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Separating roots of polynomials and the transfinite diameter

Abstract. Mahler proved a lower bound for the distance between dis-
tinct roots of a squarefree complex polynomial. We extend his result
to packets of tuples of complex roots and slightly improve a numerical
constant. One application of the former aspect is an upper bound for
the transfinite diameter of certain star-shaped compact subsets of the
complex plane.
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1 - Introduction

Let disc(P ) denote the discriminant of a non-zero polynomial P . For a non-
negative real number t we define log+ t = logmax{1, t}. Let P ∈ C[X] ∖ {0}
with P = a0(X − z1) . . . (X − zN ) where z1, . . . , zN ∈ C. The Mahler measure
m(P ) of P is log |a0|+

∑N
j=1 log

+ |zj |. It is convenient to define M(P ) = em(P ).
Suppose P is squarefree and assume z, w ∈ C are distinct roots of P . Mahler

proved the separation inequality

(1.1) |z − w| >
√
3N−(N+2)/2|disc(P )|1/2M(P )−(N−1)

in Theorem 2 [Mah64].
If P has integral coefficients, then |disc(P )| ≥ 1 and so we may omit the

discriminant in the inequality (1.1). In this setting, much effort has gone into
improving the exponent of M(P ), see for example [Güt67,Rum79,BM04,
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Eve04,BM10,BBG10,BD11,BD14] or Chapter 8.1 [EG17] for an overview
of results.

In the current work we investigate such separation inequalities for complex
polynomials. As both sides of (1.1) are invariant under scaling P by a non-zero
complex number, the exponent of M(P ) cannot be improved in general. Rather
our attention shifts to the factor

√
3N−(N+2)/2. Moreover, instead of working

with a pair of roots we consider arbitrary tuples of distinct roots. Our aim is
to establish an obstruction to root clustering.

To formulate our main result we recall that the Barnes G-function satisfies
G(1) = G(2) = 1 and G(m+ 2) = 1!2! · · ·m! for all integers m ≥ 1. Let N and
m be integers with N ≥ m+ 1 and m ≥ −1. We define

(1.2) γN,m =
G(m+ 2)2

G(2m+ 3)

m
j=1

(N2 − j2)m+1−j > 0

and find

γN,−1 = γN,0 = 1, γN,1 =
1

12
(N2−1), γN,2 =

1

8640
(N2−1)2(N2−4), . . . .

We will see in (2.10) that γN,N−1 = N−N .

T h e o r em 1.1. Let P ∈ C[X] ∖ {0} be a polynomial of degree N ≥ 2
without multiple roots. Suppose z1,0, . . . , z1,m1 , . . . , zn,0, . . . , zn,mn ∈ C are pair-
wise distinct roots of P where n,m1, . . . ,mn are integers with n ≥ 0 and
m1 ≥ −1, . . . ,mn ≥ −1. Then

(1.3)

1

2
log |disc(P )| ≤

n
l=1

min


0,

1

2
log γN,ml

+


0≤i<j≤ml

log |zl,j − zl,i| −ml

ml
j=0

log+ |zl,j |




+
N

2
logN + (N − 1)m(P ).

We may omit terms with ml = −1 in the sum (1.3), the same holds for
similar sums below.

Let us consider some special cases. Let P and N be as in the theorem.
For n = 0 our inequality states |disc(P )|1/2 ≤ NN/2M(P )N−1 which is a

result of Mahler, see Theorem 1 [Mah64].
For n = 1 and m1 = 1 we use γN,1 < N2/12 to see that our inequality

implies
|z − w| > 2

√
3N−(N+2)/2|disc(P )|1/2M(P )−(N−1)
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for all distinct complex roots z and w of P .

For n = 1 and m1 = 2 we use γN,2 < N6/8640 to obtain

|z − w||z − u||w − u| > 24
√
15N−(N+6)/2|disc(P )|1/2M(P )−(N−1)

for all pairwise distinct complex roots z, w, and u of P . This improves Schöne-
hage’s Theorem 4 [Sch06], where, asymptotically in N , the constant 24

√
15 is

replaced by 2
√
15.

For n ≥ 1 and m1 = · · · = mn = 1 we obtain

n∏
j=1

|zj − z′j | ≥ (2
√
3)nN−(N+2n)/2|disc(P )|1/2M(P )−(N−1)

for all pairwise distinct complex roots z1, z
′
1, . . . , zn, z

′
n of P . See Mignotte’s

Theorem 1 [Mig95] for a more flexible estimate.

The case n = 1 and m1 arbitrary is folklore [BM04] when the factor in
front of M(P )−(N−1) is replaced by an unspecified constant that depends on N .

Our method of proof follows the approach laid out in Mahler’s work
[Mah64] which has found application in work of Mignotte [Mig95], Schönehage
[Sch06], and others. The basic idea is to consider disc(P ) as a Vandermonde de-
terminant and then do column operations to produce a common factor in many
columns. In the current paper we factor out as far as possible, as suggested
by Mignotte in Remark 2 [Mig95]. This factorization is done in Section 2 and
leads us naturally to classical Schur polynomials. A novelty of our approach
is that we replace Hadamard’s Inequality for the absolute value of a determi-
nant by the more general Fischer Inequality. In addition, we use a determinant
calculation by Frame [Fra79].

It is useful to have an asymptotic upper bound for γN,m. To this end and
for all x ∈ (0, 1) we define

(1.4) χ(x) = −x log x− x log 4 +
1 + x2

2x
log(1− x2) + log

1 + x

1− x
.

Then χ is analytic on (0, 1) and extends to a continuous function χ : [0, 1] → R
by setting χ(0) = χ(1) = 0. As we will see in Section 3, the function χ is
concave on [0, 1]. So its values are non-negative.

T h e o r em 1.2. Let P,N, n,m1, . . . ,mn, and the zl,j be as in Theorem 1.1.
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Set pl = (ml + 1)/N for all l ∈ {1, . . . , n}. Then

1

2
log |disc(P )| ≤

n
l=1

min


0, plχ(pl)

N(N − 1)

2
+


0≤i<j≤ml

log |zl,j − zl,i| −ml

ml
j=0

log+ |zl,j |




+ (N − 1)m(P ) +O(N logN),

the constant implicit in O(·) is absolute and effective.

The modified function χ(x) + x log x is analytic on (−1, 1). Its Taylor ex-
pansion can be derived from (3.2) and yields χ(x) ≤ −x log x +

�
3
2 − log 4


x.

In the special case where each packet zl,0, . . . , zl,ml
is contained in a disk of

diameter ϵ we obtain the following estimate.

C o r o l l a r y 1.3. Let P,N, n,m1, . . . ,mn, and the zl,j be as in Theorem 1.1.
For each l ∈ {1, . . . , n} let ϵl > 0 and suppose zl,0, . . . , zl,mn lie in a closed disk
in C of radius ϵl. Set pl = (ml + 1)/N for all l ∈ {1, . . . , n}, p = p1 + · · ·+ pn,
and σ = (p21 + · · ·+ p2n)

1/2. If p > 0, then

1

2
log |disc(P )| ≤


pχ


σ2

p


+ σ2 log


n

l=1

p2l ϵl
σ2


N(N − 1)

2
+ (N − 1)m(P )

+O


N


logN + max

1≤l≤n
log+ ϵ−1

l


,

the constant implicit in O(·) is absolute and effective.

Observe that σ2 ≤ p2 ≤ p in the theorem. Theorem 1.2 and Corollary 1.3
are both proved in Section 3.

In a recent breakthrough, Dimitrov [Dim] proved the Schinzel–Zassenhaus
Conjecture. His method used Dubinin’s Theorem [Dub84] to bound from
above the transfinite diameter of a certain star shaped subset of C that Dimitrov
calls a Hedgehog. We explain here how to apply our, ultimately elementary,
estimate to deduce an upper bound for the transfinite diameter. While our
numerical constant is worse than Dubinin’s, we obtain additional information
on the rate of convergence.

Let K be a non-empty compact subset of C. For an integer N ≥ 2 we define

dN (K) = sup
z1,...,zN∈K


 

1≤i<j≤N

|zj − zi|




2/(N(N−1))

.
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It is well-known that dN (K) is non-increasing in N . The transfinite diameter
of K is

d(K) = lim
N→∞

dN (K).

We remark that the capacity of K is equal to the transfinite diameter of K, see
Theorem 5.5.2 [Ran95].

For n ∈ N = {1, 2, 3, . . .} the Hedgehog with quills a1, . . . , an ∈ C is

(1.5) K(a1, . . . , an) =

n⋃
l=1

[0, 1]al where [0, 1]al = {λal : λ ∈ [0, 1]}.

Dubinin [Dub84] proved that d(K(a1, . . . , an)) ≤ 4−1/nmax{|a1|, . . . , |an|}.
The constant 1/4 is best-possible.

The transfinite diameter satisfies d(λK) = |λ|d(K) for all λ ∈ C. In ad-
dition, λK(a1, . . . , an) = K(λa1, . . . , λan). So to prove Dubinin’s Theorem one
may assume max{|a1|, . . . , |an|} = 1.

We bound from above the transfinite diameter of the union of a Hedgehog
with n quills and a closed disk of radius 1− 1/n centered at the origin.

T h e o r em 1.4. Let n ∈ N and a1, . . . , an ∈ C with max{|a1|, . . . , |an|} = 1.
Set K = K(a1, . . . , an) and S = K ∪ {z ∈ C : |z| ≤ 1− 1/n}. Then

log dN (K) ≤ log dN (S) ≤ −0.39

n
+O

(
log(nN)

N

)
,

the constant implicit in O(·) is absolute and effective. In particular, d(K) ≤
d(S) ≤ e−0.39/n.

Theorem 1.4 is proved in Section 4.
If al = e2π

√
−1l/n for all l, then the transfinite diameter of K(a1, . . . , an) ∪

{z ∈ C : |z| ≤ 1− 1/n} equals

(1.6)

((
1 + (1− 1

n)
n
)2

4

)1/n

,

by Table 5.1 [Ran95]. The expression inside (·)1/n converges to (1+e−1)2/4 =
e−0.759... as n → ∞. We ask whether the bound e−0.39/n for d(S) in Theorem 1.4
can be replaced by (1.6).

We use the big-O notation through this paper. For example, if g is a function
defined on N with values in [0,∞), then O(g) represents a function f : N → R
for which there exists c > 0 with |f(n)| ≤ cg(n) for all n ∈ N. If not stated
otherwise explicitly, the constant c will be understood as absolute.
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2 - A Generalized Vandermonde Matrix

Let N and m be integers with N ≥ m + 1 and m ≥ 0. For independents
X0, . . . , Xm we define

(2.1) AN =




1 1 · · · 1

X0 X1 · · · Xm

X2
0 X2

1 · · · X2
m

...
...

...

XN−1
0 XN−1

1 · · · XN−1
m




∈ MatN,m+1(Z[X0, . . . , Xm]).

If z0, . . . , zm ∈ C are pairwise distinct, then detAN (z0, . . . , zm)tAN (z0, . . . , zm)
̸= 0 by the Cauchy–Binet Formula. For N = m+1 we recover a Vandermonde
matrix.

The main result of this section is the following proposition. Here and below
the notation · denotes complex conjugation.

P r o p o s i t i o n 2.1. Let N ≥ 2 and m ≥ 0 be integers with N ≥ m+1 and
let z0, . . . , zm ∈ C be pairwise distinct. Set p = (m+ 1)/N and

X =
1

2
log detAN (z0, . . . , zm)tAN (z0, . . . , zm).

(i) We have

X ≤1

2
log γN,m +

m+ 1

2
logN +


0≤i<j≤m

log |zj − zi|

+ (N − (m+ 1))
m
j=0

log+ |zj |.

(ii) We have

X ≤ m+ 1

2
logN + (N − 1)

m
j=0

log+ |zj |.

(iii) If max{|z0|, . . . , |zm|} ≤ 1, then we have

X ≤ (m+ 1) logN +
m(m+ 1)

2
logmax{|z0|, . . . , |zm|},(2.2)

the right-hand side is taken as logN for m = 0.
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Our approach is to factorize detAN (X0, . . . , Xm)tAN (Y0, . . . , Ym) into
0≤i<j≤m(Xi − Xj)(Yi − Yj) times a polynomial, the result is recorded in

Lemma 2.5. We recall some algebraic identities that arises in the classical the-
ory of Schur polynomials. Our presentation is largely self-contained and we aim
to provide elementary proofs or references at all steps.

Let m ∈ N0 = {0} ∪ N and let I = (α0, . . . , αm) be an (m + 1)-tuple of
non-negative and strictly increasing integers. We define

(2.3) AI =




Xα0
0 · · · Xα0

m
...

...
Xαm

0 · · · Xαm
m


 .

For j ∈ N0 and k ∈ Z the complete homogeneous symmetric polynomial of
degree k in j variables is

hk =


a0,...,aj∈N0

a0+···+aj=k

Xa0
0 · · ·Xaj

j ∈ Z[X0, . . . , Xj ].

Observe that hk = 0 if k < 0.
The following lemma is sometimes referred to as the Jacobi–Trudi identity.

L emma 2.2. Let I = (α0, . . . , αm) be as above, we define

(2.4) SI = det
�
hαi(X0), hαi−1(X0, X1), · · · ,

hαi−m(X0, . . . , Xm)

0≤i≤m

∈ Z[X0, . . . , Xm].

Then

(2.5) detAI = SI


0≤i<j≤m

(Xj −Xi).

P r o o f . We claim that detAI equals
k−1

i=0

m
j=i+1(Xj −Xi) times

(2.6) det (hαi(X0), hαi−1(X0, X1), . . . , hαi−k(X0, . . . , Xk−1, Xk), . . . ,

hαi−k(X0, . . . , Xk−1, Xm))0≤i≤m

for all k ∈ {0, . . . ,m}. This lemma follows on taking k = m.
Our claim holds true for k = 0 as

AI =
�
hαi(X0) · · · hαi(Xm)


0≤i≤m

.

The proof is by induction, so assume that the claim holds for k ∈ {0, . . . ,m−1}.
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The matrix in (2.6) has the form (c0, . . . , cm) where c0, . . . , cm are column
vectors of length m + 1 with entries in Z[X0, . . . , Xm]. The determinant is
alternating, so let us subtract the (k + 1)-st column ck from the (k + 2)-nd
column ck+1, and then subtract the (k + 1)-th column ck from the (k + 3)-
rd column ck+2, etc. until we have exhausted all columns. The induction
hypothesis gives

detAI = det(c0, . . . , ck, ck+1 − ck, ck+2 − ck, . . . , cm − ck)

k−1
i=0

m
j=i+1

(Xj −Xi).

(2.7)

Let j ∈ {1, . . . ,m− k} and observe

ck+j − ck =
�
hαi−k(X0, . . . , Xk−1, Xk+j)− hαi−k(X0, . . . , Xk)


0≤i≤m

with

hαi−k(X0, . . . , Xk−1, Xk+j)− hαi−k(X0, . . . , Xk)

=


a0+···+ak=αi−k

Xa0
0 · · ·Xak−1

k−1 (Xak
k+j −Xak

k )

= (Xk+j −Xk)


a0+···+ak=αi−k

ak−1
a=0

Xa0
0 · · ·Xak−1

k−1 Xak−1−a
k Xa

k+j

= (Xk+j −Xk)hαi−k−1(X0, . . . , Xk, Xk+j).

So we can factor Xk+j − Xk out of each respectively column. We insert into
(2.7) and find that detAI equals

det
�
c0, . . . , ck, hαi−(k+1)(X0, . . . , Xk, Xk+1), . . . ,

hαi−(k+1)(X0, . . . , Xk, Xm)

0≤i≤m

×




k−1
i=0

m
j=i+1

(Xj −Xi)




m−k
j=1

(Xk+j −Xk).

The Vandermonde factor equals
k

i=0

m
j=i+1(Xj − Xi). So we have verified

(2.6) for k + 1.

We come to a further lemma, well-known from the theory of Schur polyno-
mials.

L emma 2.3. Let I be as above and let SI be as in (2.4). The coefficients
of SI are non-negative integers.
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P r o o f . See for example Lemma in [Pro89] for a sketch of a proof that
involves only basic properties of the determinant.

We come to an elementary lemma on vanishing of the determinant.

L emma 2.4. Let D ∈ Matm+1(C[T ]) and t ∈ C such that the rank of
D(t) ∈ Matm+1(C) is at most r. Then detD ∈ C[T ] has a zero of order at least
m+ 1− r at t.

P r o o f . As C[T ] is a principal ideal domain we can put D into Smith
normal form. In other words, there are matrices U, V ∈ GLm+1(C[T ]) such
that UDV is diagonal with diagonal entries f0, . . . , fm ∈ C[T ]. Note that detU
and detV are non-zero constants. Therefore, the order of vanishing of detD
at t equals the order of vanishing of f0 · · · fm at t. The lemma follows as by
hypothesis, at most r among f0(t), . . . , fm(t) are non-zero.

We subsume our results in the next lemma. The identity (2.9) follows from
a computation of Frame. Recall that γN,m was defined in (1.2).

L emma 2.5. Suppose N ≥ 2 and m ≥ 0 are integers with N ≥ m + 1.
Then

(2.8) detAN (X0, . . . , Xm)tAN (Y0, . . . , Ym) = B
∏

0≤i<j≤m

(Xj −Xi)(Yj − Yi)

where B ∈ Z[X0, . . . , Xm, Y0, . . . , Ym] has non-negative coefficients with

(2.9) B( 1, . . . , 1︸ ︷︷ ︸
2m+2 times

) = γN,mNm+1.

Finally, max0≤j≤m{degXj
B, degYj

B} ≤ N − (m+ 1).

For N = m+ 1 we are in the Vandermonde case and (2.9) implies

(2.10) γN,N−1 = N−N .

P r o o f o f L emma 2.5. By the Cauchy–Binet Formula, the left-hand side
of (2.8) equals ∑

I

detAI(X0, . . . , Xm)tAI(Y0, . . . , Ym),

where here and below the sum ranges over all (m+ 1)-tuples I = (α0, . . . , αm)
of integers satisfying 0 ≤ α0 < · · · < αm ≤ N − 1. Lemma 2.2 implies (2.8)
with

B =
∑
I

SI(X0, . . . , Xm)SI(Y0, . . . , Ym)
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and with SI as in (2.4). Thus B ∈ Z[X1, . . . , Xm, Y1, . . . , Ym]. Moreover, each
SI has non-negative coefficients by Lemma 2.3 and thus the same holds for B.

The degree of detAN (X0, . . . , Xm)tAN (Y0, . . . , Ym) with respect to Xj is at
most N − 1. The degree of the Vandermonde determinant


0≤i<j≤m(Xj −Xi)

with respect to Xj is m. So (2.8) implies degXj
B ≤ N − (m+1) and the same

bound holds for degYj
B.

It remains to justify the value of B at (1, . . . , 1). To this end, here and
below I is as before. Observe that

SI(1, . . . , 1) = det(hαi(1), hαi−1(1, 1), . . . , hαi−m(1, . . . , 1))0≤i≤m

and hαi−j(1, . . . , 1  
j+1 times

) =
�
αi
j


. So

B(1, . . . , 1) =

I

b2I where b(α0,...,αm) = det


αi

j



0≤i,j≤m

.

Observe

b(α0,...,αm) =
1

1!2! · · ·m!
det

�
αi(αi − 1) · · · (αi − j + 1)


0≤i,j≤m

.

A typical entry in the (j + 1)-st column of the matrix is of the form αj
i +

(polynomial in αi of degree < j). So the determinant on the right is a Van-
dermonde determinant in disguise; for a reference see Proposition 1 [Kra99].
So

b(α0,...,αm) =
1

G(m+ 2)
det


αj
i


0≤i,j≤m

where G is the Barnes G-function and where we use the convention 00 = 1.
Thus
(2.11)

B(1, . . . , 1) =

I

b2I =
detCtC

G(m+ 2)2
with C =




1 0 · · · 0
1 1 · · · 1
1 2 · · · 2m

...
...

...
1 N − 1 · · · (N − 1)m




by another application of the Cauchy–Binet Formula. We find the power-sum
Hankel matrix

CtC =
 N−1

k=0 ki+j

0≤i,j≤m

.

Note that the top-left entry is N .
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Frame, see equation (1.3) [Fra79], computed

(2.12) detCtC = γN,mNm+1G(m+ 2)2.

We will reproduce Frame’s elegant argument below to keep this text as self-
contained as possible. This equality together with (2.11) implies (2.9).

Let i ≥ 0 be an integer and let Bi = T i + · · · ∈ Q[T ] denote the i-th
Bernoulli polynomial with constant term Bi(0). Recall that

N−1
k=0 ki = si(N)

where si = (Bi+1(T )−Bi+1(0))/(i+ 1) ∈ Q[T ], e.g., s0 = T . We define

D =


Bi+j+1(T )−Bi+j+1(0)

i+ j + 1



0≤i,j≤m

=




s0 s1 · · · sm
s1 s2 · · · sm+1
...

...
...

sm sm+1 · · · s2m




with D ∈ Matm+1(Q[T ]) and find CtC = D(N). The determinant is detD =
σ sign(σ)s0+σ(0)s1+σ(1) · · · sm+σ(m) where σ ranges over all permutations of

{0, . . . ,m}. As deg si+σ(i) = i+ σ(i) + 1 we find deg detD ≤ (m+ 1)2.

Clearly, si(0) = 0 and so T | si for all i ≥ 0. Therefore, Tm+1 | detD. Let
r ≥ 1 be an integer. The specialization

D(r) =


r−1
k=0

ki+j



0≤i,j≤m

is the product of an (m + 1) × r matrix and its transpose. So its rank is at
most r and Lemma 2.4 implies (T − r)m+1−r | detD for all r ∈ {1, . . . ,m}.
Next we use the well-known symmetry Bi(T ) = (−1)iBi(1 − T ) for all i ≥ 0
and Bi(0) = 0 for all odd i ≥ 3 to see si(1 − T ) = (−1)i+1si(T ) for all i ≥ 1.
For all r ∈ {2, . . . ,m+ 1} we see

−si+j(1− r) = (−1)i+jsi+j(r) =
r−1
k=0

(−k)i+j

except when i+ j = 0 where −s0(1− r) = r − 1. Combining these cases gives

−D(1− r) =


r−1
k=1

(−k)i+j



0≤i,j≤m

.

Note the sums are now of length r − 1. So −D(1 − r) is a product of an
(m + 1) × (r − 1) matrix with its transpose. Hence D(1 − r) has rank at
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most r − 1. As above we conclude (T + r − 1)m−r+2 | detD, this time for all
r ∈ {2, . . . ,m+ 1}. This statement also holds true for r = 1 as we saw above.

We have proved that

detD = λ
m∏
r=1

(T − r)m+1−r
m+1∏
r=1

(T + r − 1)m+2−r

with λ ∈ Q[T ]. Comparing degrees using deg detD ≤ (m + 1)2 we see that
λ ∈ Q.

We determine λ as follows. We have si+j =
T i+j+1

i+j+1 +(lower order terms inT )
and

T−(m+1)2 detD =
∑
σ

sign(σ)(T−(0+σ(0)+1)s0+σ(0)) · · · (T−(m+σ(m)+1)sm+σ(m)).

Each term in this sum is sign(σ)/(i + j − 1) + (terms of order <0 in T ). We
conclude that λ is the determinant of the (m + 1) × (m + 1) Hilbert matrix
(1/(i+ j + 1))0≤i,j≤m. The value λ = G(m+ 2)4/G(2m+ 3) was computed by
Hilbert [Hil94].

The computation yields

detCtC = detD(N) =
G(m+ 2)4

G(2m+ 3)

m∏
r=1

(N − r)m+1−r
m+1∏
r=1

(N + r − 1)m+2−r.

Recalling (1.2) we conclude (2.12) and therefore the lemma.

P r o o f o f P r o p o s i t i o n 2.1. For (i) we observe that Lemma 2.5 and
the triangle inequality imply

|B(z0, . . . , zm, z0, . . . , zm)| ≤ B(1, . . . , 1)

m∏
j=0

max{1, |zj |}2(N−(m+1)).

So we find

2X ≤ log(γN,mNm+1) + 2
∑

0≤i<j≤m

log |zj − zi|+ 2(N − (m+ 1))

m∑
j=0

log+ |zj |.

We divide by 2 to obtain the bound in part (i).
For part (ii) we use Hadamard’s Inequality. Indeed, choose N − (m + 1)

vectors in CN that are pairwise orthonormal and orthogonal to the columns of
AN (z0, . . . , zm) with respect to the standard Hermitian inner product on CN .
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Then apply Hadamard’s Inequality, Theorem 13.5.3 [Mir55], to the N × N
matrix obtained by augmenting these vectors to AN (z0, . . . , zm). We find

X ≤ log

m∏
j=0

(1+ |zj |2+ · · ·+ |zj |2(N−1))1/2 ≤ m+ 1

2
logN +

m∑
j=0

(N −1) log+ |zj |,

as desired.
For part (iii) we recall that e2X =

∑
I |detAI(z0, . . . , zm)|2 by the Cauchy–

Binet Formula where, as usual, I runs over tuples (α0, . . . , αm) of integers with
0 ≤ α0 < α1 < · · · < αm ≤ N − 1. As there are

(
N

m+1

)
possible I we get

e2X ≤
(

N
m+1

)
maxI |detAI(z0, . . . , zm)|2. Moreover,

|detAI(z0, . . . , zm)| ≤ (m+ 1)!max
σ

|z0|ασ(0) · · · |zm|ασ(m)

≤ (m+ 1)!max
σ

max{|z0|, . . . , |zm|}ασ(0)+···+ασ(m)

where σ runs over all permutations of {0, . . . ,m}. Observe that

α0 + · · ·+ ασ(m) = α0 + · · ·+ αm ≥ 0 + 1 + · · ·+m =
m(m+ 1)

2
.

As |zj | ≤ 1 for all j we find

max{|z0|, . . . , |zm|}ασ(0)+···+ασ(m) ≤ max{|z0|, . . . , |zm|}m(m+1)/2.

Since
(

N
m+1

)1/2
(m + 1)! ≤

(
N

m+1

)
(m + 1)! ≤ Nm+1 we conclude X ≤ (m +

1) logN + m(m+1)
2 logmax{|z0|, . . . , |zm|}, as desired.

Before proving Theorem 1.1 we state Fischer’s Inequality, a generalization
of Hadamard’s Inequality for determinants.

L emma 2.6 (Fischer’s Inequality). Let n ∈ N, let m1, . . . ,mn ≥ 0 be
integers, and set N = (m1 + 1) + · · · + (mn + 1). For each l ∈ {1, . . . , n} let
Ml ∈ MatN,ml+1(C) and set M = (M1 · · ·Mn) ∈ MatN (C). Then

detM
t
M ≤

n∏
l=1

detMl
t
Ml.

P r o o f . Let

(
M ′ ∗
∗ M ′′

)
∈ MatN (C) be a positive definite Hermitian

matrix with M ′ ∈ Matr(C) and M ′′ ∈ MatN−r(C). Theorem 13.5.5 [Mir55]
states

det

(
M ′ ∗
∗ M ′′

)
≤ det(M ′) det(M ′′).
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If the N × N matrix is merely positive semidefinite, then adding a positive
multiple of the unit matrix leads to a positive definite Hermitian matrix. So the
inequality holds for all positive semidefinite matrices by continuity. Moreover,
a simple induction shows that the analog inequality holds for more than 2
matrices on the diagonal. As M

t
M is positive semidefinite and Hermitian we

conclude

detM
t
M = det




M1
t

...

Mn
t


 (M1 · · ·Mn) = det




M1
t
M1 ∗

. . .

∗ Mn
t
Mn




≤
n

l=1

detMl
t
Ml.

Hadamard’s Inequality is the case m1 = · · · = mn = 0.

P r o o f o f T h e o r em 1.1. Let a0 ∈ C∖{0} be the leading term of P . Let
z0,0, . . . , z0,m0 be complex roots of P such that z0,0, . . . , z0,m0 , . . . , zn,0, . . . , zn,mn

are pairwise distinct and constitute all complex roots of P . Here m0 ≥ −1.
The absolute value |disc(P )| of the discriminant of P equals

|a0|2(N−1) detAN (z0,0, . . . , z0,m0 , . . . , zn,0, . . . , zn,mn)
t

AN (z0,0, . . . , z0,m0 , . . . , zn,0, . . . , zn,mn),

where AN (z0,0, . . . , zn,mn) ∈ Matn(C) uses notation (2.1). Fischer’s Inequality,
Lemma 2.6, implies

(2.13)
1

2
log |disc(P )| ≤ (N − 1) log |a0|+

n
l=0

Xl

where Xl =
1
2 log detAN (zl,0, . . . , zl,ml

)tAN (zl,0, . . . , zl,ml
) for all l ∈ {0, . . . , n}

with ml ≥ 0 and Xl = 0 if ml = −1; we use γN,−1 = 1 below.
Let l ∈ {0, . . . , n} with ml ≥ 0. On the one hand, Proposition 2.1(i) gives

(2.14) Xl ≤
1

2
log γN,ml

+
ml + 1

2
logN

+


0≤i<j≤ml

log |zl,j − zl,i|+ (N − (ml + 1))

ml
j=0

log+ |zl,j |.

On the other hand part (ii) of the same proposition gives

(2.15) Xl ≤
ml + 1

2
logN + (N − 1)

ml
j=0

log+ |zl,j |.
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Combining (2.14) and (2.15) yields

(2.16)

Xl ≤ min


0,

1

2
log γN,ml

+


0≤i<j≤ml

log |zl,j − zl,i| −ml

ml
j=0

log+ |zl,j |




+
ml + 1

2
logN + (N − 1)

ml
j=0

log+ |zl,j |.

This bound remains true if ml = −1.
We sum (2.16) over all l ∈ {0, . . . , n} and insert into (2.13). Finally, recall

m(P ) = log |a0|+
n

l=0

ml
j=0 log

+ |zl,j | and (m0 + 1) + · · ·+ (mn + 1) = N to
conclude the proof.

3 - Proofs of Theorem 1.2 and Corollary 1.3

We recall that all implicit constants in O(·) are absolute unless stated oth-
erwise.

The function χ was defined in (1.4) for x ∈ (0, 1) and it extends to a
continuous function on [0, 1] with χ(0) = χ(1) = 0. For all x ∈ (0, 1) we have

(3.1) χ′′(x) =
log(1− x2)

x3
< 0.

So χ is concave on [0, 1] and in particular it takes non-negative values. More-
over, using the Taylor series of x → log(1− x2) we find

χ′′(x) = −
∞
k=1

x2k−3

k

on (0, 1). Recall that χ(0) = 0 and note that limx→0(χ(x) + x log x)/x =
3/2− log 4, this follows easily from (1.4). So

(3.2) χ(x) = −x log x+


3

2
− log 4


x−

∞
k=2

x2k−1

k(2k − 2)(2k − 1)

on (0, 1).
We now recall well-known growth properties of the Barnes G-function.

L emma 3.1. Let m ≥ 1 be an integer, then

logG(m+ 1) =
1

2
m2 logm− 3

4
m2 +O(m log(m+ 1)).
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P r o o f . By definition we have logG(m + 1) =
∑m−1

j=1 log j!. So we may
assume m ≥ 2.

Let a and b be integers with a < b and let f : [a, b] → R be a non-

decreasing continuous function. We will use the inequality f(a)+
∫ b−1
a f(x)dx ≤∑b−1

j=a f(j) ≤
∫ b
a f(x)dx.

Stirling’s approximation states log j! = j log j− j+O(log(j+1)). The map
x → x log x− x is non-decreasing on x ≥ 1. So

−1 +

∫ m−1

1
(x log x− x)dx ≤

m−1∑
j=1

j log j − j ≤
∫ m

1
(x log x− x)dx.

The lemma follows as x → x2

2 log x− 3
4x

2 is an anti-derivative of x → x log x−
x.

L emma 3.2. Let m ≥ 0 be an integer, then

log
G(m+ 2)2

G(2m+ 3)
≤ −(m+ 1)2 log

4(m+ 1)

e3/2
+O(m log(m+ 1)).

P r o o f . Observe that the left-hand side vanishes for m = 0. So we may
assume m ≥ 1. Lemma 3.1 applied to m+ 1 and 2m+ 2 implies

logG(m+ 2) =
1

2
(m+ 1)2 log(m+ 1)− 3

4
(m+ 1)2 +O(m log(m+ 1))

and

logG(2m+3) = 2(m+ 1)2(log 2 + log(m+1))− 3(m+1)2 +O(m log(m+1)),

respectively. The lemma follows on taking the difference 2 logG(m + 2) −
logG(2m+ 3).

L emma 3.3. Let N and m ≥ 0 be integers with N ≥ m + 2. Set p =
(m+ 1)/N , then

m∑
j=1

(m+ 1− j) log(N2 − j2)

≤ pχ(p)N2 + (m+ 1)2 log
4(m+ 1)

e3/2
+O ((m+ 1) logN) .

P r o o f . Let a and b be integers with a ≤ b and suppose f : [a, b] → R is a

non-increasing continuous function. Then
∑b

j=a f(j) ≤ f(a) +
∫ b
a f(x)dx.
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Let S denote the sum in question. Clearly, f(x) = (m+1−x) log(N2−x2)
is non-negative and non-increasing on [0,m+ 1]. So S ≤

∑m+1
j=0 f(j) and

S ≤ 2(m+ 1) logN +

∫ m+1

0
(m+ 1− x)(log(N − x) + log(N + x))dx

= 2(m+ 1) logN + 2 log(N)

∫ m+1

0
(m+ 1− x)dx

+N2

∫ p

0
(p− y) log(1− y2)dy(3.3)

after a substitution y = x/N . Observe that
∫m+1
0 (m+ 1− x)dx = (m+ 1)2/2.

The function

y → −2py +
y2

2
+

(
py +

1− y2

2

)
log(1− y2) + p log

1 + y

1− y

is an anti-derivative of (p−y) log(1−y2). This anti-derivative vanishes at y = 0
and its value at y = p < 1 equals pχ(p)+ p2 log p+ p2 log 4− 3

2p
2 by (1.4). This

allows us to compute the integral in (3.3) and conclude the proof.

We can now determine an upper bound for γN,m.

L emma 3.4. Let N ≥ 2 and m ≥ 0 be integers with N ≥ m + 1. Set
p = (m+ 1)/N , then

(3.4)
1

2
log γN,m ≤ pχ(p)

N(N − 1)

2
+O((m+ 1) logN).

P r o o f . If N = m + 1, then the lemma follows from χ(1) = 0 and (2.10).
So we may assume N ≥ m+ 2. Using the definition (1.2) we write

log γN,m = log
G(m+ 2)2

G(2m+ 3)
+

m∑
j=1

(m+ 1− j) log(N2 − j2).

Adding the bounds from Lemmas 3.2 and 3.3 leads to cancellation

log γN,m ≤ pχ(p)N2 +O((m+ 1) logN).

Observe that pχ(p)N2 = pχ(p)(N(N − 1) + N) = pχ(p)N(N − 1) + (m +
1)χ(p). The lemma follows as (m + 1)χ(p) ends up in the error term of (3.4);
indeed, the continuous function χ : [0, 1] → R is bounded from above.
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P r o o f o f T h e o r em 1.2. We may safely omit the terms with ml = −1
as then pl = 0 and χ(0) = 0. Lemma 3.4 furnishes the estimate 1

2 log γN,ml
≤

plχ(pl)
N(N−1)

2 +O((ml + 1) logN) if ml ≥ 0. Theorem 1.2 follows from Theo-
rem 1.1(i) since (m1 + 1) + · · ·+ (mn + 1) ≤ N .

P r o o f o f C o r o l l a r y 1.3. Let z0, . . . , zm be pairwise distinct members
of the closed unit disk in C. Then

∏
0≤i<j≤m(zj − zi) is the Vandermonde

determinant det(zij)0≤i,j≤m. Hadamard’s Inequality implies
∑

0≤i<j≤m log |zj−
zi| ≤ m+1

2 log(m+ 1). After translating and rescaling we can generalize this as
follows. Let z0, . . . , zm be pairwise distinct members of a closed disk in C of
radius ϵ > 0. Then

∑
0≤i<j≤m log |zj − zi| ≤ m+1

2 log(m+ 1) + m(m+1)
2 log ϵ.

We apply this bound to each of the packets zl,0, . . . , zl,ml
and use Theo-

rem 1.2. This theorem implies that 1
2 log |disc(P )| is at most

n∑
l=1

(
plχ(pl) +

ml(ml + 1)

N(N − 1)
log ϵl

)
N(N − 1)

2
+ (N − 1)m(P ) +O(N logN);

note that
n∑

l=1

ml + 1

2
log(ml + 1) ≤ N

2
logN.

Next
ml(ml + 1)

N(N − 1)
= p2l − pl

(N −ml − 1)

N(N − 1)

so we can estimate

ml(ml + 1)

N(N − 1)
log ϵl ≤ p2l log ϵl + pl

log+ ϵ−1
l

N − 1
.

Thus 1
2 log |disc(P )| is at most

(3.5)

n∑
l=1

(plχ(pl) + p2l log ϵl)
N(N − 1)

2

+ (N − 1)m(P ) +O

(
N logN +N

n∑
l=1

pl log
+ ϵ−1

l

)
.

Recall that 0 < p = p1+ · · ·+ pn ≤ 1. The function x → χ(x) is concave on
[0, 1], as we have seen just below (3.1). Jensen’s Inequality yields the bound

n∑
l=1

plχ(pl) ≤ pχ(σ2/p).
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As x → log x is concave on (0,∞), Jensen’s Inequality also implies

n∑
l=1

p2l log ϵl ≤ σ2 log

(
n∑

l=1

p2l ϵl/σ
2

)
.

These two bounds inserted in (3.5) yield the desired bound for
1
2 log |disc(P )|.

4 - Application to Hedgehogs and Stars

In this section we use the results from Section 2 to bound from above the
transfinite diameter of a Hedgehog.

L emma 4.1. Let m ≥ 0 and suppose z0, . . . , zm lie on a line segment of
length ϵ. Then

(4.1)
∏

0≤i<j≤m

|zj − zi| ≤ 2m(m+ 1)(m+1)/2
( ϵ

4

)m(m+1)/2
.

Before providing the proof, we remark that Stieltjes computed the maximal
value of the left-hand side of (4.1), see [Sch18].

P r o o f . The left-hand side of (4.1) is invariant under translating all zi.
If we translate appropriately and stretch by factor 4/ϵ, then the product is
multiplied by (4/ϵ)m(m+1)/2. Without loss of generality assume ϵ = 4, that the
line segment in question equals [−2, 2], and that m ≥ 1.

For each i we have zi ∈ [−2, 2], hence there is wi ∈ C ∖ {0} with |wi| = 1
and wi + w−1

i = zi. Let

V =
∏

0≤i<j≤m

|zj − zi| =
∏

0≤i<j≤m

|wj − wi + w−1
j − w−1

i |

=
∏

0≤i<j≤m

∣∣∣∣
(wi − wj)(wiwj − 1)

wiwj

∣∣∣∣ =
∏

0≤i<j≤m

|(wi − wj)(wiwj − 1)|.

Now we apply an elementary but powerful determinant formula, see Krat-
tenthaler’s Lemma 2 [Kra99]. In our case and using |wj | = 1 it implies

V =
1

2

∣∣∣∣det
(
wi
j + w−i

j

)
0≤i,j≤m

∣∣∣∣ .

We have |wi
j + w−i

j | ≤ 2 for all i and j. Hadamard’s Inequality implies V ≤
1
22

m+1(m+ 1)(m+1)/2.
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P r o o f o f T h e o r em 1.4. The first inequality in the theorem follows as
dN (K) ≤ dN (L) for all non-empty compact subsets K ⊆ L ⊆ C and all N ≥ 2.
We now prove the bound for dN (S) where S is the star K(a1, . . . , an) ∪ {z ∈
C : |z| ≤ 1− 1/n}.

Let ϵ = 1/n ∈ (0, 1]. We will continue to use the symbol ϵ to emphasize its
role in the proof. Our choice of ϵ is in part made by convenience. The choice
1.06/n leads to a slightly better numerical estimate.

Let N ≥ 2 and suppose z1, . . . , zN ∈ S are pairwise distinct. Our goal is to
bound

v =
2

N(N − 1)
log


1≤i<j≤N

|zj − zi| =
2

N(N − 1)
log | det(zi−1

j )1≤i,j≤N |

from above where the second equality follows as the matrix is of Vandermonde
type.

We arrange our points z1, . . . , zN into n+1 parts as follows. We first collect
all points zj with |zj | ≤ 1− ϵ, relabel these points z0,0, . . . , z0,m0 . If |zj | > 1− ϵ,
fix any l ∈ {1, . . . , n} with zj ∈ [0, 1]al. We add zj to the l-th part. So for each
l ∈ {1, . . . , n} we obtain points zl,0, . . . , zl,ml

on [0, 1]al.

Note that (m0 + 1) + · · · + (mn + 1) = N and ml ≥ −1 for all l. We set
pl = (ml + 1)/N .

Fischer’s Inequality, Lemma 2.6, implies

v ≤ 2

N(N − 1)

n
l=0
ml≥0

1

2
log

detAN (zl,0, . . . , zl,ml
)tAN (zl,0, . . . , zl,ml

)


where AN (zl,0, . . . , zl,ml
) ∈ MatN,ml+1(C) uses notation (2.1).

In this proof, and as usual, the constant implicit in O(·) is absolute.
Recall that |zl,j | ≤ 1. We apply Proposition 2.1(i) and (ii) to the terms

l ∈ {1, . . . , n} and part (iii) to l = 0, if ml ≥ 0, respectively. Thus

(4.2) v ≤ p0
m0

N − 1
log(1− ϵ)

+

n
l=1

min


0, plχ(pl) +

2

N(N − 1)


0≤i<j≤ml

log |zl,j − zl,i|


+O


logN

N


,

where we used Lemma 3.4 to bound γN,m from above; a term coming from
some l with ml ≤ −1 can be omitted; we used (m0 + 1) + · · ·+ (mn + 1) = N
to bound the error term.

Let us treat the terms on the right-hand side separately.
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For l = 0 and if m0 ≥ 0 we use m0
N−1 = p0 − N−(m+1)

N(N−1) and log(1 − ϵ) ≤ −ϵ
to find

(4.3) p0
m0

N − 1
log(1− ϵ) ≤ −ϵp20 + ϵp0

N − (m+ 1)

N(N − 1)
≤ −ϵp20 +O

(
1

N

)
.

Let l ∈ {1, . . . , n} with ml ≥ 0. The points zl,0, . . . , zl,ml
lie on a line

segment of length ϵ. By (4.1) we find

∑
0≤i<j≤ml

log |zl,j − zl,i| ≤
ml(ml + 1)

2
log

ϵ

4
+O((ml + 1) log(ml + 1)).

Recall ml
N−1 = pl − N−(m+1)

N(N−1) and ml + 1 ≤ N . So we get

(4.4)
2

N(N − 1)

∑
0≤i<j≤ml

log |zl,j − zl,i| ≤ p2l log
ϵ

4
+O

(
pl
log(4N/ϵ)

N

)
.

We plug (4.3) and (4.4) into (4.2) and find

v ≤ −ϵp20 +
n∑

l=1

pl min
{
0, χ(pl) + pl log

ϵ

4

}
+O

(
log(4N/ϵ)

N

)

as p1 + · · ·+ pn ≤ 1.
Next recall that x → χ(x) is concave on [0, 1] as noted below (3.1). There-

fore, so is x → χ(x)+x log ϵ
4 and x → min{0, χ(x)+x log ϵ

4}. Jensen’s Inequality
implies

v ≤ −ϵ(1− p)2 + pmin

{
0, χ

(
σ2

p

)
+

σ2

p
log

ϵ

4

}
+O

(
log(4N/ϵ)

N

)

with p = p1 + · · ·+ pn = 1− p0 and σ2 = p21 + · · ·+ p2n; if p = 0 then the bound
holds when omitted the term pmin{· · · } here and corresponding terms below.

By (3.2) we have χ(x) ≤ −x log(4x/e3/2) for all x ∈ (0, 1]. So

v ≤ −ϵ(1− p)2 − σ2 log+
(

16σ2

e3/2pϵ

)
+O

(
log(4N/ϵ)

N

)
.

The Cauchy–Schwarz Inequality implies σ2 ≥ p2/n and thus

v ≤ −ϵ(1− p)2 − p2

n
log+

(
16p

e3/2ϵn

)
+O

(
log(4N/ϵ)

N

)
.

We recall ϵ = 1/n. So

(4.5) v ≤ − 1

n

(
(1− p)2 + p2 log+

(
16p

e3/2

))
+O

(
log(nN)

N

)
.
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If p < e3/2/16 = 0.2801 . . ., then

(4.6) v ≤ − 1

n

(
1− e3/2

16

)2

+O

(
log(nN)

N

)
≤ − 1

2n
+O

(
log(nN)

N

)
.

For example, if p = 0, then v ≤ −1/n+O(log(nN)/N).
If p ≥ e3/2/16, then we can replace log+ by log in (4.5) and conclude

v ≤ −f(p)

n
+O

(
log(nN)

N

)
where f(p) = (1− p)2 + p2 log

(
16p

e3/2

)
.

The second derivative of x → f(x) is log(28e2x2). So f is convex (0.1,∞). As
f ′(0.487) < 0 < f ′(0.488) the derivative f ′ has a zero p0 ∈ [0.487, 0.488]. Thus
f(p) ≥ f(p0). Using that x → x2 log(16xe−3/2) is increasing on (e/16,∞) ⊇
(0.2,∞) we obtain f(p) ≥ f(p0) ≥ (1− 0.488)2 + 0.4872 log(16 · 0.487e−3/2) >
0.39. So

(4.7) v ≤ −0.39

n
+O

(
log(nN)

N

)
.

Regardless of the size of p we have (4.7) by (4.6).
As z1, . . . , zN ∈ S are pairwise distinct, but otherwise arbitrary, we conclude

log dN (S) = sup
z1,...,zN∈K

2

N(N − 1)
log

∏
1≤i<j≤N

|zj−zi| ≤ −0.39

n
+O

(
log(nN)

N

)
.

Taking the limit N → ∞ yields log d(S) ≤ −0.39/n, as desired.

5 - Algebraic Numbers of Small Height

We conclude this paper by making some remarks on algebraic numbers of
small height. Consider a sequence of algebraic numbers of absolute logarithmic
Weil height tending to 0 without an infinite constant subsequence. Bilu’s The-
orem [Bil97] implies that the complex Galois orbits equidistribute towards the
Haar measure on the unit circle. In this section we explore consequences of our
estimates for algebraic numbers of small height.

Let α be an algebraic number. There is a unique irreducible element P of
Z[X] that vanishes at α and has positive leading term. The absolute logarithmic
Weil height h(α), or just height, of α is m(P )/ degP ; recall that m(P ) is the
Mahler measure of P .

We will abbreviate N = degP and assume N ≥ 2.
In what follows we will think of h(α) as being small.
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Let ϵ ∈ (0, 1] and n ∈ N. For each l ∈ {1, . . . , n} let Dl be a closed disk in
the complex plane of radius at most ϵ. We will assume that all complex roots
of P lie in

⋃n
l=1Dl.

We fix for each complex root z of P an l ∈ {1, . . . , n} with z ∈ Dl; this l
may not be unique. Let ml + 1 be the number of such roots assigned to l, so
ml ≥ −1. We also set pl = (ml + 1)/N and observe p1 + · · ·+ pn = 1.

This assignment induces a partition as in Corollary 1.3 with ϵ1 = · · · =
ϵn = ϵ. Note that p = 1 and |disc(P )| ≥ 1 as P ∈ Z[X] is squarefree. In the
conclusion of Corollary 1.3 we divide by N(N − 1)/2 and find

0 ≤ χ(σ2) + σ2 log ϵ+ 2h(α) +O

(
log(N/ϵ)

N

)

where σ = (p21 + · · ·+ p2n)
1/2.

We use χ(x) ≤ −x log x+ (3/2− log 4)x, a consequence of (3.2), rearrange,
and deduce

σ2 log

(
4σ2

e3/2ϵ

)
≤ 2h(α) +O

(
log(N/ϵ)

N

)
.

The Cauchy–Schwarz Inequality implies σ2 ≥ 1/n. Thus

(5.1) σ2 log

(
4

e3/2nϵ

)
≤ 2h(α) +O

(
log(N/ϵ)

N

)
.

Let us assume that nϵ < 4e−3/2 = 0.8925206 . . . and suppose κ > 0 satisfies

nϵ ≤ 4e−3/2e−κ. Thus σ2κ ≤ 2h(α) + O
(
log(N/ϵ)

N

)
. We have σ2 =

∑n
l=1 p

2
l =

1
n +

∑n
l=1(pl −

1
n)

2 and therefore

(5.2)
1

n
+

n∑
l=1

(
pl −

1

n

)2

≤ 2

κ
h(α) +O

(
log(N/ϵ)

κN

)
.

Consider a sequence of algebraic numbers α with h(α) → 0 and N = [Q(α) :
Q] → ∞. Suppose that all complex Galois conjugates of α lie in

⋃n
l=1Dl. We

allow n and ϵ to vary along this sequence subject to nϵ ≤ 4e−3/2e−κ < 1 with
fixed κ > 0 while also assuming that log(N/ϵ)/N → 0 as N → 0. Then we
conclude two things from (5.2). First, n → ∞, i.e., the number of disks of
radius ≤ ϵ required to cover all Galois conjugates of α tends to ∞. Second, the
normalized variance

∑n
l=1

(
pl − 1

n

)2
tends to 0. This means that each disk Dl

gets its fair share of Galois conjugates on average.

Bombieri and Zannier obtained a non-archimedean result in the spirit of
(5.2), see Theorem 3 [BZ01]. They used their height inequality to exhibit
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fields of algebraic numbers that do not contain any elements of sufficiently
small positive height.

Let S be a non-empty and bounded subset of C. For ϵ > 0 let n(S, ϵ) denote
the minimal number of closed disks of radius ϵ needed to cover S. The upper
box dimension of S is

dimbox(S) = lim sup
ϵ→0+

log n(S, ϵ)

− log ϵ
.

It makes no difference if one takes disks of radius ϵ or boxes of side length ϵ.

For any subset S ⊆ C let S(Q) denote the set of algebraic numbers in C
whose Galois conjugates all lie in S.

T h e o r em 5.1. Let S be a non-empty and bounded subset of C with
dimbox(S) < 1. There exists δ = δ(S) > 0 such that if α ∈ S(Q) then h(α) ≥ δ
or h(α) = 0. Moreover, the second case occurs only finitely often.

P r o o f . By hypothesis there exists d ∈ (0, 1) with n(S, ϵ) ≤ ϵ−d for all
sufficiently small ϵ > 0. So S is covered by n = n(S, ϵ) ≤ ϵ−d closed disks Dl of
radius ϵ. We will fix such an ϵ soon.

Let α ∈ S(Q) with N = [Q(α) : Q]. If N = 1, then h(α) ≥ log 2 or h(α) = 0;
the latter case only happens for α ∈ {0,±1}. So we may assume N ≥ 2.

We use the notation introduced around (5.1) and apply this bound. In our
case it implies σ2 log(4e−3/2ϵd−1) ≤ 2h(α) +O(log(N/ϵ)/N).

We now fix ϵ ∈ (0, 1] small enough to ensure 4e−3/2ϵd−1 ≥ e2, this is possible
as d < 1. Therefore, σ2 ≤ h(α) + O(log(N/ϵ)/N). The Cauchy–Schwarz
Inequality implies σ2 ≥ 1/n ≥ ϵd ≥ ϵ. So ϵ ≤ h(α) +O(log(N/ϵ)/N).

Having fixed ϵ we find h(α) ≥ ϵ/2 for all sufficiently large N . So we in
the first case of the theorem. If h(α) < ϵ/2, then N = [Q(α) : Q] is bounded
from above and we may apply Northcott’s Theorem which states that a set of
algebraic numbers of bounded height and degree is finite. So h(α) cannot be
an arbitrarily small positive real number and it is 0 for at most finitely many
α finitely often.

We conclude by making some remarks on the previous theorem.

The theorem above does not hold when replacing the upper box dimension
by the Hausdorff dimension. Indeed, the group of roots of unity in C is a
countable infinite set and therefore has Hausdorff dimension 0. However, its
elements have height 0.

There is a bounded set of upper box dimension strictly less than 1 that
contains infinitely many rational numbers. Indeed, the Cantor set consists of
real numbers in [0, 1] which have a ternary expansion omitting 1. The Cantor
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set contains all positive powers of 1/3 and is known to have upper box counting
dimension (log 2)/(log 3) < 1.

There is a bounded set of upper box dimension strictly less than 1 that
contains all Galois conjugates of infinitely many algebraic integers of bounded
height. Indeed, for all complex c of sufficiently large modulus, the filled Julia
set Kf of f : z → z2+c is a compact set of Hausdorff dimension < 1. Moreover,
its Hausdorff dimension equals its upper box counting dimension if |c| is large
enough. We fix such a c ∈ Z. It is well-known that f admits infinitely many
preperiodic points in the ring of all algebraic integers. All preperiodic points of
f lie inKf and so do their Galois conjugates. Finally, the Call–Silverman height
vanishes on all preperiodic points and differs from the height by a bounded
function. So the preperiodic points in question have bounded height.

Ac k n ow l e d gm e n t s. A first iteration of this work was presented at a
virtual reading course on Dimitrov’s proof of the Schinzel–Zassenhaus Conjec-
ture. The course began at the onset of the current pandemic and the author
thanks all participants for creating a positive environment despite the circum-
stances. He also thanks Yann Bugeaud for comments and references and the
referee for providing the reference [Sch18].
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