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Estimating isogenies on tangent spaces
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Abstract. If two elliptic curves are isogenous, then there is an integer
matrix connecting their representatives in the upper half plane. When
these are normalized to lie in the standard fundamental domain, we give
a best possible upper bound for the matrix entries in terms of the degree
of the isogeny.
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1 - Introduction

Let E,E′ be complex elliptic curves with j-invariants j(τ), j(τ ′) respectively,
for the standard modular function j with τ, τ ′ in the upper half plane. When
E,E′ are isogenous, it is well-known that there is a relation

(1) τ ′ =
aτ + b

cτ + d

with integers a, b, c, d such that m = ad− bc is the degree of the isogeny. Over
the last years one has required upper bounds for these integers in terms of m
and possibly other quantities (and even analogous bounds relating to general
abelian varieties). As τ, τ ′ are well-defined only up to the action of SL2(Z), it
is natural to take them to lie in the standard fundamental domain (see below)
for this action.

The paper [5] of Wüstholz and the first author was mainly concerned with
certain upper bounds for m itself in terms of arithmetic information about
E,E′. Such upper bounds are sometimes referred to in the literature as “isogeny
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estimates”. To find bounds for a, b, c, d may be regarded as similar problems
about the rational representations on the tangent spaces (in case m is already
known).

In fact already in Lemma 4.1 of [5] (p. 10), it was shown that an upper
bound Cm1/2 is possible; in the statement it is assumed that E,E′ are defined
over the field Q of algebraic numbers, and then C depends also on certain
heights h(E), h(E′) (which we need not define here) as well as the degrees of
the fields of definition of E,E′. However on inspection one sees that the proof
actually gives

(2) max{|a|, |b|, |c|, |d|} ≤ C0

√
yy′m1/2

without specifying the fields of definition, where y, y′ are the imaginary parts
of τ, τ ′ and now C0 is absolute.

In Lemma 10.3 of David [1] (p. 133) in his study of linear forms in elliptic
logarithms, the above bound Cm1/2 was made completely explicit (and then
used by Pellarin to improve the main result of [5] above). Again the proof leads
to (2), now with C0 = 8/3.

Then in Lemma 5.2 of the work [4] (p. 19) of Habegger and Pila going be-
yond the André-Oort Conjecture it was shown that there are integers a, b, c, d
as above with bound C1m

10 in (2); still C1 is absolute (and easily computable)
but there is no longer any dependence on y, y′. When E has no complex mul-
tiplication this implies the same bound for any such integers.

And the rather general Theorem 1.1 of Orr [8] (p. 455) in an investigation
on the Zilber-Pink Conjecture for Shimura varieties - see also the remarks
following equation (1) p. 456 - implies an improvement to C2m for C2 absolute
(possibly not quite so easily computable in general). The example

τ = i, a = m, b = c = 0, d = 1

shows that the exponent of m cannot be reduced and that no bound < m,
even for m large, is valid. Thus in particular the exponent 1/2 in (2) is slightly
misleading, even though it may appear somewhat natural due to the obvious
lower bound

max{|a|, |b|, |c|, |d|} ≥ 2−1/2m1/2.

Nevertheless it is not difficult to show that given any N ≥ 1 and any exponent
with 1/2 < θ < 1 the number of quadruples (a, b, c, d) in Z4 with

|ad− bc|θ ≤ max{|a|, |b|, |c|, |d|} ≤ N

is at most 220N2+ 1
θ . As 2+ 1

θ < 4, we may say that “most of” these quadruples
have

max{|a|, |b|, |c|, |d|} < mθ.
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Also we may remark that for any Y ≥ 1 the hyperbolic area of the τ in the
fundamental domain with y ≥ Y is the fraction 3/(πY ) of the total area. Thus
by (2) we may also say that for “most of” the τ, τ ′ we have (in some standard
measure-theoretical sense)

max{|a|, |b|, |c|, |d|} = O(m1/2).

More recently in [6] during the construction of many abelian varieties overQ
not isogenous to jacobians we obtained independently the bound 2m3/2 (Lemma
2.1 p. 643). And Orr has mentioned the bound (2/

√
3)m in a private commu-

nication.
The main purpose of the present note is to obtain the sharpest possible

upper bound. Thus we shall prove (no longer mentioning isogenies or even
elliptic curves) the following.

T h e o r em. If τ, τ ′ are in the fundamental domain, then any integers a,b,c,d
with (1) satisfy

max{|a|, |b|, |c|, |d|} ≤ ad− bc.

The proof is given in section 2. We shall also briefly discuss the situation for
abelian varieties in section 3. It will be seen that in general there is no upper
bound which depends only on the varieties and the degree of the connecting
isogeny; but if we measure the isogeny through Rosati forms the situation
improves.

We thank Gabriel Dill for his comments on a first version of this note.

2 - Proof of Theorem

We recall that the standard fundamental domain, or more precisely its clo-
sure F, is the set of τ with real part x and imaginary part y satisfying

(3) x2 + y2 ≥ 1, − 1

2
≤ x ≤ 1

2
.

We note y ≥
√
3/2 and so

(4)
y2

x2 + y2
≥ y2

1
4 + y2

≥ 3

4
.

We also need the following

L emma. For τ = x+ iy in F and all real u, v we have

(ux+ v)2 + u2y2 ≥ y2

x2 + y2
max{u2, v2} ≥ 3

4
max{u2, v2}.
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P r o o f. If v = 0 it is easy, because (x2 + y2)2 = |τ |4 ≥ |τ |2 ≥ y2 and then
we use (4).

Now by homogeneity we may assume v = 1, so we have to bound E =
(ux+ 1)2 + u2y2.

If |u| ≥ 1 then

E ≥ u2y2 ≥ y2

x2 + y2
u2 =

y2

x2 + y2
max{u2, 1}.

If |u| ≤ 1 then

E = (x2 + y2)

(
u+

x

x2 + y2

)2

+
y2

x2 + y2
≥ y2

x2 + y2
=

y2

x2 + y2
max{u2, 1}.

Again by (4) this completes the proof. □

Now let τ, τ ′ be in the fundamental domain with

τ ′ =
aτ + b

cτ + d
, ad− bc = m,

and write
τ ′ = x′ + iy′, τ = x+ iy.

We have the well-known

(5) y′ =
my

L

for L = |cτ + d|2. Also for M = |aτ + b|2 we can verify the identities

M = Lx′2 +
m2y2

L
= L|τ ′|2.

We now begin the estimation of max{|a|, |b|, |c|, |d|}, organizing the argu-
ment in three stages depending on the size of c.

Suppose first c = 0 (this stage will be relatively easy). Then m = ad so at
once |a|, |d| ≤ m. Also

M = Lx′2 +
m2y2

L
= d2x′2 +

m2y2

d2
= d2x′2 + a2y2 ≤ d2

4
+ a2y2

thanks to |x′| ≤ 1/2. On the other hand M = (ax+ b)2 + a2y2 so

(ax+ b)2 ≤ d2

4
≤ m2

4
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and then

|b| ≤ m

2
+

|a|
2

≤ m

giving the bound
max{|a|, |b|, |c|, |d|} ≤ m.

Next suppose |c| = 1 (this stage contains the key step). We may assume
y ≤ y′ because interchanging involves the adjoint matrix with the same |c|. We
may even suppose c = 1. Now (5) leads to

m ≥ L = (x+ d)2 + y2

and so the Lemma with u = 1, v = d gives

|d| ≤ max{1, |d|} ≤ 2√
3

√
m < m+ 1.

If |d| ≥ 1 then |x + d| ≥ 1/2 ≥ |x| and this |x + d| ≥ |x| holds also for d = 0.
So L ≥ x2 + y2.

Now

M = Lx′2 +
m2y2

L
≤ L

4
+

y2

x2 + y2
m2 ≤ m

4
+

y2

x2 + y2
m2.

This is

y2

x2 + y2
m2

(
1 +

x2 + y2

y2
1

4m

)
≤ y2

x2 + y2
m2

(
1 +

1

3m

)

<
y2

x2 + y2
m2

(
1 +

1

6m

)2

where we used (4). Now the Lemma gives M ≥ (y2/(x2 + y2))max{a2, b2} so

max{|a|, |b|} < m

(
1 +

1

6m

)
= m+

1

6

and the result.
Finally suppose |c| ≥ 2 (which happens “most” of the time). Then L ≥ c2y2

so

M = Lx′2 +
m2y2

L
≤ L

4
+

1

c2
m2 ≤ M

4
+

1

c2
m2

where we used 1 ≤ |τ ′|2 = M/L. So L ≤ M ≤ 4m2/3c2 and now the Lemma
gives the somewhat sharper

max{|a|, |b|, |c|, |d|} ≤ 4

3|c|
m ≤ 2

3
m < m

(so also “most” of the time).
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3 - Abelian varieties

One cannot expect similar bounds for isogenies between abelian varieties
A,A′ of dimension g > 1. Suppose they are principally polarized, so that the
analogues T,T′ of τ, τ ′ are in the Siegel upper half space. If we take the period
matrices as (I,T), (I,T′) for the identity matrix I, then (1) becomes

T′ = (AT +B)(CT +D)−1

with A,B,C,D integer square matrices of size g, with the degree of an isogeny
(from A to A′)

m = det

(
A −B

−C D

)
.

Fundamental domains are much more complicated now (see for example Gott-
schling [3] who for g = 2 gives 28 inequalities in place of (3) and shows that all
are needed), but any reasonable one certainly includes iI. One could also use
the Siegel sets, which are liable to be larger.

In fact there is no bound of any form

(6) max{∥A∥, ∥B∥, ∥C∥, ∥D∥} ≤ C(A,A′,m)

involving any matrix norms. For example, with g = 2 one can take A = A′ = E2

for the elliptic curve E isomorphic to C/(Z + Zi). With the map defined by
taking (U, V ) in E2 to (pU + qV, rU + sV ) in E2 for integers p, q, r, s one finds
for T = T′ = iI

(7) A = D =

(
p q
r s

)
, B = C = 0

so m = (ps − qr)2 and an isogeny if and only if ps − qr ̸= 0. So (6) would be
bounding the entries of a general integer matrix in terms of its determinant.

The underlying reason here is that the endomorphism ring ofE2 contains the
matrix ring M2(Z), which has units of infinite order (such units are impossible
in the endomorphism ring of E). Thus as soon as A contains the square of an
abelian variety B, the impossibility of (6) remains. And the same is true even
when something isogenous to A contains a B2.

Thus we may assume that A is (or is even isogenous to) a product A1×· · ·×
Ak for mutually non-isogenous abelian varieties A1, . . . , Ak. Since an isogeny
from A now splits into isogenies from each of the factors, we may consider each
factor separately.

For g = 2 and k = 2 we have two non-isogenous elliptic curves, and it is not
hard to see that our Theorem gives a bound C(A,A′)m in (6), with a suitable
interpretation of fundamental domain.
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For g = 2 and k = 1 we have simple A. The standard classification shows
that then the endomorphism algebra of A (and so also A′), if not Q, is a real
quadratic field, or a totally imaginary quadratic extension of a real quadratic
field, or a totally indefinite quaternion algebra over Q. But these latter all con-
tain a real quadratic field and so units η of infinite order, so different 1, η, η2, . . ..
The corresponding isogenies from A to A all have degree m = 1; but a bound
(6) would imply at most finitely possibilities for 1, η, η2, . . ., since the rational
representation on endomorphisms is faithful.

If the endomorphism algebra of A is Q, then there is essentially only one
polarization on A and A′, so all isogenies are automatically polarized. Now
the work of [8] gives a bound C0m in (6) with C0 absolute if A,A′ are already
principally polarized.

The situation for g > 2 is less clear. For example with g = 3 a simple abelian
variety can have endomorphism algebra which is an imaginary quadratic field.
That rules out units of infinite order; but is (6) still impossible? Or for g = 4
we could have a totally definite quaternion algebra over Q, again ruling out
units of infinite order.

For general g and endomorphism algebraQ, the work of [8] applies as above.

And when the automorphism group of A is finite, Proposition 3.3(ii) (p. 11)
of Dill [2] implies (6) with a polynomial dependence on m (see Orr [7] as well).

But for general g and general endomorphism algebra we know very little.
Here it may be worth noting that we could measure an endomorphism of a prin-
cipally polarized abelian variety not simply by its degree but rather a “length”
ℓ coming from the square root of the positive definite quadratic form attached
to the Rosati involution. Then in Lemma 4.1 (p. 653) of [6] we proved the
following analogue of (2), at least for A = A′. Namely

(8) max{∥A∥, ∥B∥, ∥C∥, ∥D∥} ≤ C(g)yℓ

where y is the largest of the diagonal entries of T (again with a suitable funda-
mental domain).

Concretely ℓ is the square root of the trace of

(
A −B

−C D

)(
0 −I

I 0

)(
A −B

−C D

)t(
0 −I

I 0

)−1

for the transpose, and the degree m is the square root of the determinant. For
example with g = 2 we have

1√
2
ℓ =

√
a11d11 − b11c11 + a12d12 − b12c12 + a21d21 − b21c21 + a22d22 − b22c22.
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Thus for (7) we have
1√
2
ℓ =

√
p2 + q2 + r2 + s2

(whose square is now clearly positive definite) so that in this case (8) holds
with upper bound simply 2−1/2ℓ.

We do not know if in general (8) holds with C(g)ℓ or even C(g)ℓκ(g).
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