

implying 


i1 + · · ·+ is1 = N2,

s1r − γ1N2 = N1,

j1 + · · ·+ js2 = i1 + · · ·+ is1 ,

s2r − γ1N2 = N1.

.

The second and the fourth equation of this linear system are incompatible
if s1 �= s2; hence, the two polynomials g(X1, X2)

s1 and g(X1, X2)
s2 have

no common term. The number of terms of f(g(X1, X2)) is then equal to
the sum of the number of terms of g(X1, X2)

s1 and g(X1, X2)
s2 . Since

s1 > s2 ≥ 1, and g(X1, X2) has at least two terms, g(X1, X2)
s1 has at least

three terms, while g(X1, X2)
s2 has at least two: therefore f(g(X1, X2))

has at least 5 > 4 = σ + ρ terms, which is a contradiction.

A direct application of this result yields an extension of Corollary 7.

C o r o l l a r y 11. Let α(n) =

k∑
i=1

ciα
n
i ∈ EZ+.

1) If there are exactly k− 1 ≥ 2 (and not more) multiplicatively independent
integers among the elements of the set {α1, . . . , αk}, then the set α(N) is a
Universal Hilbert Set, unless α(n) is of the form α(n) = (b1β

m
1 + b2β

m
2 )2.

2) If there are exactly k− 2 ≥ 2 (and not more) multiplicatively independent
integers among the elements of the set {α1, . . . , αk}, then the set α(N) is a
Universal Hilbert Set, unless α(n) is of the form α(n) = (b1β

m
1 + b2β

m
2 )3.
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In particular, if α(n) = αn
1 + · · ·+ αn

k , and among the αi there are at least
k−2 ≥ 2 multiplicatively independent elements, then α(n) is a Universal Hilbert
Set.

P r o o f . Let α(n) =
∑k

i=1 ciα
n
i be such that α(N) is not a Universal Hilbert

Set. Then by Theorem 6 there exist β ∈ EZ and a polynomial P (T ) ∈ Q[T ] of
degree d ≥ 2 such that α(dn) = P (β(n)) identically.

1) We can map this relation to an equation of the form

F (G(X1, . . . , Xσ)) = a1X
l1
1 + · · ·+ aσX

lσ
σ + aσ+1T1(X1, . . . , Xσ).

Hence, since k ≥ 3, by Proposition 9 we obtain F (T ) = T 2 and that
G(X1, X2) is a binomial.

2) In this case, the relation α(dn) = P (β(n)) is mapped, via a suitable
change of variables, to the equation

F (G(X1, . . . , Xσ)) = a1X
l1
1 + · · ·+ aσX

lσ
σ

+ aσ+1T1(X1, . . . , Xσ) + aσ+2T2(X1, . . . , Xσ).

Therefore, since k ≥ 3, we are under the assumptions of Proposition
10. However, since both polynomials F (T ) and G(X1, . . . , Xσ) cannot
contain terms with non-real cofficients, the only admissible solution is the
one where F (T ) = T 3 and G(X1, X2) is a binomial.

E x amp l e 12. 1) From the previous proposition we immediately deduce
that any set of the form {αn

1 + αn
2 + αn

3}, or {αn
1 + αn

2 + αn
3 + αn

4}, where
the integers αi are not powers of the same integer, is a Universal Hilbert
Set.

2) Let α(n) = 8n + 27n + 3 · 12n + 3 · 18n. Since α(n) = (2n + 3n)3, α(N) is
not a Universal Hilbert Set.

4 - The general case

One of the drawbacks of the recursive strategy described i is that such a
method produces mechanical proofs with an increasing number of cases that
would not give much insight on the general case, thus making this kind of
result pointless and tedious. However, it makes sense to ask how many mul-
tiplicatively independent elements there can be in a polynomial composition
f(g(X1, . . . , Xσ)). Namely, we will ask the following: if we fix the number of
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variables σ, can we determine the minimum number k of terms of a composi-
tion?

Let σ ≥ 1, ρ ≥ 0 be integers, f ∈ C[T ] a polynomial of degree larger than
1, g ∈ C[X±1

1 , . . . , X±1
σ ] a Laurent polynomial in X1, . . . , Xσ, and consider the

equation of Question 1

f(g(X1, . . . , Xσ)) = a1X
l1
1 + · · ·+ aσX

lσ
σ

+ aσ+1T1(X1, . . . , Xσ) + · · ·+ aσ+ρTρ(X1, . . . , Xσ),

where a1, . . . , aσ+ρ ∈ C, l1, . . . , lσ ∈ Z, and T1, . . . , Tρ are Laurent monomials
in X1, . . . , Xσ. Fix σ + ρ = k, and write the two polynomials f and g as

f(T ) =
∑
j∈J

fjT
j and g(X1, . . . , Xσ) =

∑
(i1,...,iσ)∈I

gi1,...,iσX
i1
1 . . . Xiσ

σ ,

where both polynomials have coefficients in C, and the sets J ⊂ Z and I ⊂ Zσ

are finite, with h = |I| being the number of terms of the inner polynomial
g(X1, . . . , Xσ). We want to provide a lower bound for the minimum number of
terms k = σ + ρ of these polynomial compositions, depending on σ and h; we
will denote this minimum by k̃(σ, h). Moreover, denote by k̃(σ) = min

k≥σ
k̃(σ, h).

Clearly, considering g(X1, . . . , Xσ) = X1 + · · ·+Xσ and f(T ) = T 2 we see
that f(g(X1, . . . , Xσ)) has exactly

(
σ+1
2

)
terms, thus k̃(σ) ≤

(
σ+1
2

)
.

On the other hand, we can easily prove that, if k ≤ 2σ − 2, there are no
polynomials f and g such that

(1) f(g(X)) = a1X
l1
1 + . . .+ aσX

lσ
σ + aσ+1T1(X) + . . .+ aσ+ρTρ(X).

For this purpose, consider the two monomials T1 and T2. Since they are dis-
tinct, we can deduce from the assumption aσ+1T1(X1, . . . , Xσ) =
− aσ+2T2(X1, . . . , Xσ) a specialization Xi = T̃ for one of our indeterminates.
Moreover, if we apply this specialization, our equation will be reduced to an-
other one having σ′ ≤ σ− 1 variables and k′ ≤ k− 2 terms; further, in order to

cancel out one variable Xj , the term ajX
lj
j must cancel out with another term,

which has to be associated (after our specialization) to a certain monomial -
that is, the only way to cancel out a variable is to diminish the number of terms
(at least) by two. Therefore, it is easy to check that this second equation would
still satisfy k′ ≤ 2σ′−2; hence we can prove by a descent argument (notice that
we have no solution for σ = 1, 2) that k̃(σ) ≥ 2σ − 1.

It is worth noticing that this argument can be applied to Theorem 6, yielding
the following result.
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P r o p o s i t i o n 13. Let α(n) =
k∑

i=1

ciα
n
i ∈ EZ+ be such that there are at

least k
2 + 1 multiplicatively independent elements between α1, . . . , αn ∈ Z+.

Then the set α(N) is a Universal Hilbert Set.

4.1 - Small values of σ

We have proved that

2σ − 1 ≤ k̃(σ) ≤
(
σ + 1

2

)
.

In order to guess whether those two bounds are sharp and gather more insight
on k̃(σ), we study the behavior of k̃(σ) for small values of σ.

R ema r k 14. 1) Clearly, k̃(1) = 1 = 2 · 1− 1 =
(
1+1
2

)
(see Remark 8).

2) Remark 8 and Proposition 9 yield k̃(2) = 3 =
(
2+1
2

)
.

3) Since 6 =
(
σ+1
2

)
, k̃(3) ≤ 6. On the other hand, for a composition having

k < 6 terms, we are under the hypotheses of either Remark 8 or Propo-
sitions 9 and 10. Since these results show that there are no solutions for
σ = 3 under these hypotheses, k̃(3) = 6 =

(
3+1
2

)
.

The case σ = 4 is significantly harder to deal with our tools, since Proposi-
tion 10 would not cover the cases 7 ≤ k ≤ 9, and we already noted that, as k
grows, our recursive strategy becomes way more impractical. However, we can
still show that k̃(4)=

(
4+1
2

)
if g(X1, . . . , X4) is a polynomial in C[X1, X2, X3, X4].

P r o p o s i t i o n 15. Let ρ ≥ 0 be an integer, g(X1, X2, X3, X4) ∈ C[X1, X2,
X3, X4] a polynomial in the indeterminates X = (X1, X2, X3, X4), and let
f(T ) ∈ C[T ] be such that

(*) f(g(X)) = a1X
l1
1 + · · ·+ a4X

l4
4 +

ρ∑
i=1

a4+iTi(X),

with l1, l2, l3, l4 positive integers, a1, . . . , a4+ρ ∈ C and T1, . . . , Tρ ∈ C[X1, X2,
X3, X4] monomials in X1, . . . , X4. Let k = 4 + ρ be the number of terms of
f(g(X1, X2, X3, X4)).

Then k ≥ 10 =
(
4+1
2

)
.

P r o o f . We only need to work on the cases k = 7, 8, 9.
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1) Assume k = 7. Assume that X4 appears in the monomial T1; therefore,
with the specialization X4 = 0, we obtain that f(g(X1, X2, X3, 0)) is still
a composition of the form (∗) (with 3 variables) with at most 5 terms,
which yields a contradiction since k̃(3) = 6 by Remark 14.

2) Suppose k = 8. Now, assume that there is one variable Xi dividing at
least two monomials Tj , Tr. Then, with the specialization Xi = 0, we
obtain again a composition of the form (∗) in 3 variables having between
three and five terms, yielding again a contradiction by Remark 14. Hence,
each variable divides at most one of the four monomials Ti: clearly, this
leads to the equation (up to a rearrangement)

f(g(X1, . . . , X4)) = a1X
l1
1 + a2X

l2
2 + a3X

l3
3 + a4X

l4
4

+ a5X
l′1
1 + a6X

l′2
2 + a7X

l′3
3 + a8X

l′4
4 .

However, at this point, if g̃(X1, X2) = g(X1, X2, 0, 0), with the substitu-
tion X3 = X4 = 0 we obtain

f(g̃(X1, X2)) = a1X
l1
1 + a2X

l2
2 + a5X

l′1
1 + a6X

l′2
2 ,

which by Proposition 10 implies either f(T ) = T 2 or f(T ) = T 3.

On the other hand, if ḡ(X1) = g(X1, 0, 0, 0), with the specialization X2 =
X3 = X4 = 0 we obtain

f(ḡ(X1)) = a1X
l1
1 + a5X

l′1
1 ,

which in turn implies, by Proposition 9, that f(T ) has the form f(T ) =
Tm1 + cTm2 , which is impossible.

3) Finally, let k = 9. In that case, clearly there exists one variable dividing
at least two between the monomials T1, . . . , T5. Notice that if there is
an indeterminate Xi dividing at least three monomials, we would obtain
once again a contradiction with the specialization X1 = 0 and Remark 14.
Hence, each indeterminate appears in at most two monomials, and there
is at least one variable appearing in exactly two. Let X1 be one of the
variables appearing in the maximum number of terms of our composition;
then X1 divides exactly two monomials (say, T4 and T5), and all other
variables divide at most two monomials between T1, . . . , T5. Then, with
the specialization X1 = 0 we have

f(g(0, X2, X3, X4)) = a2X
l2
2 + a3X

l3
3 + a4X

l4
4 +

3∑
i=1

a4+iTi(0, X2, X3, X4).
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Now, let X2 be the variable that divides the most monomials among
T1, T2, T3. As we said, X2 must divide at most two of these three. We
have two possible cases:

a) Assume that X2 divides exactly one monomial (say, T3). Then,
setting X2 = 0 we are left with the equation

f(g(0, 0, X3, X4)) = a3X
l3
3 + a4X

l4
4

+ a5T1(0, 0, X3, X4) + a6T2(0, 0, X3, X4),

with the added information that X3 and X4 both divide exactly one
of the monomials T1, T2. This equation is a polynomial composition
in 2 variables; thus by Proposition 10 we obtain that either f(T ) =
T 2 or f(T ) = T 3. However, assuming that X3 divides T2, further
setting X3 = 0 we get

f(g(0, 0, 0, X4)) = a4X
l4
4 + a5T1(0, 0, X3, X4),

which implies by Proposition 9 that f(T ) is of the form f(T ) =
Tm1 + cTm2 , contradicting the previous statement.

b) Suppose then that X2 divides exactly two of these monomials (say,
T2 and T3). Then by imposing X2 = 0 we obtain

f(g(0, 0, X3, X4)) = a3X
l3
3 + a4X

l4
4 + a5T1(0, 0, X3, X4),

which by Proposition 9 implies f(T ) = T 2.

Now, notice that, since there are four variables, each dividing at most
two monomials, there must be a monomial Ti containing exactly one

variable, say Ti = X
l′j
j . However, if there is exactly one monomial

containing only the variable Xj between T1, . . . , T5, clearly by send-
ing all other variables to zero we would obtain an equation of the
form

f(g̃(Xj)) = ajX
lj
j + ai+4T̃i(Xj),

which would imply by Proposition 9 that f(T ) = Tm1 + cTm2 , con-
tradicting the previous part; thus, since each indeterminate can di-
vide at most two monomials, we can conclude (since each variable
divides at most two monomials) that there is a variable Xs, dividing
exactly two monomials, such that those two monomials do not con-
tain other variables besides Xs. Now, let us rearrange our indexes
such that this variable Xs is X1 and the two monomials T4 and T5
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are of the form T4 = Xv4
1 , T5 = Xv5

1 (we can do that since this does
not contradict our previous assumption on X1).

Therefore our main equation becomes

g(X1, X2, X3, X4)
2 = a1X

l1
1 + a2X

l2
2 + a3X

l3
3 + a4X

l4
4 +

+ a8X
v4
1 + a9X

v5
1 +

3∑
i=1

ai+4Ti(X2, X3, X4).

We will conclude the proof by showing that it is not possible for the
square of a polynomial g(X1, . . . , Xσ)

2 (assuming that this square
has the form (∗)) to contain no mixed product between X1 and the
other variables.

In fact, remembering that such a polynomial g(X1, . . . , Xσ) contains
monomials consisting of single variables for each variable Xi, then it
also contains some mixed products between X1 and some other vari-
ables (else it would be impossible to cancel out the mixed products
arising from the square expansion of g(X1, . . . , Xσ)). Between those
mixed products, pick the maximum one with respect to the natural
lexicographic order, and denote it by m̃(X1, . . . , Xσ); also, denote by
M̃(X1, . . . , Xσ) the maximum term of g(X1, . . . , Xσ). Clearly, the
term m̃(X1, . . . , Xσ)M̃(X1, . . . , Xσ) is a mixed product containing
X1 and some other variables, which appears in the square expansion
of g(X1, . . . , Xσ)

2; in order to check that this term does not cancel
out (and thus appears in g(X1, . . . , Xσ)

2), we consider two cases:

i) If m̃(X1, . . . , Xσ) = M̃(X1, . . . , Xσ), then m̃(X1, . . . , Xσ)M̃(X1,
. . . , Xσ) = M̃2(X1, . . . , Xσ) appears only once in the expansion,
and thus does not cancel out.

ii) If m̃(X1, . . . , Xσ) �= M̃(X1, . . . , Xσ), we have M̃(X1, . . . , Xσ) =
Xα

1 , and clearly it is not possible to realize m̃(X1, . . . , Xσ)M̃(X1,
. . . , Xσ) in any other ways in the square expansion of g(X1, . . . ,
Xσ), and thus this term does not cancel out.

4.2 - Sum of sets of vectors and cancellations

The previous results point to k̃(σ) being close to
(
σ+1
2

)
; while a general

result is out of reach at the moment, there is some evidence suggesting that this
might indeed be the case. In fact, assuming fixed the number of terms h = |I|
of g(X1, . . . , Xσ), the number of terms k of the composition f(g(X1, . . . , Xσ))
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is obtained by expanding the sum

(�) f(g(X1, . . . , Xσ)) =
∑
j∈J

fjg(X1, . . . , Xσ)
j ,

and then cancelling out some terms. Then, in order to study k̃(σ, h), we can
consider two invariants:

1) The number of different exponents in the expansion (�) of f(g(X1, . . . ,
Xσ)), counting all exponents appearing before any cancellation between
terms belonging to different powers of g(X1, . . . , Xσ) is performed. We
will denote this value by W (f, g), and is obviously an upper bound for k.

2) The number of exponents (among the W (f, g) listed before) appear-
ing in the expansion that are cancelled out in the final computation
of f(g(X1, . . . , Xσ)). We will denote this value by C(f, g); obviously
k = W (f, g)− C(f, g).

The motivation behind this division lies in the fact that the two invariants
W (f, g) and C(f, g) describe very different problems.

In fact, we can study W (f, g) using tools from additive number theory. By
definition we can associate to the exponents of g(X1, . . . , Xσ) the set I ⊆ Zσ,
and, for a fixed integer α ≥ 1, the exponents of g(X1, . . . , Xσ)

α described by
W (f, g) are exactly the elements of the set αI. Therefore, by studying W (f, g)

we are basically studying the cardinality of the union set
⋃
α∈J

αI, where I ⊆ Zσ

and J ⊆ Z are fixed. In this context, the following result, due to Ruzsa, comes
handy.

Th e o r em 16 ( [12, Corollary 1.1]). Let A,B ⊆ Rσ be two sets such that
|A| ≤ |B|, and assume that there is no proper hyperplane of Rσ containing the
set A+B. Then

|A+B| ≥ |B|+ σ|A| − σ(σ + 1)

2
.

In our context, the set I has dimension at least equal to σ − 1 (since
f(g(X1, . . . , Xσ)) must contain σ multiplicatively independent terms); then,
if h = |I| ≥ σ − 1, from the previous theorem we immediately deduce that

|αI| ≥ h+ (α− 1)

[
(σ − 1)h− σ(σ − 1)

2

]
,

which yields

W (f, g) = |
⋃
α∈J

αI| ≥ |deg(f)I| ≥ h+ (deg(f)− 1)

[
(σ − 1)h− σ(σ − 1)

2

]
.
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We can deduce from here that our claim is true in the naive case C(f, g) = 0
(for instance if f(T ) and g(X1, . . . , Xσ) have positive real coefficients).

P r o p o s i t i o n 17. Let σ ≥ 1 and ρ ≥ 0 be integers, g ∈ C[X±1
1 , . . . , X±1

σ ]
be a Laurent polynomial, having exactly h terms, in the indeterminates X =
(X1, . . . , Xσ), and let f ∈ C[T ] be such that

f(g(X)) = a1X
l1
1 + · · ·+ aσX

lσ
σ + aσ+1T1(X) + · · ·+ aσ+ρTρ(X),

with l1, . . . , lσ positive integers, a1, . . . , aσ+ρ ∈ C and T1, . . . , Tρ ∈ C[X±1
1 , . . . ,

X±1
σ ] monomials in the indeterminates X1, . . . , Xσ. Let k = σ+ρ be the number

of terms of this polynomial composition.
Then

W (f, g) ≥ h+(deg(f)−1)

[
(σ − 1)h− σ(σ − 1)

2

]
≥ σh− σ(σ − 1)

2
≥

(
σ + 1

2

)
.

The lower bounds provided in Proposition 17 are sharp; in fact, it is easy
to see that, for

f(T ) = T 2 , g(X1, . . . , Xσ) = X1 + · · ·+Xσ +

h−σ+1∑
i=2

Xi
1

Xi−1
σ

,

the composition f(g(X1, . . . , Xσ)) = g(X1, . . . , Xσ)
2 has exactly σh − σ(σ−1)

2
terms.

Furthermore, we can rewrite the second bound as

W (f, g) ≥ σh− σ(σ − 1)

2
=

(
σ + 1

2

)
+ σ(h− σ).

Therefore, if we could prove that C(f, g) ≤ σ(h − σ), we would obtain the
desired bound for k̃(σ). Since g(X1, . . . , Xσ) must contain, by definition, at
least σ multiplicatively independent terms, this upper bound for C(f, g) basi-
cally states that for each term of g(X1, . . . , Xσ), besides the σ multiplicatively
independent ones, there can be no more than σ cancellations.

However, studying C(f, g) is an extremely hard task. In fact, each cancella-
tion would imply a polynomial relation between the coefficients of the involved
monomials (from the expansion (�)) and an equality on the exponents.

The first problem can be reduced to a study of intersection of algebraic
surfaces, which is in itself a very hard problem, given our little knowledge on
the behaviour of these coefficients.

As for the second one, in order to have a cancellation involving terms of
(at least) two different polynomial powers g(X1, . . . , Xσ)

j1 and g(X1, . . . , Xσ)
j2
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there should exist a monomial Xα1
1 . . . Xασ

σ appearing in both these powers;
clearly, this is equivalent to saying that the vector (α1, . . . , ασ) ∈ Zσ must
belong to both sets j1I and j2I.

Thus we have to face the following additive problem:

Qu e s t i o n 18. Let σ ≥ 1, and consider two finite sets I ⊆ Zσ and J ⊆ Z+.
Set |I| = h.

Given a vector w ∈ Zσ, determine all factorizations of w of the type

w = c1v1 + · · ·+ ckvk,

where v1, . . . ,vk ∈ I and c1, . . . , ck ∈ Z+ are such that c1 + · · ·+ ck ∈ J .

Additive decompositions have been the subject of several works ( [8] and [9]
are good monographs on this argument); in general, these decompositions are
not unique, and finding the possible decompositions of a given vector with
respect to a finite set of generators I is very hard. In fact, the easiest case
σ = 1 (where our vectors are, actually, integers) is a reformulation of the well-
known Subset Sum Problem ( [7]), which asks, given a finite set I ⊆ Z, if there
exists a subset J of I such that the sum of the elements of J is a target value
w; however, the Subset Sum Problem is NP-complete (see [7] for a proof).

In light of both the evidence provided and the final considerations, we con-
clude this work with the following question:

Qu e s t i o n 19. Is it true that k̃(σ) =
(
σ+1
2

)
?

A c k n ow l e d gm e n t s. This work is part of my PhD thesis. I would like
to thank my advisors, Professors Roberto Dvornicich and Umberto Zannier for
their supervision, and for helpful discussions. I would also like to thank the
referee for their helpful comments.

A - Perfect powers in base x and polynomial powers

In this Appendix, we will apply Proposition 5 on lacunary polynomial pow-
ers to study perfect powers in a given base x having exactly k non-zero digits,
using (a part of) a method developed by Corvaja and Zannier in [2]. First,
notice that, dividing by a power of x, we can assume without loss of generality
that the units digit is non-zero, obtaining the Diophantine equation

(5) yd = c0 +
k−1∑
i=1

cix
mi ,
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with fixed k ∈ N, y, d, x positive integers greater than 1, c0, c1, . . . , ck−1 ∈
{1, . . . , x− 1} and m1 < · · · < mk−1 positive integers. This problem is actually
quite complex; to get a feel of its difficulty, notice that the case k = 2, c0 =
c1 = 1 is the well-known Catalan Conjecture, which stood open for more than
a century and was proved by Mihailescu in [10].

Here, we describe Corvaja and Zannier’s method. Recall that the loga-
rithmic Weil height of a rational number a

b ∈ Q in lowest terms is defined as
h
(
a
b

)
= logmax{|a|, |b|}, with the assumption that h(0) = 0. The absolute

logarithmic Weil height of an element α in a number field K is defined as

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] logmax{|α|v, 1},

where MK is a normalized set of inequivalent absolute values | · |v defined on
K. Further, the Weil height of a point P = [α0 : . . . : αn] in a projective space
Pn(K) is

h(P ) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max
0≤i≤n

{|α|v}.

Moreover, if S ⊂ MK is a finite set of absolute values of K containing the
archimedean ones S∞, we will say that x ∈ K is a S-integer if |x|v ≤ 1 for
every v �∈ S, and we denote the ring of S-integer elements of K by OS,K .
Invertible elements in OS,K are called S-units (see [1], [3]), and several results
in the literature deal with properties and distributions of S-integral points. In
particular, our problem also falls in this category.

We will consider the following cases:

First case: Let Ck−2 ∈]0, 1[ be a constant, and assume that there is a linear
gap between the two leftmost non-zero digits, that is, mk−1 ≤ Ck−2mk−2.

Dividing equation (5) by xmk−1 , we obtain

ydx−mk−1 = c0 +

k−1∑
i=1

cixi,

where ni = mk−1 −mk−1−i, for i = 1, . . . , k − 2, nk−1 = mk−1, and xi = x−ni

for i = 1, . . . , k − 1. Define now the series F (X1, . . . , Xk−1) ∈ Q[[X1, . . . , Xk−1]]
obtained applying the Binomial Theorem

F (X1, . . . , Xk−1) :=

[
c0 +

k−1∑
i=1

ciXi

] 1
d

= c
1
d
0

[
1 +

k−1∑
i=1

ci
c0
Xi

] 1
d

= c
1
d
0


1 + 1

d

(
k−1∑
i=1

ci
c0
Xi

)
+

1− d

2d2

(
k−1∑
i=1

ci
c0
Xi

)2

+ . . .


 .
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This expression converges absolutely if
k−1∑
i=1

ci
c0
Xi < 1, then, for instance, notic-

ing that ci ≤ x−1 for i = 0, . . . , k−1, it converges absolutely forX1, . . . , Xk−1 ∈
C such that |Xi| < 1

(k−1)(x−1) , to a function, which we will denote by (slightly

abusing our notation) F , that takes the value c
1
d
0 at the origin and is such

that F (X1, . . . , Xk−1)
d = c0 +

k−1∑
i=1

ciXi. Since nk−1 > nk−2 > · · · > n1 =

mk−1 −mk−2 ≥ (1− Ck−2)mk−1, for sufficiently large values of mk−1 we have

x−nk−1 = x−mk−1 ≤ 1

(k − 1)(x− 1)
,

thus the series converges at (x1, . . . , xk−1); moreover, taking z=F (x1, . . . , xk−1),
this yields

zd = c0 + c1x
−n1 + · · ·+ ck−1x

−nk−1 .

Let K be the splitting field of Y d − x over Q; since z = yx−
mk−1

d , our se-
quence of solutions is defined over K. Further, if S is the finite set of places
defined over K consisting of the ones lying over either ∞ or x; then, by def-
inition, z is an S-integer, while x1, . . . , xk−1 are S-units. Moreover, the usual
absolute value on C induces an absolute value on Q(z), which we can further
extend to an infinite place v defined over K; thus, embedding K in C by means
of v we obtain that z = F (x1, . . . , xk−1) also with respect to v-adic convergence.

It is easy to check that

k−1∑
i=1

h(xi) ≤ (k − 1)mk−1; further, since we have

maxi |xi|v ≤ x−(1−Ck−2)mk−1 , it follows that

k−1∑
i=1

h(xi) = O

(
− log

(
max

i
|xi|v

))
,

whence the convergence implies that h(z) = h(F (x1, . . . , xk−1)) ≤ 2mk−1.
Hence, we fall under the assumptions of the following theorem.

Th e o r em 20 ( [3, Theorem 1]). Let K be a number field, v a place defined
over K and let Cv a completion of an algebraic closure of Kv. Let S be a finite
set of absolute values of K containing S∞, and define the S-height hS(x) =∑

v �∈S log+ |x|v of a non-zero element x ∈ K∗.

Next, let f(X) =
∑

i aiX
i be a power series with algebraic coefficients in

Cv converging in a neighborhood of the origin in Cn
v ; let xh = (xh1, . . . , xhn),
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h ∈ N be a sequence in (K∗)n tending to the origin of Kn
v , such that f(xh) is

well defined and belongs to K.

Suppose that:

1) For i = 1, . . . , n we have hS(xhi) + hS(x
−1
hi ) = o(h(xhi)) as h → +∞;

2) h(xh) = O(− log(maxi |xhi|v));

3) hS(f(xh)) = o(h(xh));

4) h(f(xh)) = O(h(xh)).

Then there exist a finite number of cosets u1H1, . . . , urHr ∈ Gn
m such that

{xh} ⊂
⋃r

i=1 uiHi and such that, for i = 1, . . . , r, the restriction of f(X) to
uiHi coincides with a polynomial in K[X].

Thus there are a finite number of cosets u1H1, . . . , urHr ∈ Gn
m such that

our sequence of solutions belongs to the union of these cosets, and such that
for i = 1, . . . , r the restriction of F (X) to uiHi coincides with a polynomial.
Then, since the elements of our sequence are S-units, we can use the following
known theorem.

Th e o r em 21 ( [1, Theorem 7.4.7]). Let Q× be the multiplicative group of
units of Q, and let Γ be a finitely generated subgroup of (Q×)n; let Σ be a subset
of Γ.

Then the Zariski closure of Σ in Gn
m is a finite union of translates of alge-

braic subgroups of Gn
m.

In our setting, Theorem 21 states that the Zariski closure of our sequence is
a certain finite union of translates of algebraic subgroups of Gn

m. Then, going
to an appropriate infinite subsequence of solutions (and by taking intersection
with one of our cosets), we can assume that there is a single coset uH containing
all our solutions, where u = (χ1, . . . , χk−1) ∈ Gk−1

m is a solution of our sequence
(thus χi ∈ xZ, with negative exponent), and that our sequence is Zariski-
dense in said coset. Clearly, this coset cannot be a single point, therefore
s := dimH > 0; since our sequence converges v-adically to the origin in uH,
the following proposition delivers the promised relation between this problem
and lacunary polynomial powers.

P r o p o s i t i o n 22 ( [3, Proposition 1]). Let H be a connected algebraic
subgroup of Gn

m. Then the following conditions are equivalent.

1) The Zariski closure of H in An contains (0, . . . , 0).
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2) The lattice ΛH does not contain any non-zero vectors with all non-negative
coordinates.

3) There exists a parametrization ϕ : Gk
m → H, with k = dimH, given by

Xi = T ui , i = 1, . . . , n, T = (T1, . . . , Tk), where all coordinates of ui ∈ Zk

are strictly positive.

4) There exists a point (x1, . . . , xn) ∈ H ∩ Cn
v , where Cn

v is as in Theorem
20, such that |xi|v < 1 for i = 1, . . . , n.

5) There exists a sequence in H ∩ Cn
v converging to (0, . . . , 0) in the v-adic

topology.

Our sequence satisfies the fifth condition of Proposition 22; then, every con-
dition holds in our coset uH. In particular, the third one states that there exists
a parametrization of uH of the form Xi = ξ̃iT

ai1
1 . . . T ais

s , with i = 1, . . . , k − 1
and aij ≥ 0 for every i, j. Moreover, Theorem 20 ensures that F (X1, . . . , Xk−1)
becomes, with this parametrization of uH, a polynomial in the indeterminates
T1, . . . , Ts. Since F d(x1, . . . , xk−1) = c0 + c1x1 + · · · + ck−1xk−1, and our se-
quence of solutions is Zariski-dense in uH, we obtain a polynomial identity of
the shape

F d(X1, . . . , Xk−1) = c0 +

k−1∑
i=1

ciξ̃iT
ai1
1 . . . T ais

s .

Since our sequence converges v-adically to (0, . . . , 0), the vectors ai = (ai1, . . . ,
ais) ∈ Ns are non-zero, hence there is a vector b = (b1, . . . , bs), bi ∈ Z+ such
that the scalar products li := bai are all positive and li = lj if and only if ai =
aj . Thus, replacing Tj with T bj , for j = 1, . . . , s, F (X1, . . . , Xk−1) becomes a
non-constant polynomial P (T ) ∈ C[T ] such that the following identity holds
(dividing by c0 if needed):

(6) P (T )d = 1 +

k−1∑
i=1

ξiT
li .

At this stage, notice that, following these substitutions, our coefficients ξi are
such that ξi ∈ Cx = {pxq

r | p, r ∈ {1, . . . , x−1}, q ∈ Z−}, and that l1 ≤ l2 ≤ l3 ≤
l4 are positive integers, associated to the ni (not necessarily in the same order),
such that li = lj implies ξi �= ξj . Therefore, we can use classification results
for lacunary polynomial powers with complex coefficients to solve equation (6),
and then check for every solution whether the coefficients ξi belong to Cx; after
that, we can then pull back some useful information that will allow us to solve
the original equation (5). A similar relation can also be obtained if the extremal
gap involves the rightmost digits rather than the leftmost ones.



[33] lacunary polynomial compositions 215

Second case: Let C1 ∈]0, 1[ be a constant, and assume that there is a
linear gap between the two rightmost non-zero digits, that is, m1 ≥ C1mk−1

(namely, the second leftmost non-zero digit grows linearly with the length of
our perfect power).

Let xi = xmi ; then

yd = c0 +
k−1∑
i=1

cixi.

Then, in a similar fashion as in the first case, we can reduce, with some analo-
gous parametrization, this equation to the same polynomial identity (6), with
ξi ∈ Cx.

We now study equation (6). Proposition 5 allows us to solve this polynomial
equation under the assumption k ≤ 5; clearly, since the cases k = 3 and k = 4
have already been investigated by Corvaja and Zannier, we will focus on the
next case k = 5; further, we will assume for simplicity that all the non-zero
digits of the perfect powers in equation (5) are equal to 1, that is, c0 = · · · =
ck−1 = 1, although this method can be extended to deal with the other cases
with some tedious calculations. Then Cx = xZ

−
, and all coefficients ξi must be

perfect powers of x with negative exponent.

Therefore, we have to examine the tables described in Proposition 5; our
aim is to rewrite the polynomials contained therein as polynomials with at most
five terms, whose degrees are not necessarily different, and with coefficients
belonging to xZ

−
:

• Table 1: Here P (T )d has exactly five terms, hence we must have l1 < l2 <
l3 < l4 and ξi ∈ xZ for every i = 1, . . . , 4. Since the coefficients ξi must
be positive, only the first solution is admissible; however, since ξi ∈ xZ,
for that case we would obtain 3

8 = ξ2
ξ21

∈ xZ, which is impossible.

• Table 2: In this case, all coefficients are depending on ξ1, ξ2. Thus, taking

ξ1 = xa, ξ2 = xb, the condition ξ3 ∈ xZ implies that ξ3 = ξ1

(
4ξ2−ξ21

8

)
∈

xZ, that is 4xb−x2a

8 = xc for some c ∈ Z (such that ξ3 = xc+a), or equiv-

alently 4xb−2a−1
8 = xc−2a. However, it is easy to see that if x �= 2 the

left-hand side of the equation cannot belong to xZ; on the other hand,
if x = 2, the equation becomes 2b+2 − 22a = 2c+3, whose solutions are
c + 3 = 2a and b + 2 = 2a + 1, that is b = 2a − 1, c = 2a − 3, yielding

the coefficients ξ2 =
1
2ξ

2
1 , ξ3 =

1
8ξ

3
1 and ξ4 =

(
ξ3
ξ1

)2
= 1

64ξ
4
1 . Therefore, we
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obtain the polynomial

P (T ) = 1 +
1

2
ξ1T

l1 +
1

8
ξ21T

2l1 ,

P (T )2 = 1 + ξ1T
l1 +

1

2
ξ21T

2l1 +
1

8
ξ31T

3l1 +
1

64
ξ41T

4l1 .

• Table 3: In this case we have P (T )d = 1 + ξ′1T
l′1 + ξ′2T

l′2 + ξ′3T
l′3 (hence

exactly two among the li are equal), with ξ′1, ξ
′
2, ξ

′
3 such that exactly two

of them belong to xZ while the other one is a sum of two elements of xZ.

Therefore, at least one between 1
3 =

ξ′2
(ξ′1)

2 and 1
27 =

ξ′3
(ξ′1)

3 =
(ξ′3)

2

(ξ′2)
2 must

belong to xZ: this implies that x is a power of 3. Obviously, any solution
of this form follows from a solution in base 3, hence we can safely assume
that x = 3. But if at least two among ξ′1, ξ

′
2, ξ

′
3 belong to 3Z, from the

relations written in the table we easily deduce that they must all belong
3Z; since one of these is obtained as sum of two ξi (which belong to 3Z),
we obtain the equation 3a +3b = 3c, which has no solution for a, b, c ∈ Z.

• Table 4: In this last case P (T )d = 1+ξ′1T
l′1+ξ′2T

l′2 , d = 2 and ξ′2 =
(
1
2ξ

′
1

)2
.

Hence, there are three ways in which the four coefficients ξi (and the
associated exponents li) can combine to form the two ξ′i, namely:

1) ξ′1 is obtained as a sum of three ξi, and ξ′2 = ξj ∈ xZ;

2) ξ′2 is obtained as a sum of three ξi, and ξ′1 = ξj ∈ xZ;

3) ξ′1, ξ
′
2 are both obtained as a sum of two ξi each.

As ξi ∈ xZ, we can write ξi = xσi , with σi ∈ Z. Thus, these three cases
give us (rearranging the indexes if needed) the following equations:

1) 1
4(x

σ1 + xσ2 + xσ3)2 = xσ4 , that is (xσ1 + xσ2 + xσ3)2 = 4xσ4 ;

2) 1
4(x

σ1)2 = xσ2 +xσ3 +xσ4 , or equivalently that x2σ1 = 4xσ2 +4xσ3 +
4xσ4 ;

3) 1
4(x

σ1 + xσ2)2 = xσ3 + xσ4 , which yields x2σ1 + x2σ2 + 2xσ1+σ2 =
4xσ3 + 4xσ4 .

Let us study each case separately:

1) Assume without loss of generality that σ1 > σ2 > σ3. Then the left-
hand side yields an integer whose base x representation has at least
two non-zero digits, one at place 2σ3 and one at place 2σ1 ≥ 2σ3+4
or higher, while the one on right-hand side has either one or two
digits (only if x = 3), which are, however, consecutive: therefore
this equation admits no solution.
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2) Similarly, the left-hand side of this equation yields an integer whose
base x representation has exactly one non-zero digit, whence the one
on the right-hand side has at least two: again, this equation admits
no solution.

3) In this case, notice that if x ≥ 4, the left-hand side yields an integer
whose base x representation has exactly three non-zero digits, while
the right-hand side has exactly two: thus x ∈ {2, 3}.
a) If x = 3, we have 32σ1 + 32σ2 + 2 · 3σ1+σ2 = 4 · 3σ3 + 4 · 3σ4 ;

assume without loss of generality that σ1 > σ2 and σ3 > σ4.
Then 32σ1 +2 ·3σ1+σ2 +32σ2 = 3σ3+1+3σ3 +3σ4+1+3σ4 ; clearly,
since the base 3 representation of an integer must be unique, we
must have




σ3 = σ4 + 1

2σ2 = σ4

2σ1 = σ3 + 1

and this implies




σ1 = σ2 + 1

σ3 = 2σ2 + 1

σ4 = 2σ2

.

Then, rearranging those σi in increasing order, and computing
the associated coefficients ξi, we obtain

P (T )2 = 1 + ξ1T
l1 + 3ξ1T

l1 + ξ21T
2l1 + 3ξ21T

2l1 .

b) If x = 2 we obtain 22σ1 + 22σ2 + 2σ1+σ2+1 = 2σ3+2 + 2σ4+2;
again, we can assume without loss of generality that σ1 > σ2
and σ3 > σ4. These two base 2 representation define the same
integer, and thus must coincide. Thus we have




σ1 + σ2 + 1 = 2σ1

2σ2 = σ4 + 2

2σ1 + 1 = σ3 + 2

yielding




σ1 = σ2 + 1

σ3 = 2σ2 + 1

σ4 = 2σ2 − 2

,

which, rearranging the σi in increasing order and computing the
coefficients ξi, defines the solution

P (T )2 = 1 + ξ1T
l1 + 2ξ1T

l1 +
1

4
ξ21T

2l1 + 2ξ21T
2l1 .

Therefore, the only solutions to the equation

P (T )d = 1 + ξ1T
l1 + ξ2T

l2 + ξ3T
l3 + ξ4T

l4 ,

with ξi ∈ xZ are the following:
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1) x = 3, d = 3, P (T )2 = 1 + ξ1T
l1 + 3ξ1T

l1 + ξ21T
2l1 + 3ξ21T

2l1 ;

2) x = 2, d = 2, P (T )2 = 1 + ξ1T
l1 + 1

2ξ
2
1T

2l1 + 1
8ξ

3
1T

3l1 + 1
64ξ

4
1T

4l1 ;

3) x = 2, d = 2, P (T )2 = 1 + ξ1T
l1 + 2ξ1T

l1 + 1
4ξ

2
1T

2l1 + 2ξ21T
2l1 .

As before, our parametrization induces the correspondence

yd = 1 + xm1 + xm2 + xm3 + xm4 �→ P (T ) = 1 + ξ1T
l1 + ξ2T

l2 + ξ3T
l3 + ξ4T

l4 ,

We can then go back to our two settings, and deduce the associated solutions
of the equation

yd = 1 + xm1 + xm2 + xm3 + xm4

via our parametrizations.

First case: Remember that, in this setting, from our parametrizations we
obtain the following correspondences

yd = 1 + xm1 + xm2 + xm3 + xm4 �→ zd = 1 + x−n1 + x−n2 + x−n3 + x−n4

�→ P (T ) = 1 + ξ1T
l1 + ξ2T

l2 + ξ3T
l3 + ξ4T

l4 .

Therefore, each term of our polynomial is associated to a perfect power
x−ni , which in turn will be used to compute the xmi . Let us study now the
three solutions described before:

1) x = 3, d = 3, P (T )2 = 1 + ξ1T
l1 + 3ξ1T

l1 + ξ21T
2l1 + 3ξ21T

2l1 .

Hence there exists a permutation {n′
1, n

′
2, n

′
3, n

′
4} of the exponents ni such

that 


3−n′
1 �→ ξ1T

l1 ,

3−n′
2 �→ 3ξ1T

l1 ,

3−n′
3 �→ ξ21T

2l1 ,

3−n′
4 �→ 3ξ21T

2l1 ,

which implies




n′
1 ∈ Z+,

−n′
2 = (−n′

1) + 1,

−n′
3 = 2(−n′

1),

−n′
4 = 2(−n′

1) + 1.

.

Clearly, n′
2 < n′

1 < n′
4 < n′

3, thus the relations between the ni yield
n1 = n′

2, n2 = n′
1, n3 = n′

4 and n4 = n′
3; thus, by substituting the values

of mi and solving in function of m1 we obtain


m2 ∈ Z+,

(m4 −m2) = (m4 −m3) + 1,

(m4 −m1) = 2(m4 −m3) + 1,

m4 = 2(m4 −m3) + 2,

yielding




m1 = 1,

m2 ∈ Z+,

m3 = m2 + 1,

m4 = 2m2.

,

giving the infinite family of solutions defined by d = 2, x = 3 and

(m1,m2,m3,m4) = (1,m2,m2 + 1, 2m2), y = 3m2 + 2.
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2) x = 2, d = 2, P (T )2 = 1 + ξ1T
l1 + 1

2ξ
2
1T

2l1 + 1
8ξ

3
1T

3l1 + 1
64ξ

4
1T

4l1 .

Again, there is a permutation {n′
1, . . . , n

′
4} of the exponents ni such that




2−n′
1 �→ ξ1T

l1 ,

2−n′
2 �→ 1

2ξ
2
1T

2l1 ,

2−n′
3 �→ 1

8ξ
3
1T

3l1 ,

2−n′
4 �→ 1

64ξ
4
1T

4l1 ,

thus implying




n′
1 ∈ Z+,

−n′
2 = 2(−n′

1)− 1,

−n′
3 = 3(−n′

1)− 3,

−n′
4 = 4(−n′

1)− 6.

This time we have n′
1 < n′

2 < n′
3 < n′

4, hence ni = n′
i for every i, and this

system yields a linear system in the exponents mi, which we can solve in
function of m1, obtaining



−(m4 −m2) = −2(m4 −m3)− 1,

−(m4 −m1) = −3(m4 −m3)− 3,

−m4 = −4(m4 −m3)− 6,

and then




m2 = 2m1 − 1,

m3 = 3m1 − 3,

m4 = 4m1 − 6,

,

that gives the infinite family of solutions described by d = 2, x = 2 and

(m1,m2,m3,m4) = (m1, 2m1−1, 3m1−3, 4m1−6), y = 1+2m1−1+22m1−3.

3) x = 2, d = 2, P (T )2 = 1 + ξ1T
l1 + 2ξ1T

l1 + 1
4ξ

2
1T

2l1 + 2ξ21T
2l1 .

Thus, there exists a permutation {n′
1, n

′
2, n

′
3, n

′
4} of the exponents ni such

that 


2−n′
1 �→ ξ1T

l1 ,

2−n′
2 �→ 2ξ1T

l1 ,

2−n′
3 �→ 1

4ξ
2
1T

2l1 ,

2−n′
4 �→ 2ξ21T

2l1 ,

which implies




n′
1 ∈ Z+,

−n′
2 = (−n′

1) + 1,

−n′
3 = 2(−n′

1)− 2,

−n′
4 = 2(−n′

1) + 1.

This time we have n′
2 < n′

1 < n′
4 < n′

3, thus n1 = n′
2, n2 = n′

1, n3 = n′
4

and n4 = n′
3; again, by substituting these ni and solving in function of

m1 we get



m2 ∈ Z+,

(m4 −m2) = (m4 −m3) + 1,

(m4 −m1) = 2(m4 −m3)− 3,

m4 = 2(m4 −m3),

which yields




m1 = 3,

m2 ∈ Z+,

m3 = m2 + 1,

m4 = 2m2 − 2,

,

giving the infinite family of solutions described by d = 2, x = 2 and

(m1,m2,m3,m4) = (3,m2,m2 + 1, 2m2 − 2), y = 2m2−1 + 3.
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We have thus proved the following result.

T h e o r em 23. The only infinite families of solutions to the equation yd =
1+xm1+xm2+xm3+xm4 , for x, y, d positive integers and m = (m1,m2,m3,m4)
such that x, d ≥ 2, m1 < m2 < m3 < m4 and m3 ≤ C3m4, with C3 ∈]0, 1[ fixed,
are the following:

• x = 3, d = 2,m = (1,m2,m2 + 1, 2m2), y = 3m2 + 2;

• x = 2, d = 2,m = (m1, 2m1−1, 3m1−3, 4m1−6), y = 1+2m1−1+22m1−3;

• x = 2, d = 2,m = (3,m2,m2 + 1, 2m2 − 2), y = 2m2−1 + 3.

Second case: In this case, the correspondence obtained is easier, since we
get

yd = 1 + xm1 + xm2 + xm3 + xm4 �→ P (T ) = 1 + ξ1T
l1 + ξ2T

l2 + ξ3T
l3 + ξ4T

l4 .

Since this time each term of P (T ) gives a perfect power xmi , we can immediately
deduce the solutions:

1. x = 2, d = 2, (m1, 2m1 − 1, 3m1 − 3, 4m1 − 6), y = 1 + 2m1−1 + 22m1−3;

2. x = 3, d = 2, (m1,m1 + 1, 2m1, 2m1 + 1), y = 2 · 3m1 + 1;

3. x = 2, d = 2, (m1,m1 + 1, 2m1 − 2, 2m1 + 1), y = 1 + 2m1−1 + 2m1 .

Thus, we obtain the following result.

T h e o r em 24. The only infinite families of solutions to the equation yd =
1+xm1+xm2+xm3+xm4 , for x, y, d positive integers and m = (m1,m2,m3,m4)
such that x, d ≥ 2, m1 < m2 < m3 < m4 and m1 ≥ C1m4, with C1 ∈]0, 1[ fixed,
are the following:

• x = 2, d = 2,m = (m1, 2m1−1, 3m1−3, 4m1−6), y = 1+2m1−1+22m1−3;

• x = 3, d = 2,m = (m1,m1 + 1, 2m1, 2m1 + 1), y = 2 · 3m1 + 1;

• x = 2, d = 2,m = (m1,m1 + 1, 2m1 − 2, 2m1 + 1), y = 1 + 2m1−1 + 2m1 .
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