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Abstract. This is a survey of the structural invariants of the L-functions
in the extended Selberg class S♯, covering some of their applications. In
particular, we deal with the applications to the functional equation of the
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1 - Structural invariants

For a function f(s) of a complex variable s = σ + it we write f(s) = f(s).
Every L-function F from the extended Selberg class S♯ (see next section for
definitions) satisfies a general functional equation with multiple gamma factors

(1.1) γ(s)F (s) = ωγ(1− s)F (1− s),

where |ω| = 1 and

(1.2) γ(s) = Qs
r∏

j=1

Γ(λjs+ µj)
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with Q > 0, r ≥ 0, λj > 0 and ℜ(µj) ≥ 0. We refer to Selberg [23], Conrey-
Ghosh [2] and to our survey papers [3], [5], [19], [20], [21], [22] for further
definitions, examples and the basic theory of the Selberg class.

The γ-factor in (1.2) is uniquely determined by F up to a multiplicative
constant, see [2], but the data r, Q, λj ’s and µj ’s are not unique and their par-
ticular values can vary due to identities satisfied by the Euler gamma function.
For instance the classical γ-factor of the Riemann zeta function,

γ(s) = π− s
2Γ

s
2


,

can also be written as

(1.3) γ(s) = Qs
M
j=1

Γ


s

2mj
+

2lj
2mj


,

where

Q =


 1

π

M
j=1

m
1

mj

j




1/2

and (lj ,mj), j = 1, . . . ,M , is any exact covering system, i.e. a family of pairs of
positive integers such that for every integer n there exists a unique 1 ≤ j ≤ M
with n ≡ lj(modmj). It can be proved that (1.3) exhaust all admissible forms
of the γ-factor of the Riemann zeta function (see [6], Proposition 2.1).

By an invariant of F ∈ S♯ we mean an expression formed with the data of
the functional equation (1.1)-(1.2) which is independent of their particular val-
ues. Among the most important invariants we have the degree dF = 2

r
j=1 λj ,

introduced by Selberg [23], the conductor qF = (2π)dQ2
r

j=1 λ
2λj

j , the root

number ωF = ω
r

j=1 λ
−2iℑ(µj)
j and the H-invariants, introduced in [6] and [7];

the latter are defined as

(1.4) HF (n) = 2
r

j=1

Bn(µj)

λn−1
j

,

where Bn(z) is the nth Bernoulli polynomial. In this paper we deal only with
F ∈ S♯ of positive degree, hence with r ≥ 1. We shall often denote dF and qF
simply by d and q; observe that HF (0) = dF . An important role is also played
by HF (1); we call it the ξ-invariant of F . So, by definition, ξF = HF (1) and,
moreover, we write

ξF = ηF + idF θF
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with real ηF and θF . We call θF the internal shift of F ; the classical L-functions
have θF = 0. The importance of these invariants is illustrated by the following
theorem, see Theorem 1 in [7].

T h e o r em 1. Two L-functions F and G from the extended Selberg class
S♯ share the same γ-factor if and only if qF = qG and HF (n) = HG(n) for
every n ≥ 0. If in addition ωF = ωG, then F and G satisfy the same functional
equation.

Because of this result, qF , ωF and HF (n), n ≥ 0, are called the basic
invariants of F ∈ S♯. We also say that qF and HF (n), n ≥ 0, are the basic
invariants of the γ-factor of F .

So far we referred to the symmetric form (1.1) of the functional equation.
The latter can easily be transformed to the asymmetric invariant form

(1.5) F (s) = SF (s)hF (s)F (1− s),

where

(1.6) SF (s) := 2r
r∏

j=1

sin(π(λjs+ µj)) =

N∑
j=−N

aje
iπdFωjs

with certain N ∈ N, aj ∈ C and −1/2 = ω−N < · · · < ωN = 1/2, and

hF (s) =
ω

(2π)r
Q1−2s

r∏
j=1

(
Γ(λj(1− s) + µj)Γ(1− λjs− µj)

)
.

The above two functions are called the S-function and the h-function, respec-
tively; it can be shown that both are invariants.

The structural invariants dF (ℓ), ℓ ≥ 0, which we are going to define now
and which are in the focus of this survey, are certain invariants which together
with degree, conductor and root number uniquely determine the h-function in
the asymmetric functional equation (1.5). So they play, in the case of (1.5), a
role similar to the H-invariants in the case of (1.1). Here we define, for integer
ℓ ≥ 0, the structural invariants by

(1.7) dF (ℓ) = Ψℓ

(
HF (2), . . . , HF (ℓ+ 1), HF (1), . . . , HF (ℓ+ 1)

)
,

where Ψℓ(X1, . . . , Xℓ, Y1, . . . , Yℓ+1) are the polynomials defined in the Appendix,
see (5.5) with parameters d = dF and θ = θF . From (1.7) we plainly see that
the structural invariants dF (ℓ) are in fact invariants; we refer to the discussion
after Theorem 4 for further information on the definition of the dF (ℓ)’s. The
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following result is the analog of Theorem 1 in terms of structural invariants; it
follows from Theorem 4.

Th e o r em 2. Two L-functions F and G from the extended Selberg class
S♯ share the same h-function if and only if dF = dG, qF = qG, ωF = ωG and
dF (ℓ) = dG(ℓ) for every ℓ ≥ 0. If in addition SF = SG, then F and G satisfy
the same functional equation.

The definition of H-invariants and structural invariants may seem compli-
cated at first sight, especially in the latter case. Nevertheless, it will become
clear later on that they are very useful in the Selberg class theory. These in-
variants are also natural objects from the point of view of certain asymptotic
expansions, as the next two theorems show.

Th e o r em 3. Let F ∈ S♯ with degree d > 0 and γ-factor γ(s). Then for
| arg(s)| < π − δ with any fixed 0 < δ < π we have

log γ(s) ≈ 1

2
ds log s+

1

2
(log q − d log(2πe)) s+

1

2
ξF log s+ c(γ)

+
1

2

∞∑
n=1

(−1)n+1

n(n+ 1)
HF (n+ 1)s−n,

where

(1.8) c(γ) =

r∑
j=1

(
µj −

1

2

)
log λj +

r

2
log(2π)

and ≈ means that cutting the sum at ℓ = M one gets a meromorphic remainder
which is ≪ than the modulus of the M -th term times 1/|s| as |s| → ∞.

We refer to equation (2.8) in [7] for Theorem 3. We remark that c(γ) in
(1.8) depends on the particular form of the γ-factor and is not an invariant
of F . This agrees with the fact that the γ-factor of F is determined only up
to a multiplicative constant. Thanks to Theorem 3 we may conclude that the
modified γ-factor

γ̃F (s) := (2π)−r/2Qs
r∏

j=1

(
λ

1
2
−µj

j Γ(λjs+ µj)

)

is an invariant, but here we shall not use nor prove this fact.

T h e o r em 4. Let F ∈ S♯ with degree d ≥ 1. Then for | arg(−s)| < π − δ
with any fixed 0 < δ < π we have

(1.9) hF (s) ≈
ωF√
2π

(
q1/d

2πd

)d( 1
2
−s) ∞∑

ℓ=0

dF (ℓ)Γ
(
d(s∗ℓ − s)

)
,
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where ≈ has the same meaning as in Theorem 3 and for ℓ = 0, 1, . . . we write

(1.10) s∗ℓ := sℓ − iθF with sℓ :=
d+ 1

2d
− ℓ

d
.

Expansion (1.9) was proved in Section 3.2 of [16] with unspecified coeffi-
cients dF (ℓ), there denoted by dℓ(F ), and was used to define the structural
invariants. The approach in this paper is different, but of course it leads to
the same objects. Indeed, our present definition of the structural invariants is
purely algebraic, and the fact that the coefficients of asymptotic expansion (1.9)
are values of certain polynomials at H-invariants as in (1.7) requires justifica-
tion. Actually, (1.7) is a closed formula for the coefficients eventually arising
from the various expansions involved in the proof of (1.9). A sketch of the proof
of Theorem 4 is given in Section 4 below.

The asymptotic expansion in Theorem 4 is somehow non-standard and is
crucial for the applications we are going to present here. The original motivation
for such an expansion came from an attempt to extend to the whole class S♯ a
technique employed in [15] to obtain, in a special case, the functional equation
of the standard twist. The goal was achieved in [16], and it turns out that the
structural invariants are important in a number of other questions.

The present survey is organized as follows. In Section 2 we recall some
basic definitions and facts on the Selberg class. In the subsequent section we
discuss the applications of structural invariants to the functional equation of the
standard twist and to our recent result giving a full description of L-functions
from S♯ of degree 2 and conductor 1. In Section 4 we present sketches of some
proofs, while the Appendix contains the construction of the polynomials Ψℓ in
(1.7).

2 - Definitions and basic facts

We first recall several definitions which we shall use later on; we write
f(s) ≡ c to mean that f(s) = c identically. The extended Selberg class S♯

consists of the Dirichlet series

F (s) =
∞∑
n=1

a(n)

ns
,

F (s) ̸≡ 0 and absolutely convergent for σ > 1, such that (s− 1)mF (s) is entire
of finite order for some integer m ≥ 0, and satisfying a functional equation of
type (1.1). Note that the conjugate function F has conjugated coefficients a(n).
The Selberg class S is, roughly speaking, the subclass of S♯ of the functions with
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Euler product and satisfying the Ramanujan conjecture a(n) ≪ nε. As already
pointd out in the previous section, we refer to Selberg [23], Conrey-Ghosh [2]
and to our survey papers [3], [5], [19], [20], [21], [22] for further definitions,
examples and the basic theory of the Selberg class.

We write mF for the order of pole of F at s = 1 and

(2.1)

mF∑
m=1

γm
(s− 1)m

for its polar part. We remark that since the H-invariants depend only on
the data r,Q, λj , µj of γ-factors (1.2), we may define such invariants for any
γ-factor, without referring to functions F ∈ S♯. More generally, the same
holds for any invariant depending only on the data of γ-factors. Clearly, the
invariants of a γ-factor γ(s) coincide with the corresponding invariants of any
F ∈ S♯ having γ(s) as γ-factor. The invariants of γ-factors are usually denoted
replacing the suffix F by γ.

For α > 0 and σ > 1 the standard twist of F ∈ S♯ is defined by

F (s, α) :=

∞∑
n=1

a(n)

ns
e(−αn1/d), e(x) = e2πix,

and the spectrum of F is

Spec(F ) = {α > 0 : a(nα) ̸= 0} =
{
d
(m
q

)1/d
: m ∈ N with a(m) ̸= 0

}
,

where

(2.2) nα := qd−dαd and a(nα) := 0 if nα ̸∈ N.

Finally we recall some basic results from the Selberg class theory. Every
F ∈ S♯ has polynomial growth on vertical strips. Moreover, the standard twist
F (s, α) is entire if α ̸∈ Spec(F ), while for α ∈ Spec(F ) it is meromorphic
on C with at most simple poles at the points s = s∗ℓ in (1.10) with residue
denoted by ρℓ(α). It is known that all F ∈ S♯ have ρ0(α) ̸= 0 for every α ∈
Spec(F ). Further, F (s, α) has polynomial growth on every vertical strip. We
refer to [9], [12] and [13] for these and other results on F (s, α) and, more
generally, on the nonlinear twists of the functions in S♯. We finally recall that
Spec(F ) is an infinite set, since the functions F with positive degree cannot
be Dirichlet polynomials, and that there are no functions in S♯ with degree
0 < d < 1, see [4]; hence the functions of positive degree actually have d ≥ 1.
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3 - Applications of structural invariants

The first application of the structural invariants deals with the functional
equation of the standard twist; we need further notation to state the results.
With γm as in (2.1) and with the notation in (2.2) and (1.6), we consider the
functions

R(s, α) = (2πiα)−ds
mF∑
m=1

dmγm

m−1∑
h=0

(−1)h logh(2πiα)Γ(m−1−h)(ds)

h!(m− 1− h)!
,

hence R(s, α) ≡ 0 if F (s) is entire, and for ℓ = 0, 1, . . .
(3.1)

F ℓ(s, α) =

N∑
j=−N

aje
iπdωj(1−s)

∑♭

n≥1

a(n)

ns

(
1 + eiπ(

1
2
−ωj)

(nα

n

)1/d
)d(1−s−s∗ℓ )

,

where the symbol ♭ in the inner sum indicates that the term n = nα is omitted

if j = −N . Hence F ℓ(s, α) is well defined since 1 + eiπ(
1
2
−ωj)

(
nα
n

)1/d ̸= 0

always. Note that if α ̸∈ Spec(F ) we may omit ♭, since a(nα) = 0 in this case.
Note also that the inner sum in (3.1) is a general Dirichlet series with complex
frequencies, absolutely convergent for σ > 1, and

(3.2)

(
1 + eiπ(

1
2
−ωj)

(nα

n

)1/d
)d(1−s−s∗ℓ )

= ed(1−s−s∗ℓ ) log
(
1+eiπ( 12−ωj)(nα

n )
1/d

)

where the branch of log(z) for z ∈ H \ {0} has argument in [0, π], H being the
upper half-plane {z ∈ C : ℑ(z) > 0}. Let finally

eℓ =
d− 1

2
+ ℓ+ iθF .

With the above notation, the functional equation of the standard twist is
given by the following theorem.

Th e o r em 5. Let F ∈ S♯ with d ≥ 1 and let α > 0. Then for any integer
k ≥ 0 and s in the strip sk+1 < σ < sk we have

F (s, α) =
ωF√
2π

(
q1/d

2πd

)d( 1
2
−s) k∑

ℓ=0

dF (ℓ)Γ
(
d(1− s)− eℓ

)
F ℓ(1− s, α)

+R(1− s, α) +Hk(s, α),

(3.3)
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where the function Hk(s, α) is holomorphic in the above strip and meromorphic
over C with all poles in a horizontal strip of bounded height. Moreover, there
exists θ = θ(d) > 0 such that for any σ ∈ [sk+1, sk] ∩ (−∞, 0) we have

Hk(s, α) ≪ |t|−θ as |t| → ∞.

Note that functional equation (3.3) is a kind of general form of the functional
equation satisfied by the Hurwitz-Lerch zeta functions; indeed, the standard
twist of the Riemann zeta function corresponds to a special case of such zeta
functions. Actually, such a similarity holds for all F ∈ S♯ of degree d = 1, since
their standard twists are again related with the Hurwitz-Lerch zeta functions.
However, the proof of Theorem 5 goes along different lines, and will be outlined
in the next section. The function R(1− s, α) is present in (3.3) only if F has a
pole at s = 1, while the terms Hk(s, α) may be regarded as error terms. These
terms are not present in degree 1 as well as in other special cases with degree
d > 1, for example for the L-functions associated with half-integral weight cusp
forms; see [15], which also includes a discussion of the cases where such a simpler
form holds. Actually, if there exists an integer h ≥ 0 such that Hk(s, α) ≡ 0 for
every k ≥ h and α > 0 we say that F (s, α) satisfies a strict functional equation.
In Theorem 4 of [16] we showed that a strict functional equation exists if
and only if there are only finitely many nonvanishing structural invariants or,
equivalently, if and only if F has a γ-factor of type

γ(s) = Qs
N∏
j=1

Γ
( d

2N
s+

2nj − d− 1

4N

)

with Q > 0, N ≥ 1 and suitable integers nj . It is an interesting open question
to establish if there exist L-functions, other than the above mentioned ones,
having a γ-factor of this type.

Theorem 5 is complemented by the following result, giving the properties
of the functions F ℓ(s, α) involved in (3.3). As one can guess from the definition
in (3.1), after expanding the left hand side of (3.2) these functions are close to
suitable “stratifications” of F (s).

T h e o r em 6. Let F ∈ S♯ with degree d ≥ 1, α > 0 and ℓ = 0, 1, 2, . . . Then
F ℓ(s, α) is an entire function, not identically vanishing. Moreover, uniformly
for σ in any bounded interval, as |t| → ∞ we have

F ℓ(s, α) ≪ e
π
2
d|t||t|c(σ)

with a certain c(σ) ≥ 0 independent of ℓ and α, satisfying c(σ) = 0 for σ > 1.
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We are not going to present the proof of Theorem 6, for which we refer to
Section 2 of [16]. From the proof of Theorem 5 we obtain the following explicit
expression for the residues ρℓ(α) of F (s, α) at the potential poles s∗ℓ in (1.10),
when α ∈ Spec(F ).

T h e o r em 7. Let F ∈ S♯ with d ≥ 1, α ∈ Spec(F ) and ℓ = 0, 1, . . . . Then

ρℓ(α) =
dF (ℓ)

d

ωF√
2π

e−iπ
2
(ξF+ds∗ℓ )

(
q1/d

2πd

) d
2
−ds∗ℓ

a(nα)

n
1−s∗ℓ
α

.

In particular, the set of poles of F (s, α) is independent of α and equals {s∗ℓ :
dF (ℓ) ̸= 0}.

Although obtained as a by-product of the proof of Theorem 5, the explicit
expression of ρℓ(α) in Theorem 7 is important in various situations, since it
connects the polar structure of the standard twist to the structural invariants.
Again, we are not going to present the proof of Theorem 7, since it requires
entering the details of the proof of Theorem 5; the interested reader is referred
to Section 3.7 of [16].

Finally we turn to the application of structural invariants to the classifi-
cation of the Selberg class. It is generally expected that the class S coincides
with the class of automorphic L-functions, but a proof of this statement ap-
pears to be very difficult at present. In particular, it is expected that there
exist no F ∈ S with degree d ̸∈ N; this is known as the degree conjecture and
is expected to hold in the wider setting of the extended class S♯. The degree
conjecture for S♯ is known for degrees 0 < d < 1, see e.g. Conrey-Ghosh [2] and
our paper [4]. A short proof in this case follows at once from the polar structure
of the standard twist F (s, α). Indeed, for α ∈ Spec(F ), F (s, α) has a pole on
the line σ = (d + 1)/(2d) > 1 for 0 < d < 1, a contradiction. The next case
1 < d < 2 is definitely more difficult and was first settled in [10], after partial
results in [8]; a shorter proof has been recently devised by Balasubramanian-
Raghunathan [1]. The classification of the functions of degree = 1 in S and
S♯ has been obtained in [4]; in the case of S, it turns out that such functions
are the Riemann zeta function and the shifts of the Dirichlet L-functions with
primitive characters. Another proof was obtained by Soundararajan [24]. The
next open case is d = 2. Here one expects that the members of S are the
L-functions associated with the Hecke and Maass eigenforms of any level, while
there is no standard guess on the nature of the functions of degree d = 2 in
S♯; note that the level of a form coincides with the conductor of the associated
L-function. Recently, in [17] we classified the functions in S♯ with degree d = 2
and conductor q = 1; a first step, dealing only with the class S, was taken
in [11] using different arguments.
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In order to state our last result we need to introduce a normalization. We
say that a function F ∈ S♯ is normalized if its internal shift θF vanishes and
the first nonvanishing Dirichlet coefficient equals 1. Normalized functions have
two nice properties. Indeed, on the one hand every F ∈ S♯ with d = 2 and
q = 1 can be normalized by means of a simple procedure, so we may consider
only such functions without loosing generality. On the other hand, it turns out
that normalized functions have real coefficients, hence the functional equation
reflects F (s) into F (1−s) rather than into F (1−s) as in the general case. This
is important, since the functional equation of the L-functions L(s) of the level
1 forms, once suitably normalized to fit S♯, reflects L(s) into L(1− s).

The classification of the functions in S♯ with degree d = 2 and conductor
q = 1 is carried out by means of the numerical invariant

χF = HF (1) +HF (2) + 2/3,

where the HF (n) are the H-invariants defined by (1.4). For example, a simple
computation shows that

χF =
(k − 1)2

2
or χF = −2κ2

when, respectively, F (s) = L(s + k−1
2 , f) with a holomorphic cusp form f of

level 1, weight k and first nonvanishing Fourier coefficient 1, or F (s) = L(s, u)
with a Maass form u of level 1, weight 0, eigenvalue 1/4+ κ2 and first Fourier-
Bessel coefficient 1. Our result shows, conversely, that the value of χF detects
the nature of any normalized F ∈ S♯ of degree 2 and conductor 1.

T h e o r em 8. Let F ∈ S♯ of degree 2 and conductor 1 be normalized. Then
χF ∈ R and

(i) if χF > 0 then there exists a holomorphic cusp form f of level 1 and even
integral weight k = 1 +

√
2χF such that F (s) = L(s+ k−1

2 , f);

(ii) if χF = 0 then F (s) = ζ(s)2;

(iii) if χF < 0 then there exists a Maass form u of level 1, weight 0 and with
eigenvalue 1/4 + κ2 = (1− 2χF )/4 such that F (s) = L(s, u).

In case (iii) we can specify the parity ε of u by means of the root number ωF

of F , namely

ε =
1− ωF

2
.

Clearly, if F ∈ S♯ with d = 2 and q = 1 is not normalized, we may first
normalize it and then use Theorem 8 to detect its nature. Therefore, every
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such F is closely related to one of the L-functions in Theorem 8. Moreover,
it follows that every F ∈ S as in Theorem 8 is an automorphic L-function.
We also remark that quite possibly the method of proof of Theorem 8 can be
extended to cover the case of other small integer moduli q > 1.

As already pointed out, the structural invariants dF (ℓ) and the explicit
expression for the residues ρℓ(α) in Theorem 7 play an important role in the
proof of Theorem 8, an outline of which is given in the next section. We conclude
by remarking that a new and crucial ingredient in the proof of Theorem 8 is that
the structural invariants lie, in the special case at hand, on a certain universal
family of algebraic varieties; see Section 4.3 for some details. We guess that
a similar phenomenon should hold in general for the functions F ∈ S♯, i.e.
the invariants dF (ℓ) should lie on certain algebraic varieties to a large extent
independent of F . If true, this could explain why L-functions satisfy only
functional equations with very special Γ-factors, and in particular could shed
some light on the general structure of the Selberg class.

4 - Outline of the proof of Theorems 4, 5 and 8

In this section we give a sketch of the proof of Theorem 4 and outline those
of Theorems 5 and 8. We refer to the original papers for detailed proofs of
Theorems 5 and 8; precisely, Theorem 5 is Theorem 2 in [16] while Theorem
8 is Theorem 1.1 in [17]. Since in this paper we changed the definition of the
structural invariants dF (ℓ), using (1.7) rather than the asymptotic expansion
(1.9) as in [16], strictly speaking Theorem 4 is a new result. However, such
expansion of hF (s) is actually the same as that in Section 1.3 of [16].

4.1 - Sketch of the proof of Theorem 4

The proof is based on Stirling’s formula, which we write in the form

log Γ(s+ a) ≈ (s+ a− 1

2
)s log s− s+

1

2
log(2π) +

∞∑
ν=1

(−1)ν+1Bν+1(a)

ν(ν + 1)

1

sν

uniformly for | arg(s)| < π − δ for every 0 < δ < π, where ≈ has the same
meaning as in Theorem 4. Hence for | arg(−s)| < π − δ we have
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log(ωhF (s)) = (1− 2s) logQ− r log(2π)

+
r∑

j=1

(
log Γ(−λjs+ λj + µj) + log Γ(−λjs+ 1− µj)

)

≈ (
1

2
− s) log

(
q

(2π)d

)
− 2iℑ

r∑
j=1

µj log λj + (−ds+
1

2
d− idθF ) log(−s) + ds

−
∞∑
ν=1

1

ν(ν + 1)

r∑
ȷ=1

(
Bν+1(λj + µj)

λν
j

+
Bν+1(1− µj)

λν
j

)
1

sν
.

(4.1)

Using the well-known formulae

Bν(x+ y) =

ν∑
k=0

(
ν

k

)
Bk(x)y

ν−k and Bν(1− x) = (−1)νBν(x)

we see that the double sum in (4.1) equals

(4.2)
1

2

∞∑
ν=1

1

ν(ν + 1)

(
(−1)ν+1HF (ν + 1)) +

ν+1∑
k=1

(
ν + 1

k

)
HF (k) + d

)
1

sν
.

Moreover we have the expansion

logΓ(−ds+
d+ 1

2
− idθ)

≈ (−ds+
d

2
− idθ) log(−s) + ds(−ds+

d

2
− idθ) log d+

1

2
log(2π)

−
∞∑
ν=1

1

ν(ν + 1)

Bν+1

(
d+1
2 − idθ

)
dν

1

sν
.

(4.3)

Gathering (4.1)-(4.3) we obtain the formula

hF (s) ≈
ωFd

idθ

√
2π

(
q

(2πd)d

) 1
2
−s

Γ(d(s∗d − s)) exp

( ∞∑
ν=1

Pν(HF (ν + 1), HF (1), . . . , HF (ν + 1)

sν

)
,

where the polynomials Pν are defined in (5.3) below and have hidden parameters
d = dF and θ = θF . Applying the power series expansion of the exponential
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function we rewrite the last formula as

hF (s) ≈
ωFd

idθ

√
2π

(
q

(2πd)d

) 1
2
−s

Γ(d(s∗d − s))

×
∞∑

N=0

VN (HF (2), . . . , HF (N + 1), HF (1), . . . ,HF (N + 1)

sN
,

(4.4)

where V0 ≡ 1 and for N ≥ 1 the polynomials VN are defined as in (5.4) below,
again with hidden parameters d = dF and θ = θF . Using the Lemma in the
Appendix we obtain

(4.5)

∞∑
N=1

VN

sN
≈

∞∑
ℓ=1

(−1)ℓRℓ(V1, . . . , Vℓ)

(ds+ 1− ds∗0)ℓ

with polynomials Rℓ as in such Lemma, with parameters a = d and b = 1−ds∗0.
Moreover,

(4.6) Γ(d(s∗ℓ − s)) =
(−1)ℓΓ(d(s∗0 − s))

(ds+ 1− ds∗0)ℓ
.

Finally, gathering (4.4)-(4.6) and recalling the definition of the polynomials Ψℓ

in (5.5) and of the structural invariants in (1.7), we arrive at (1.9) and the
result follows. □

4.2 - Outline of the proof of Theorem 5

For simplicity we assume that θF = 0. We start with the smoothed standard
twist

FX(s, α) =

∞∑
n=1

a(n)

ns
e−n1/dzX(α),

where X > 1 is sufficiently large, α > 0 and

(4.7) zX(α) =
1

X
+ 2πiα.

Clearly, FX(s, α) is absolutely convergent over C and for every α > 0 we have

lim
X→∞

FX(s, α) = F (s, α) for σ > 1.

Our aim is to obtain a suitable expression for FX(s, α) and then to investigate
the limit as X → ∞ for s in certain regions inside the half-plane σ < 1.
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For −c < σ < 2, where c > 0 is sufficiently large, by Mellin’s transform we
have

FX(s, α) =
1

2πi

∫

(d(c+2))
F (s+

w

d
)Γ(w)zX(α)−wdw.

For k ≥ 0 we consider the ranges

(4.8) σ ∈ Ik, where Ik is an arbitrary compact subinterval of (−c, sk).

For s as in (4.8) and a suitably chosen uk ∈ R, we shift the line of integration
in the above integral to ℜ(w) = uk, apply the functional equation of F in the
form (1.5), use the Dirichlet series expansion of F (1 − s − w/d) and switch
summation and integration, thus obtaining that

FX(s, α) =
∞∑
n=1

a(n)

n1−s

1

2πi

∫

(uk)
hF

(
s+

w

d

)
SF

(
s+

w

d

)
Γ(w)

(zX(α)

n1/d

)−w
dw

+RX(1− s, α) +Rk,X(s, α),

(4.9)

where RX(1− s, α) is the residue at w = d(1− s) and Rk,X(s, α) is the sum of
the residues at w = −ν with 0 ≤ ν < dsk.

Next we plug into the integral (4.9) the asymptotic expansion of hF (s) in
Theorem 1 and get

FX(s, α) =
ωF√
2π

(
q1/d

2πd

) d
2
−ds M∑

ℓ=0

dF (ℓ)
N∑

j=−N

aje
iπdωjs

∞∑
n=1

a(n)

n1−s

× 1

2πi

∫

(uk)
Γ
(
d(sℓ − s)− w

)
Γ(w)zj,X(α, n)−wdw

+H
(uk)
M,X(s, α) +RX(1− s, α) +Rk,X(s, α)

(4.10)

where, recalling (4.7),

(4.11) zj,X(α, n) =
q1/dzX(α)e−iπωj

2πdn1/d

andH
(uk)
M,X(s, α) is the term coming from the error arising after cutting at ℓ = M

the asymptotic expansion of hF (s). Note that the integral in (4.10) is of type

(4.12)
1

2πi

∫

(c)
Γ(ξ − w)Γ(w)η−wdw = Γ(ξ)(1 + η)−ξ,

valid under the conditions

0 < c < ℜ(ξ) and | arg η| < π.
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Actually, the asymptotic expansion of hF (s) was specially designed to fit (4.12),
which represents one of the few cases of a Mellin-Barnes integral with an explicit
expression in terms of elementary functions. Plugging (4.12) into (4.10), after
a series of computations we arrive to the following expression

FX(s, α) =
ωF√
2π

(
q1/d

2πd

) d
2
−ds k∑

ℓ=0

dF (ℓ)Γ
(
d(sℓ − s)

)
F

∗
ℓ,X(1− s, α)

+RX(1− s, α) +Hk,X(s, α)

(4.13)

valid for k ≥ 0 and σ ∈ Ik ∩ (−∞,−2δ), δ > 0 being sufficiently small, where

(4.14) F
∗
ℓ,X(1− s, α) =

N∑
j=−N

aje
iπdωjs

∞∑
n=1

a(n)

n1−s
(1 + zj,X(α, n))d(s−sℓ)

and Hk,X(s, α) comes from a suitable treatment of error terms. This is the
expression for FX(s, α) alluded to at the beginning of this proof.

The next step is to let X → ∞ in (4.13), but this requires some care.
Indeed, as we already pointed out, the limit of FX(s, α) is F (s, α) when σ > 1,
but (4.13) holds in the range Ik ∩ (−∞,−2δ). Moreover, in view of (4.11), the
limit of the terms (1 + zj,X(α, n))d(s−sℓ) in (4.14) is not always well defined,
since the term 1 + zj,X(α, n) vanishes as X → ∞ when α ∈ Spec(F ), n = nα

and j = −N ; we call it the critical term. To overcome these problems we
first compute FX(s, α) in a different way, looking at it as the twist of F (s, α)

by e−n1/d/X and using its expression by means of Mellin’s transform. After a
suitable shift of the integration line, this gives

(4.15) FX(s, α) = F (s, α) + ΣX(s, α) + IX(s, α),

where IX(s, α) is a harmless term and

(4.16) ΣX(s, α) =
k∑

ℓ=0

dρℓ(α)Γ(d(sℓ − s))Xd(sℓ−s).

The term (4.16) is very important since eventually will cancel the contribution
of the critical term in (4.14), thus allowing to let X → ∞. Indeed, comparing
(4.13) with (4.15) and computing separately the contribution of the critical
term in (4.14), we obtain

F (s, α) =
ωF√
2π

(
q1/d

2πd

) d
2
−ds k∑

ℓ=0

dF (ℓ)Γ(d(sℓ − s))F ℓ,X(1− s, α)

+RX(1− s, α) +Hk,X(s, α)− IX(s, α) + Σ̃X(s, α)− ΣX(s, α),

(4.17)
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where Σ̃X(s, α) comes from the critical term and F ℓ,X(1−s, α) equals F
∗
ℓ,X(1−

s, α) minus the critical term.

Now we are ready to let X → ∞. It is not difficult to show that, as X → ∞,
the sum on the right hand side of (4.17) tends to the corresponding sum in (3.3),
IX(s, α) → 0 and RX(1−s, α) → R(1−s, α). Moreover, two technical lemmas,
see Lemmas 3.1 and 3.2 in [16], show that Hk,X(s, α) → Hk(s, α) and Hk(s, α)
satisfies the required bounds. Finally, the remaining two terms in (4.17) are
first rewritten in the form

ΣX(s, α) =
k∑

ℓ=0

aℓ(s, α)X
d(sℓ−s) and Σ̃X(s, α) =

k∑
ℓ=0

ãℓ(s, α)X
d(sℓ−s),

and then shown to be equal by an inductive argument. Hence these terms
cancel in (4.17), thus concluding the proof of Theorem 5. □

4.3 - Outline of the proof of Theorem 8

A good deal of information about invariants comes from the transformation
formula for nonlinear twists, which we studied in [10], [11], [13], [14]. Indeed,
roughly speaking, the transformation formula gives different outputs if the same
nonlinear twist of a function F ∈ S♯ is written in formally different ways, and
this phenomenon imposes constraints on the invariants. So we start the proof
of Theorem 8 with a fully explicit version of such transformation formula for
the following nonlinear twist

F (s; f) =

∞∑
n=1

a(n)

ns
e(−f(n, α)), f(n, α) = n+ α

√
n,

in the special case of normalized F ∈ S♯ with d = 2 and q = 1. This is done
in Lemma 4.2 of [17] and requires delicate computations. Since F (s; f) coin-
cides with the standard twist F (s, α) thanks to the periodicity of the complex
exponential, the output of the transformation formula is an identity of type

(4.18) F (s, α) =
M∑

m=0

Wm(s, α)F
(
s+

m

2
, α

)
+HM (s, α),

where α ∈ Spec(F ), M ≥ 0 is any integer and HM (s, α) is holomorphic for
σ > −(M − 1)/2. Moreover, the functions Wm(s, α) with m ≥ 1 are quite
complicated but explicit polynomials in the (s, α)-variables whose coefficients
involve, among others, the structural invariants dF (ℓ), while W0(s, α) ≡ 1.
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As a consequence, (4.18) shows that the sum of the terms from 1 to M is
holomorphic for σ > −(M − 1)/2. Thus, in particular, its residue at s = sM
(see (1.10)) vanishes. Recalling the polar structure of the standard twist, this
gives at once that

(4.19)

M
m=1

Wm(sM , α)ρM−m(α) = 0.

But, thanks to Theorem 7, in the case at hand the residues ρM−m(α) have a
simple explicit expression, again involving the structural invariants. Therefore,
after a careful computation, from (4.19) we deduce that for any N ≥ 2 the
structural invariants satisfy

(4.20) QN

�
dF (0), . . . , dF (N)


= 0,

where QN (X0, . . . , XN ) are certain quadratic forms independent of F ; see
Proposition 4.1 in [17]. This is the universal family of algebraic varieties al-
luded to in the last remark of Section 3. Since dF (0) = 1, (4.20) and the special
shape of these quadratic forms allow to express any dF (ℓ) with ℓ ≥ 2 in terms
of dF (1), by an algorithm completely independent of F . Hence all dF (ℓ) are
determined by dF (1), and a further computation shows that

(4.21) dF (1) = χF − 1

8
.

Moreover, dF (ℓ) ∈ R for every ℓ in the case at hand.

The next step of the proof is the introduction of the virtual γ-factors

(4.22) γ(s) =



(2π)−sΓ(s+ µ) with µ > 0

π−sΓ
s+ ε+ iκ

2


Γ
s+ ε− iκ

2


with ε ∈ {0, 1} and κ ≥ 0,

which clearly are the γ-factors of the L-functions associated with the normalized
Hecke and Maass forms, respectively. Denoting the invariants related to such
γ-factors by means of the suffix γ, a computation shows that

(4.23) χγ =


2µ2

−2κ2.

Although not every virtual γ-factor corresponds to an existing L-function, it
turns out that the invariants dγ(ℓ) satisfy the same properties of the dF (ℓ).
Hence by (4.23) and the γ-analog of (4.21) we have that the set {dγ(1) :
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γ virtual γ-factor} coincides with R. Thus to any F we associate a unique
virtual γ-factor such that dγ(1) = dF (1), and hence by the above reported
properties we have that dγ(ℓ) = dF (ℓ) for every ℓ ≥ 0. In turn, this implies
that hF (s) = ωFhγ(s). Thus, in view of (1.5), F satisfies the functional equa-
tion

(4.24) γ(s)F (s) = ωFR(s)γ(1− s)F (1− s), R(s) =
SF (s)

Sγ(s)
,

where γ is the virtual γ-factor associated with F . Now we observe that if
R(s) ≡ 1, then (4.24) becomes a functional equation of Hecke or Maass type,
thus Theorem 8 follows at once from the classical converse theorems of Hecke
and Maass.

The last step is therefore proving that R(s) ≡ 1. This step is quite technical
and involves a non-standard use of certain period functions, in the sense of
Lewis-Zagier [18]. Indeed, given F and its virtual γ-factor, we consider the
Fourier series

f(z) =

∞∑
n=1

a(n)nλe(nz), z ∈ H,

where λ = µ or λ = iκ according to (4.22), and its period function

ψ(z) = f(z)− z−2λ−1f(−1/z).

Then we proceed to the analysis of the function f(z), involving the use the
properties of certain Mittag-Leffler functions and of the three-term functional
equation

ψ(z) = ψ(z + 1) + (z + 1)−2λ−1ψ
( z

z + 1

)

satisfied by ψ(z). We refer to Sections 6 and 7 of [17] for the rather tricky and
delicate arguments leading to the conclusion of the proof. Here we only recall
that, assuming by contradiction R(s) ̸≡ 1, the aim of such arguments is to
obtain the analytic continuation of f(z) to a region of type −δ0 < arg(z) < π
with some δ0 > 0. But f(z) is periodic of period 1, so it is in fact an entire
function. On the other hand it is not difficult to prove that f(z) cannot be
entire, and this contradiction concludes the proof of Theorem 8. □

5 - Appendix: construction of the polynomials Ψℓ

We need the following lemma. Note that, notwithstanding a similar nota-
tion, the polynomials QN in the lemma are different from the quadratic forms
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in (4.20). We shall use the Pochhammer symbol (z)ℓ, defined by

(z)ℓ =

{
1 if ℓ = 0

z(z + 1) . . . (z + ℓ− 1) if ℓ > 0.

L emma. Let a and b be fixed and not simultaneously vanishing. Then for
every N ≥ 1 there exist polynomials

Rℓ(X1, . . . , Xℓ) (1 ≤ ℓ ≤ N)

and a polynomial

QN (X1, . . . , XN , T ) with degT QN (X1, . . . , XN , T ) ≤ N − 1,

such that

(5.1)
N∑
k=1

Xk

T k
=

N∑
ℓ=1

(−1)ℓRℓ(X1, . . . , Xℓ)

(aT + b)ℓ
+

QN (X1, . . . , XN , T )

TN (aT + b)N
.

The polynomials Rℓ and QN depend only on a and b and are uniquely deter-
mined.

P r o o f. We define the polynomials Rℓ, 1 ≤ ℓ ≤ N , and QN inductively.
For N=1 we set

R1(X1) := −aX1 and Q1(X1, T ) := bX1.

Now suppose, for N ≥ 2, that polynomials Rℓ(X1, . . . , Xℓ), 1 ≤ ℓ ≤ N − 1, and

QN−1(X1, . . . , XN−1, T ) = EN−1(X1, . . . , XN−1)T
N−2+. . .+E1(X1, . . . , XN−1)

satisfying (5.1) are already defined. Then we put

RN (X1, . . . , XN ) := (−1)N
(
aNXN + aEN−1(X1, . . . , XN−1)

)

and

QN (X1, . . . , XN , T ) := QN−1(X1, . . . , XN−1, T )T (aT + b+N − 1)

+XN (aT + b)N − (−1)NRN (X1, . . . , XN )TN .

Then degT QN (X1, . . . , XN , T ) ≤ N − 1 and (5.1) holds. This shows the exis-
tence of Rℓ, 1 ≤ ℓ ≤ N , and QN for all N ≥ 1.
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To prove the uniqueness let us assume by contradiction that for a certain
N we have two representations of type (5.1), say

(5.2)

N∑
k=1

Xk

T k
=

N∑
ℓ=1

(−1)ℓR
(j)
ℓ (X1, . . . , Xℓ)

(aT + b)ℓ
+

Q
(j)
N (X1, . . . , XN , T )

TN (aT + b)N
,

with j = 1, 2. We may suppose that N is minimal with this property. Then

R
(1)
ℓ (X1, . . . , Xℓ) = R

(2)
ℓ (X1, . . . , Xℓ) for 1 ≤ ℓ ≤ N−1 but R

(1)
N (X1, . . . , XN ) ̸=

R
(2)
N (X1, . . . , XN ). Subtracting both sides of (5.2) we therefore obtain

Q
(1)
N (X1, . . . , XN , T )−Q

(2)
N (X1, . . . , XN , T )

= (−1)NTN
(
R

(2)
N (X1, . . . , XN )−R

(1)
N (X1, . . . , XN )

)
.

Thus

N = degT

(
(−1)NTN (R

(2)
N −R

(1)
N )

)
= degT (Q

(1)
N −Q

(2)
N )

≤ max(degT Q
(1)
N , degT Q

(2)
N ) ≤ N − 1,

a contradiction proving the lemma. □

If we want to stress dependence on a and b we write

Rℓ(X1, . . . Xℓ) = Rℓ(X1, . . . Xℓ; a, b).

Let now d > 0 and θ be real parameters. For ν ≥ 1 we define the following
polynomials, depending on d and θ,

Pν(X,Y1, . . . , Yν+1) = Pν(X,Y1, . . . , Yν+1; d, θ)

:=
1

2ν(ν + 1)

(
(−1)νX −

ν+1∑
k=1

(
ν + 1

k

)
Xk + c0(ν, d, θ)

)
,

(5.3)

where

c0(ν, d, θ) :=
2Bν+1(ds

∗
0)

dν
− d and s∗0 =

d+ 1

2d
− iθ.

Moreover, for N ≥ 1 let

VN (X1, . . . , XN , Y1, . . . , YN+1) = VN (X1, . . . , XN , Y1, . . . , YN+1; d, θ)

:=
∑

1≤m≤N

1

m!

∑
ν1≥1

. . .
∑
νm≥1

ν1+...+νm=N

m∏
j=1

Pνj (Xνj , Y1, . . . , Yνj+1; d, θ).(5.4)
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With this notation we can finally define the polynomials Ψℓ, ℓ ≥ 0, setting

Ψ0(Y1) := didθ

and for ℓ ≥ 1

Ψℓ(X1, . . . ,Xℓ, Y1, . . . , Yℓ+1) = Ψℓ(X1, . . . , Xℓ, Y1, . . . , Yℓ+1, d, θ)

:= didθRℓ(V1(X1, Y1, Y2), . . . , Vℓ(X1, . . . , Xℓ, Y1, . . . , Yℓ+1)),
(5.5)

where the Rℓ’s are as in the Lemma with parameters a = d and b = 1 − ds∗0,
whereas the polynomials Vk, 1 ≤ k ≤ ℓ, are computed with parameters d and θ.
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