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1 - Introduction

There is by now a long tradition of solving parametrised families of Thue
equations: starting with [20], many such equations have been studied, and the
topic still attracts attention to this day (see for example [1,4,13,15,21]). The
methods vary, but are usually rooted in the theory of linear forms in logarithms
or other diophantine approximation techniques. Very often, these powerful
theoretical tools must be complemented by extensive calculations, for instance
in order to reduce the large bounds coming from linear forms in logarithms to
manageable size (by way of example, [13] relies on distributed computations
on some 40 workstations!).

On the other hand, specific Thue equations have often been handled us-
ing variants of Skolem’s p-adic method [18,22], which (whenever applicable)
gives simple algebraic solutions, without the burden of substantial additional
calculations. However, due to some intrinsic limitations, Skolem’s approach
has rarely been applied to whole families of equations. Notable exceptions are
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some results on equations of low degree that we now recall. In the cubic case,
Delone and Nagell obtained sharp upper bounds on the number of solutions
of cubic equations with negative discriminant, as summarised by the next two
theorems:

Th e o r em 1.1 (Delone [8]). Let d be a cube-free integer. The equation

(1) x3 − dy3 = 1

has at most 2 integral solutions.

Th e o r em 1.2 (Delone [7], Nagell [14]). If F is an irreducible binary cubic
form with integer coefficients and negative discriminant, then the number NF

of integer solutions to the equation F (m,n) = 1 is at most 5. Moreover, if
NF = 5, then F is equivalent to x3 − xy2 + y3, with discriminant −23, and, if
NF = 4, then F is equivalent to either x3 + xy2 + y3 or x3 − x2y + xy2 + y3,
with discriminant −31 or −44, respectively.

The theory in degree 4 is significantly less complete, but Ljunggren estab-
lished an analogue of Theorem 1.1:

T h e o r em 1.3 (Ljunggren [11]). Let d be an integer. The equation x4 −
dy4 = 1 admits at most one solution in positive integers.

Rema r k 1.4. By completely different methods, Bennett and de Weger
have shown [1,2] that the equation |axn−byn| = 1, where a, b are fixed integers
with ab �= 0 and n ≥ 3, has at most one solution in positive integers (x, y).

Beyond the theorems of Delone, Nagell and Ljunggren quoted above, the
literature seems to contain few results on parametrised Thue equations obtained
by Skolem’s method. A noteworthy example is [17], where certain quartic
equations possessing only trivial solutions are considered. In this note we fully
solve a family of quintic Thue equations (having also a nontrivial solution)
by using nothing more than Skolem’s approach. Specifically, we will show
the following result, which is perhaps the first instance of a parametric Thue
equation of degree 5 solved by this method:

Th e o r em 1.5. Let b be a non-zero integer divisible by 5. The Thue equa-
tion

(2) m5 + 4b4mn4 − n5 = 1

has precisely three integral solutions, namely (m,n) = (1, 0), (0,−1) and (1, 4b4).
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Theorem 1.5 gives a new application of Skolem’s method in families, in a
context where the group of units of the relevant number field has rank 2 (the
technique is most commonly used when the unit rank is one; Theorems 1.1 and
1.2 in particular fall in this case). It seems possible to remove the assumption 5 |
b with some extra work, see in particular Remark 3.1. However, we have decided
to keep this hypothesis to simplify the argument, especially given that our main
objective is to give a presentation of Skolem’s approach in modern language,
and to place it in the more general context of a family of p-adic methods for
the determination of integral and rational points on certain algebraic varieties.
While the analogy is often alluded to in the literature, different incarnations of
the general idea are not usually discussed from a unifying perspective, which
we try to do below. We will in particular mention the connection with two
modern strategies for the determination of rational points on algebraic curves:
the Chabauty-Coleman method [3,6] and its so-called quadratic extension, in
the approach of Edixhoven and Lido [10].

Consider an algebraic variety X0 over Z, whose integral points X0(Z) we
wish to determine (when X0 is a projective curve, rational and integral points
coincide). Even more generally, X0 could be any subset of ZN for some N ≥ 1,
not necessarily given by polynomial equations: in the context of Thue equations,
the relevant conditions may be expressed by exponential equations, as we will
describe below. By abuse of notation, we will denote the set of points of interest
by X0(Z) in this more general setting as well.

The basic idea of a large class of methods is as follows. One fixes an auxiliary
prime p and an ‘ambient space’ A (a p-adic analytic variety). Within A, one
identifies:

1. a first p-adic variety X (possibly singular), which for geometric reasons
contains a copy of X0(Z);

2. a second p-adic variety Y (possibly singular), determined by the global
arithmetic of X0, which also contains X0(Z).

The choice of X and Y ensures that the integral points X0(Z) lie in X∩Y . If X
and Y are chosen ‘independently’, and dimX+dimY ≤ dimA, it is reasonable
to expect the intersection X ∩ Y to be finite: if this is the case, we can usually
get quite sharp upper bounds for #X0(Z). We may also hope to determine
the set X0(Z) itself, although this is usually only possible if all points in the
intersection X ∩ Y do actually come from X0(Z), and are not ‘extra’ p-adic
points whose coordinates are not integral. We now make this more concrete
in two important cases: Chabauty’s method for rational points on curves and
Skolem’s method for cubic Thue equations with negative discriminant.
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1. In Chabauty’s method, X0 is a smooth projective curve of genus g, and one
takes A = J(Qp), where J is the Jacobian of X0. Provided that at least
one rational point P0 on X0 is known, we may embed X0(Qp) ↪→ A(Qp) by
the Abel-Jacobi map, based at the known rational point P0. We take X to
be the image of this map. The role of Y is played by the p-adic closure of
the subgroup J(Q) ⊆ J(Qp) = A: this is a subvariety of dimension at most
r := rkJ(Q). Since (under the Abel-Jacobi map) we have X0(Q) ⊆ J(Q),
it is then clear by construction that X0(Q) = X0(Z) lies in the intersection
X ∩ Y . The inequality dimX + dimY ≤ dimA is certainly implied by
1+r ≤ g: this is the famous Chabauty condition, under which Chabauty and
Coleman have shown that the intersection X ∩ Y is indeed finite [3,6]. The
so-called quadratic extension of this method is much more sophisticated, but
the basic idea is the same. The ambient variety A is given by a Gρ−1

m -torsor
over J , where ρ is the rank of the Z-module of symmetric endomorphisms
of J . The variety X is again given by the Qp-points of a copy of the original
curve X0, while Y is essentially a finite-degree cover of the p-adic closure of
J(Q). The dimension condition becomes 1 + r ≤ g + ρ− 1: Edixhoven and
Lido prove that when this inequality holds the intersection X ∩ Y , which
contains X0(Z), is finite and can be described by explicit p-adic equations.

2. Consider now the Thue equation F (m,n) = 1, where F (x, y) is a homo-
geneous polynomial of degree 3 with integer coefficients. We assume for
simplicity that F (x, 1) is monic, and that F (x, y) is irreducible (if that is
not the case, solving the corresponding Thue equation is easier). We may
then write F (x, y) = (x − yϑ1)(x − yϑ2)(x − yϑ3) for suitable algebraic in-
tegers ϑi of degree 3. Finally suppose that the discriminant of F is negative,
so that the cubic field K := Q[x]/(F (x, 1)) has precisely one real embedding.
In this case, letting ϑ be the class of x in the quotient Q[x]/(F (x, 1)) (that
is, a root of F (x, 1) in K), the Thue equation may be rewritten as the norm
equation

NK/Q(m− nϑ) = 1.

Since m,n are required to be integers, m − nϑ lies in the ring Z[ϑ]. By
assumption, K has one real embedding and two complex conjugate ones, so
by a variant of Dirichlet’s unit theorem the unit group Z[ϑ]× has rank one,
and is therefore of the form 〈−1〉×〈ε〉 for a certain unit ε with NK/Q(ε) = 1.
The elements of Z[ϑ] with norm 1 are then precisely the powers of ε, and
solving the Thue equation amounts to finding the integers k for which

(3) εk = a0 + a1ϑ

holds for certain integers a0, a1 (a solution is then given bym = a0, n = −a1).
We may consider Equation (3) as defining a subset X0 of Z3, namely the set
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of points (a0, a1, 0) which are also the coefficients (in the basis 1, ϑ, ϑ2) of an
element of the form εk for some integer k.

We are now in a position to frame Skolem’s method within the general
framework described above. We take as ambient space A the p-adic variety
Z[ϑ] ⊗Z Zp, which geometrically is the affine space of dimension 3 over Zp,
with natural coordinates given by the coefficients of 1, ϑ, ϑ2. The variety
X is the codimension-1 linear subspace where the coefficient of ϑ2 vanishes,
and there is an obvious embedding of X0 in X. The variety Y is the p-
adic closure of the set εk for k ∈ Z: the global arithmetic information that
goes into this description is the unit ε, which is itself determined by the
arithmetic of the number ring Z[ϑ]. It is again clear by construction that
X0(Z) is contained in the intersection X ∩ Y . Finally, one has dimX = 2
and – as we will see – dimY = 1, so the dimension condition is met.

For the equation of Theorem 1.5, the situation is slightly different, in the
sense that X and Y are both of dimension 2, and are embedded in an ambient
space of dimension 5. We will see that the intersection X∩Y is finite and always
consists of precisely 3 points: since we already know three integral solutions
to Equation (2), this will imply that the solutions listed in the statement of
Theorem 1.5 are in fact the only ones.

To conclude our general description of Skolem’s method we briefly touch
upon the main tools typically used to bound the size of X ∩ Y . We begin with
a result of Strassmann that is essentially a form of the Weierstrass preparation
theorem in one variable:

T h e o r em 1.6 (Strassmann [5, Theorem 4.5.1]). Let f =
∑

n≥0 anx
n be a

power series with coefficients in Qp and denote by vp the p-adic valuation on
Qp. Suppose that vp(an) → ∞ as n → ∞ and that f is not identically zero,
and let r := min vp(an), N := max{n : vp(an) = r}. The power series f(x)
converges for all x ∈ Zp, and the equation f(x) = 0 has at most N solutions in
Zp.

In our case of interest we will have to locate the zeroes of a system of two p-
adic functions in two variables, which will require a slightly non-trivial reduction
to the one-variable version of Strassmann’s theorem given above. In some
situations, the following result is enough to handle the case of several power
series in several variables, but our case is complicated enough that it needs finer
tools (the Weierstrass preparation theorem for general p-adic series [9,19]).

T h e o r em 1.7 (Skolem [16]). Let p be a prime number. For j = 1, . . . , n
let fj(t1, . . . , tn) =

∑
i≥0 p

ifij(t1, . . . , tn), where each fij is a polynomial in
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Zp[t1, . . . , tn]. Suppose that the f0j are linear forms and that the determinant

of the Jacobian matrix
(
∂f0j
∂ti

)
is a p-adic unit. Then, the system of equations

fj(t1, . . . , tn) = 0 for j = 1, . . . , n has at most one solution (t1, . . . , tn) in Zn
p .

Finally, I would like to point out that proving that Y has the expected
dimension (Section 2) relies on certain p-adic estimates that may be regarded
as a sophisticated version of the so-called ‘lifting the exponent’ lemma. This is
an elementary fact that has often appeared in various Mathematical Olympiads
and that I first learned from Roberto Dvornicich. It is a pleasure to be able to
use it in a paper written in his honour.

2 - The p-adic closure of a set of units

In this section we prove that in the case of cubic Thue equations with
negative discriminant the p-adic variety Y (with notation as in the introduction)
has dimension 1. This fact is well-known, but often not stated in this language,
so we prove a more general statement that immediately implies it and that also
covers the situation of Theorem 1.5 (where Y has dimension 2). Let R be a
Zp-algebra that is a free Zp-module of finite rank r. Let ε1, . . . , εk be elements
of R×, and consider the set

Y0 := {εe11 · · · εekk : e1, . . . , ek ∈ Z}.

Denote by Y the closure of Y0 in the p-adic topology of R (since R ∼= Zr
p as

Zp-modules, there is a natural p-adic topology on R). We will prove:

T h e o r em 2.1. Y is a finite union of p-adic manifolds, each of which is
the image of Zk

p via a p-adic analytic map. In particular, the dimension of Y
is at most k.

We will need some facts about certain special p-adic analytic functions (for
a general introduction to the topic we refer the reader to [5, §4.2]):

L emma 2.2. Let p be a prime number and let q =

{
4, if p = 2

p, if p > 2.
Let R

be a Zp-algebra whose underlying additive group is a free Zp-module of finite
rank r. The following hold:

1. The series

log(1 + qx) :=
∑
n≥1

(−1)n+1 (qx)
n

n

converges for all x ∈ R and defines a p-adic analytic function R → qR.
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2. The series

exp(qx) :=
∑
n≥0

(qx)n

n!

converges for all x ∈ R and defines a p-adic analytic function R → 1+qR.

3. For all x ∈ R we have exp(log(1 + qx)) = 1 + qx. For all x, y ∈ R we
have exp(qx+ qy) = exp(qx) exp(qy).

P r o o f. The equalities of part (3) hold as identities of formal power series,
so the conclusion holds as soon as all the relevant series converge uniformly.
Thus it suffices to show (1) and (2). Given x ∈ R, denote by vp(x) the largest
integer k such that x ∈ pkR (with k = ∞ if x = 0). Since the p-adic metric
is non-archimedean, to show uniform convergence it suffices to prove that the
general term of the series considered goes to 0 uniformly as n → ∞. As a
fundamental system of neighbourhoods of 0 ∈ R is given by {pkR : k ∈ N}, it
suffices to show that vp

(
(qx)n

n

)
and vp

(
(qx)n

n!

)
tend to infinity when n → ∞.

Given the definition of vp, it is enough to prove the same statement for vp

(
qn

n

)

and vp

(
qn

n!

)
, and this is well-known (see for example [5, Lemma 4.2.8]). □

P r o o f o f T h e o r em 2.1. The quotient R = R/pR is a finite Fp-algebra.
In particular, the group (R/pR)× has finite exponent, so for each i = 1, . . . , k
there exists Ei such that εEi

i reduces to the identity of R/pR. We may then

write εEi
i = 1 + psi for some si ∈ R. Replacing Ei by 2Ei when p = 2

we have εEi
i = 1 + qs′i, where s′i ∈ R and q is as in Lemma 2.2. For each

i = (i1, . . . , ik) ∈
∏k

j=1{0, . . . , Ej − 1} we consider the function

fi(t1, . . . , tk) :=

k∏
j=1

ε
ij
j · exp

(
t1 log(ε

E1
1 ) + · · ·+ tk log(ε

Ek
k )

)
.

By Lemma 2.2, this is a well-defined p-adic analytic function, converging on
all of Zk

p, with values in 1 + qR (simply notice that by construction we have

εEi
i = 1 + qs′i, so log(εEi

i ) is in qR). Moreover, as R is p-adically complete, all
elements congruent to 1 modulo p are invertible, so fi takes values in R×. Let

Li := log(εEi
i ) ∈ R. From the set {L1, . . . , Lk} we may extract a basis of the

(automatically free) Zp-submodule of R ∼= Zr
p generated by L1, . . . , Lk. Up to

renumbering, we may assume that this basis consists of L1, . . . , Lm for some
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m ≤ min{k, r}. It is then clear that the image of fi is the same as the image of

gi(t1, . . . , tm) =
k∏

j=1

ε
ij
j · exp (t1L1 + · · ·+ tmLm) : Zm

p → R.

The i-th column of the Jacobian matrix of gi at the point (t1, . . . , tm) is
gi(t1, . . . , tm) · Li, where we interpret elements of R as vectors in Zr

p. Since
gi(t1, . . . , tm) is a unit and the Li are linearly independent, the Jacobian has
the maximal rank m, so gi is locally an immersion of p-adic manifolds. Fur-

thermore, gi is globally injective, because
∏k

j=1 ε
ij
j is a unit, exp is invertible

on 1 + qR, and L1, . . . , Lm are linearly independent. Thus fi(Zk
p) = gi(Zm

p ) is
a p-adic manifold of dimension m ≤ k. Observe now that for integer values of
t1, . . . , tk we have

fi(t1, . . . , tk) =
k∏

j=1

ε
ij
j · exp (t1L1 + · · ·+ tkLk)

=
k∏

j=1

ε
ij
j ·

k∏
j=1

exp(log(ε
Ej

j ))tj

=
k∏

j=1

ε
ij+Ejtj
j ∈ Y0.

Conversely, we claim that Y0 ⊆
⋃

i fi(Zk): indeed, given any element εe11 · · · εekk
of Y0, let i = (i1, . . . , ik) ∈

∏k
j=1{0, . . . , Ej − 1} be defined by the conditions

ij ≡ ej (mod Ej). We can then write

(ε1, . . . , εk) = (i1, . . . , ik) + (E1t1, . . . , Ektk)

for some (t1, . . . , tk) ∈ Zk ⊆ Zk
p, and from the previous formulas we get

εe11 · · · εekk = fi(t1, . . . , tk) ∈ fi(Zk).

Finally, since Zk is p-adically dense in Zk
p and fi is analytic, we also obtain that

fi(Zk) is dense in fi(Zk
p). Since Y0 =

⋃
i fi(Zk), this proves that

⋃
i fi(Zk

p) is
precisely the p-adic closure of Y0 and establishes the theorem. □

Rema r k 2.3. In particular, when k = 1 and ε is a unit of infinite order,
it follows from the proof of the theorem that Y is the union of finitely many
1-dimensional smooth p-adic manifolds.
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3 - Proof of Theorem 1.5

Let F (x, y) = x5+4b4xy4−y5, where b is a nonzero multiple of 5. The poly-
nomial F (x, 1) is irreducible [12, Satz 1], so the number fieldK := Q[x]/(F (x, 1))
has degree 5 over Q. Letting ϑ be a root of F (x, 1) in K, the equation we are
trying to solve can be rewritten as NK/Q(m− nϑ) = 1. Notice that m− nϑ is
in Z[ϑ], and by the condition on the norm it is also a unit of this ring.

For the global part of Skolem’s approach we rely on some results from [12].
The function of real variable x �→ F (x, 1) is strictly increasing, so F (x, 1) has
precisely one real root, and K has one real and four complex embeddings. It
then follows from Dirichlet’s unit theorem that the group of units of OK (hence
also of Z[ϑ]) has rank 2. The condition that m− nϑ be a unit of norm 1 may
then be written as

(4) m− nϑ = ξn1
1 ξn2

2 ,

where ξ1, ξ2 is a fundamental system of positive units for Z[ϑ]× (as K has a
real embedding, the torsion subgroup of Z[ϑ]× is {±1}). By [12, Satz 3], a
system of fundamental positive units of Z[ϑ]× is given by ξ1 = ϑ and ξ2 =
ϑ2 + 2bϑ + 2b2. The three known solutions of Equation (2) listed in Theorem
1.5 correspond to m− nϑ = 1,m− nϑ = ϑ, and m− nϑ = 1− 4b4ϑ = ξ51 , that
is, (n1, n2) = (0, 0), (1, 0), (5, 0).

We are now ready to apply the general strategy of the introduction: we will
work in the p-adic analytic variety A := Z[ϑ]⊗Z Zp, which we also consider as
a ring, and which will play the role of the Zp-algebra R from Theorem 2.1. We
take the subvariety X to be

X = {a0 + a1ϑ+ a2ϑ
2 + a3ϑ

3 + a4ϑ
4 : a0, a1, a2, a3, a4 ∈ Zp, a2 = a3 = a4 = 0},

and we take as Y the p-adic closure of {ξn1
1 ξn2

2 : n1, n2 ∈ Z}. By the discussion
above, it is clear that our desired solutions lie in the intersection X ∩ Y . As
auxiliary prime we choose p = 5, which is assumed to divide b.

R ema r k 3.1. As will be clear from the proof, one could work with any
prime factor of b, but a complete solution of the Thue equation (or even just
getting an explicit bound for the number of solutions) would then require a
much longer case-by-case analysis: there are in principle 25 cases to treat, that
we will shortly reduce to 2 under the assumption 5 | b. For a general prime p
it would be easy to reduce the number of cases to 10, but it is not clear how
to further cut down this number. Since our main interest lies in presenting
Skolem’s method, we have decided to make the simplifying assumption 5 | b to
keep the proof to a reasonable length.
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We clearly have A ∼= Z5
p, with natural coordinates given by the coefficients

of 1, ϑ, · · · , ϑ4, the dimension of X is 2, and the dimension of Y is also at most
2 by Theorem 2.1. We may then well expect X ∩ Y to be finite: we now show
that this is the case and bound its size. The statement of Theorem 1.5 lists
three pairs (m,n) that are clearly solutions of Equation (2), so it suffices to
prove that |X ∩ Y | = 3, or in fact even |X ∩ Y | ≤ 3.

Let k ≥ 1 be the 5-adic valuation of b. We have ξ51 = ϑ5 = 1 − 4b4ϑ ≡ 1
(mod 5) and ξ52 ≡ (ϑ2)5 ≡ 1 (mod 5), so by Lemma 2.2 we may define Li =
log(ξ5i ) for i = 1, 2. Following the general description of Theorem 2.1 we would
now have to study the expression ξn1

1 ξn2
2 by distinguishing the 25 possible cases

for the pair (n1 mod 5, n2 mod 5). Under the assumption 5 | b, we now reduce
this number to 2 (notice that for any prime divisor p of b we have ξ51 ≡ ξ52 ≡ 1
(mod p), so the 25 pairs of exponents we need to consider are independent of
the choice of the auxiliary prime p). Notice first that ϑ5 is congruent to 1
modulo 54k (and not just modulo 5). As any power (2bϑ+ 2b2)j with j ≥ 3 is
divisible by 53k in A we have

ξn1
1 ξn2

2 = ϑn1(ϑ2 + (2bϑ+ 2b2))n2

≡ ϑn1

(
ϑ2n2 +

(
n2

1

)
ϑ2n2−2(2bϑ+ 2b2)

+

(
n2

2

)
ϑ2n2−4(2bϑ+ 2b2)2

)
(mod 53k)

≡ ϑn1

(
ϑ2n2 +

(
n2

1

)
ϑ2n2−2(2bϑ+ 2b2) +

(
n2

2

)
ϑ2n2−44b2ϑ2

)
(mod 53k)

≡ ϑn1
(
ϑ2n2 + 2n2bϑ

2n2−1 + 2n2
2b

2ϑ2n2−2
)

(mod 53k).

We consider this expression in A ⊗ Z5/5
3kZ5, and we are interested in cases

when it is of the form m − nϑ. Since ϑj ≡ ϑj mod 5 (mod 53k), and since the
exponents n1 + 2n2, n1 + 2n2 − 1 and n1 + 2n2 − 2 are all distinct modulo 5,
we obtain that at least one of the coefficients of ϑn1+2n2 , ϑn1+2n2−1, ϑn1+2n2−2

has to vanish modulo 53k. Thus at least one of 2bn2 and 2n2
2b

2 is divisible
by 53k, which immediately implies that 5 divides n2. When this is the case,
we have ξn1

1 ξn2
2 ≡ ϑn1+2n2 ≡ ϑ(n1+2n2) mod 5 ≡ ϑn1 mod 5 (mod 5); since we are

again only interested in the cases when this element is of the form m − nϑ,
we obtain n1 ≡ 0, 1 (mod 5). So X ∩ Y = X ∩ (f0(Z2

5) ∪ f1(Z2
5)), where the

analytic functions f0, f1 are given by

f0(t1, t2) = exp(t1L1 + t2L2), f1(t1, t2) = ξ1 exp(t1L1 + t2L2).

Thus we only need to solve the equations fi(t1, t2) ∈ X for t1, t2 ∈ Z5. To this
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end we first expand L1, L2 to sufficient 5-adic precision: we easily obtain

L1 = log(ξ51) = log(1− 4b4ϑ) = −4b4ϑ− 8b8ϑ2 +O(b12),

where the error term O(b12) denotes an element in (b12)A = (512k)A. A short
computation also gives

L2 = 32b5 + 2b4ϑ+

(
−20

3
b3 + 4b8

)
ϑ2 − 320

21
b7ϑ3 + 10bϑ4 +O(b9).

This is enough information to expand f1(t1, t2) to p-adic precision O(5b4) =
O(54k+1): writing f1(t1, t2) =

∑4
j=0 f1,j(t1, t2)ϑ

j we find

f1,2(t1, t2) = −4b4t1 + 2b4t2 +O(5b4)

and

f1,3(t1, t2) =
500

3
b3t32 −

20

3
b3t2 +O(5b4),

where the error term now stands for a power series all of whose coefficients lie
in (5b4)A. The condition that f1(t1, t2) ∈ X implies in particular f1,2(t1, t2) =
f1,3(t1, t2) = 0, or equivalently

b−4f1,2(t1, t2) = 5−1b−3f1,3(t1, t2) = 0.

The previous formulas give the reductions modulo 5 of these two power series:

b−4f1,2(t1, t2) = −4t1 + 2t2 +O(5), 5−1b−3f1,3(t1, t2) = −4

3
t2 +O(5).

Since the determinant of the Jacobian matrix

(
−4 2
0 −4/3

)
is nonzero modulo

5, Theorem 1.7 implies that the system of equations f1,2(t1, t2) = f1,3(t1, t2) = 0
has at most one solution in Z2

5. Since t1 = t2 = 0 is certainly a solution, we
find that X ∩ f1(Z2

5) = {f1(0, 0)} = {ϑ}. This corresponds to the first trivial
solution m = 0, n = −1 of our original Thue equation (2).

The case of f0(t1, t2) is significantly more complicated, the problem being
that the coefficients of the monomials involving t1 are all divisible by high
powers of b. For this reason, we find it convenient to perform an obviously
invertible change of variables and instead work with f0(t1, t1 + t2). Write as
above f0(t1, t1 + t2) =

∑4
j=0 f0,j(t1, t2)ϑ

j . An easy computation then gives

f0,4(t1, t2) = 10bt1 + 10bt2 +O(56k+1),

where the only nontrivial term comes from the coefficient of ϑ4 in the linear
term of exp((t1 + t2)L2). We now apply the Weierstrass preparation theorem
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for p-adic series in two variables [9,19]. In the language of [9], the power series
(10b)−1f0,4(t1, t2) = t1 + t2 + O(b5) is general of order 1 in t1, so [9, Theorem
2] implies that there exists a p-adic power series h(t1) = −t1 +O(b5) such that
f0,4(t1, t2) = 0 ⇐⇒ t2 = h(t1). We write the power series h(t1) + t1 as b5E(t1),
where E(t1) ∈ A[[t1]]. We are then reduced to studying the 1-variable problem
f0(t1, t1 + h(t1)) ∈ X. We have f0(t1, t1 + h(t1)) = exp(t1L1) exp(b

5E(t1)L2),
and since b5E(t1)L2 vanishes at least to order b6 it is straightforward to obtain
the expansion of f0(t1, t1+h(t1)) to order O(58k+1): we have exp(b5E(t1)L2) =
1 + 10E(t1)b

6ϑ4 +O(58k+1), so writing again

exp(t1L1 + b5E(t1)L2) =
4∑

j=0

f0,j(t1)ϑ
j

we immediately obtain f0,2(t1) = −8b8t1+8b8t21+O(58k+1). We can now apply
Strassmann’s theorem to f0,2(t1) =

∑
n≥0 ant

n
1 : we have vp(a1) = vp(a2) = 8k

and vp(an) ≥ 8k + 1 for n �∈ {1, 2}. Thus in the notation of Theorem 1.6 we
have N = 2, and the equation f0,2(t1) = 0 has at most 2 solutions. Since
t2 = h(t1) is determined by t1, we have shown that |X ∩ f0(Z2

5)| ≤ 2 and
therefore |X ∩ Y | ≤ 3. This implies that the three known solutions must be all
the solutions of Equation (2), which concludes the proof of Theorem 1.5.
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Università di Pisa
Largo Bruno Pontecorvo 5
56127 Pisa, Italy
e-mail: davide.lombardo@unipi.it




