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Abstract. Selective (Ramsey) ultrafilters are characterized by many
equivalent properties. Natural weakenings of these properties led to the
inequivalent notions of weakly Ramsey and of quasi-selective ultrafilter,
introduced and studied in [1] and [4], respectively. Call U weakly Ram-
sey if for every finite colouring of [N]2 there is U ∈ U s.t. [U ]2 has only
two colours, and call U f -quasi-selective if every function g ≤ f is non-
decreasing on some U ∈ U . (So the quasi-selective ultrafilters of [4] are
id-quasi selective.) In this paper we characterize those weakly Ramsey
ultrafilters that are isomorphic to a quasi-selective ultrafilter by analyz-
ing the relations between various natural cuts of the ultrapowers of N
modulo these ultrafilters.
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Introduction

Special classes of ultrafilters over N have been introduced and studied in
the literature, starting from the pioneering work by G. Choquet [8, 9] in the
sixties (see e.g. [5]). Particular attention was received by the class of selective
(also called Ramsey, or in French absolute) ultrafilters. It is well known that
the ultrafilter U is selective if and only if every finite colouring of [N]2 has a
homogeneous set U ∈ U (i.e. [U ]2 is monochromatic), or equivalently if and
only if every function f : N → N is nondecreasing on some U ∈ U .
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Allowing sets U such that [U ]2 is dichromatic in the first characterization led
to the notion of weakly Ramsey ultrafilter over N, introduced and studied in [1]
(see also [13]). On the other hand, restricting the second characterization to
functions bounded by the identity defines the quasi-selective ultrafilters over N,
introduced and studied in [4]. Quasi-selective ultrafilters have independent in-
terest, because they are necessary in modelling the “Euclidean numerosities” of
point sets considered in [4], as well as in providing the so called “fine densities”
of sets of natural numbers in [10].

In this paper we make a comparative study of weakly Ramsey and f-quasi-
selective ultrafilters, the latter class being the natural parametric generalization
of quasi-selective ultrafilters, where a function f : N → N replaces the identity
in the original definition of [4].

It is worth mentioning that, on the one hand, selective ultrafilters are si-
multaneously weakly Ramsey and quasi-selective, while in turn both the latter
classes are P-points. On the other hand, these classes are distinct, once there
exist a selective and a non-selective quasi-selective ultrafilter. The existence of
these ultrafilters is not provable in ZFC, but follows from mild set theoretical
hypotheses, e.g. the Continuuum Hypothesis CH, or Martin’s Axiom MA. The
study of weak sufficient conditions for the existence of these kinds of ultrafilters
seems to be an interesting field of set theoretic research, very little explored up
to now.

The paper is organized as follows. In Section 1 we introduce the class of
f -quasi-selective ultrafilters on N, and we study their properties, generalizing
some results of [4]. In Section 2 we study the weakly Ramsey ultrafilters in-
troduced in [1], and we give a complete classification in terms of the mutual
ordering of three natural cuts of the corresponding ultrapowers of N, simulta-
neously specifying their corresponding properties of “quasi-selectivity”. Final
remarks and open questions may be found in the concluding Section 3.

In general, we refer to [6] and [3] for definitions and basic facts concerning
ultrafilters and ultrapowers.

1 - f-quasi-selective ultrafilters

Throughout this paper U denotes a nonprincipal ultrafilter on N, and all
functions are N → N, unless different mention is made explicitly. Recall that
two functions f, g are U -equivalent (written g ≡U f) if there exists U ∈ U
such that f(u) = g(u) for all u ∈ U . In general we say that a function f is
increasing, unbounded, one-to-one, etc., modulo U if there exists U ∈ U such
that the restriction of f to U is increasing, unbounded, one-to-one, etc.
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D e f i n i t i o n 1.1. Let U be a nonprincipal ultrafilter on N, and let
f : N → N be unbounded modulo U . Then

– U is f -quasi-selective (shortly f -QS) if, for all g : N → N,

∃U ∈ U ∀x ∈ U g(x) ≤ f(x) =⇒ g nondecreasing mod U .

– U is quasi-selective (shortly QS) if it is id-QS, where id : N → N is the
identity.

– U is properly quasi-selective (shortly PQS) if it is f -QS for some, but not
for all functions f .

– U is strongly quasi-selective (shortly SQS) if it is f -QS for some 1-1
function f . U is weakly quasi-selective (shortly WQS) if it is PQS, but
not SQS.

Clearly the ultrafilter U is selective if and only if it is f -QS for all f .
Recall that the ultrafilter fU is defined by fU = {V | f−1[V ] ∈ U}. Useful

relations between QS ultrafilters and generic f -QS ultrafilters are given in the
following proposition:

P r o p o s i t i o n 1.1.

1. If U is f -QS, then fU is QS.

2. If f is increasing modulo U , then U is (g ◦ f)-QS if and only if fU is
g-QS; in particular U is f -QS if and only if fU is QS.

P r o o f.
1. Let U be f -QS, with f nondecreasing on U ∈ U . Assume that h(x) ≤ x

for x ∈ f [V ], V ∈ U , so that h ◦ f ≤ f on U ∩ V . Then both f and h ◦ f
are nondecreasing on U ∩ V . Suppose by contradiction that there exist x, y ∈
U ∩ V such that f(x) < f(y), but h(f(x)) > h(f(y)): the first inequality
implies x < y, whereas the second implies x > y, contradiction. Therefore h is
nondecreasing on f [U ∩ V ] ∈ fU .

2. Pick U ∈ U such that, for all x, y ∈ U , x < y ⇐⇒ f(x) < f(y). Then,
for every function h,

∀x, y ∈ U (x < y =⇒ h(x) ≤ h(y) )

is equivalent to

∀z, w ∈ f [U ] ( z < w =⇒ h(f−1(z)) ≤ h(f−1(w)) ).
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Moreover

∀x ∈ U (h(x) < g(f(x))) ⇐⇒ ∀z ∈ f [U ] (h(f−1(z)) < g(z)).

So, if fU is g-QS and h < g ◦ f on U , then h ◦ f−1 < g on f [U ], and hence
h◦f−1 is nondecreasing on f [U ], which in turn is equivalent to h nondecreasing
on U .

Similarly, if U is (g ◦ f)-QS and h < g on f [U ], then h ◦ f < g ◦ f on U , so
h ◦ f is nondecreasing on U , and h = h ◦ f ◦ f−1 is nondecreasing on f [U ].

The last assertion is the case g = id. �

It is proved in [4] that, when U is QS, every function is U -equivalent either
to a constant, or to an “interval-to-one” function, i.e. a function g such that,
for all n, g−1(n) is a (finite, possibly empty) interval of N. A weaker property,
still sufficient to imply P-pointness, holds for all PQS ultrafilters, namely:

P r o p o s i t i o n 1.2. Let U be a PQS ultrafilter and let ⟨Xn | n ∈ N⟩ be
a partition of N such that no part Xn is in U . Then there exists an interval
partition ⟨Ym | m ∈ N⟩ and a set U ∈ U such that

∀n ∃m Xn ∩ U ⊆ Ym.

In particular every function is either constant or “finite-to-one” modulo U .
Hence all PQS ultrafilters are nonselective P-points.

P r o o f. Let f be a nondecreasing unbounded function such that U is f -QS.
Define the function g by

g(x) = f(minXn) = min f(Xn) for all x ∈ Xn.

Then g ≤ f , so there exists a nondecreasing function h that is equal to g on
some set U ∈ U . The partition ⟨Ym = h−1(m) | m ∈ N⟩ is an interval partition
that satisfies the wanted condition, because h is constant on Xn ∩ U . �

We remark that if f is one-to-one, then each nonempty Ym ∩ U is equal
to one Xn ∩ U . In particular, modulo a SQS ultrafilter, every non-constant
function is interval-to-one.

Recall that the ultrafilter U is rapid if for every increasing function g there
exists U = {u1 < u2 < . . . < un < . . .} ∈ U such that un > g(n). If moreover U
is a P-point, then U is rapid if and only if the functions that are 1-to-1 modulo
U are coinitial in the nonstandard part of the ultrapower NN

U (see e.g. [2]). It
is well known that the existence of nonselective rapid P-points is consistent, see
e.g. [7]. However these ultrafilters cannot be PQS ultrafilters, since we have
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P r o p o s i t i o n 1.3. Let U be f -QS: then U is rapid if and only if it is
selective.

P r o o f. Every selective ultrafilter is rapid, so we have to prove the ‘only
if’ part. Let U be f -QS and let P = {[pn, pn+1) | n ∈ N } be an interval
partition of N. By possibly unifying some intervals, we may assume w.l.o.g.
that f(pn) > n. By rapidity, there is a set U = {u1 < u2 < . . . < un < . . .} ∈ U
such that un > pn. Define the function g by

g(x) = |{m ≤ n | x ≤ um < pn+1}| for x ∈ [pn, pn+1).

Then g takes on decreasing values on U ∩ [pn, pn+1), and g ≤ f , because |U ∩
[pn, pn+1)| ≤ n < f(pn). Let V ∈ U be a set on which g is nondecreasing:
clearly U ∩ V has at most one point in each interval [pn, pn+1). �

Following [4], let us consider the following families of functions

SU = {f | ∃U ∈ U s.t. f 1-1 on U }, FU = {f | U is f -QS }, and

GU = {g | ∃U ∈ U ∀x, y ∈ U (x < y =⇒ g(x) < y )}.

Recall the following facts, that represent three important features of QS ultra-
filters, extensively used in [4]:

F a c t 1. ( [4, Theorem 1.1]) If U is QS, then FU = GU .

Fa c t 2. ( [4, Proposition 1.5]) Let g be interval-to-one, and put g+(x) =
max {y | g(y) = g(x)}. Then g ∈ SU if and only if g+ ∈ GU .

Fa c t 3. ( [4, Propositions 1.4 and 1.7]) FU is closed under sums, products,
powers and compositions. Moreover GU has uncountable cofinality.

For general PQS ultrafilters we can prove both Facts 2 and 3, but only one
half of Fact 1, namely:

P r o p o s i t i o n 1.4. Let U be PQS. Then

1. FU ⊆ GU , and equality holds if and only if U is QS.

2. For g finite-to-one, put g+(x) = max {y | g(y) = g(x)}; then g ∈ SU if
and only if g+ ∈ GU .

3. FU is closed under sums, products, powers and compositions; moreover
GU has uncountable cofinality.
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P r o o f.

1. Assume that U is f -QS, with nondecreasing f ∈ FU , and pick any
sequence ⟨xn | n ∈ N⟩ s.t. xn+1 = f(xn) + xn. Define the function h by
h(xn + j) = f(xn) − j for 0 ≤ j < f(xn). Then there is a set in A ∈ U which
meets each interval [xn, xn+1) in one point an. So by putting either un = a2n
or un = a2n+1 we obtain a set U ∈ U witnessing that g = id+ f belongs to GU .
Namely, in the even case we have

un+1 − un > x2n+2 − x2n+1 = f(x2n+1) ≥ f(un),

and similarly in the odd case.

The equality FU = GU has been proved for QS ultrafilters in Theorem 1.1
of [4]. Finally, the function g has be choosen greater than the identity, so if U
is not QS, then g /∈ FU , and the inclusion is proper.

2. Observe first that g+ depends only on the partition induced by g, and
not on its actual values. Moreover, if h is any interval-to-one function inducing
a coarser partition than g, then h+ ≥ g+. Hence we may assume w.l.o.g. that
g is interval-to-one.

Assume g+ ∈ GU , and pick U = {un | n ∈ N} ∈ U such that un+1 > g+(un).
Suppose that g(un) = g(un+1) for some n: then g+(un) ≥ un+1 > g+(un), a
contradiction. Hence g is one-to-one on U .

The reverse implication follows from the fact that g++ = g+.

3. We prove first that if every function g < f is U -equivalent to a nonde-
creasing one, then the same property holds for every function g < f2.

Given g, let h be the integral part of the square root of g. So g < h2 +
2h + 1, hence g = h2 + h1 + h2 for suitable functions h1, h2 ≤ h < f . By
hypothesis we can pick nondecreasing functions h′, h′1, h

′
2 that are U -equivalent

to h, h1, h2, respectively. Then clearly g is U -equivalent to the nondecreasing
function h′2+h′1+h′2. So FU is closed under squares, and hence also under sums,
products and powers. To settle compositions, observe first that, if g, h ≤ id,
then g ◦ h ≤ h, and the thesis is trivial. On the other hand, if id ∈ FU , then U
is QS, and we refer to the proof of Fact 3. given sub Proposition 1.5 of [4].

Finally, the proof of cof GU > ω given sub Proposition 1.7 of [4] relies solely
on the fact that U is a P-point, so it works here as well. �

CAVEAT : When U is not QS, we may not state point 2 for FU , as it is
done in [4], because GU is greater than FU .

The main tool in the study of PQS ultrafilters (and especially of PWR
ultrafilters in the next section) is the relative position of particular cuts in the
corresponding ultrapowers of N.
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Given a non-Q-point ultrafilter U , let P = ⟨[pn, pn+1) | n ∈ N⟩ be an interval
partition witnessing the non-Q-pointness of U , i.e. such that there is no U ∈ U
with |U ∩ [pn, pn+1)| ≤ 1 for all n ∈ N. For U ∈ U and pn ≤ x < pn+1 define
the functions aUp , b

U
p , and cUp by

aUp (x) = |U ∩ [pn, x)|, bUp (x) = |U ∩ [x, pn+1)|, cUp (x) = |U ∩ [pn, pn+1)|,

and consider the corresponding families of functions

AU
p = {aUp | U ∈ U}, BU

p = {bUp | U ∈ U}, CU
p = {cUp | U ∈ U}.

Put EU = {f | f increasingmod U}, and recall that SU = {f | f 1-1mod U}.
We have

Th e o r em 1.5. Let U be a PQS ultrafilter, and let P be an interval parti-
tion without selection set in U . Let FU be the cut of the ultrapower NN

U whose
left part is generated by FU ; let EU , SU , AU

p , B
U
p , and CU

p be the cuts of the

ultrapower NN
U whose right parts are generated by EU ,SU ,AU

p ,BU
p , and CU

p re-
spectively.

Then all cuts, but possibly AU
p , are greater than N, and

AU
p , S

U ≤ EU , FU ≤ BU
p , and max{AU

p , B
U
p } = CU

p .

Moreover U is SPS if and only if EU < FU , and in this case

AU
p = SU = EU < FU ≤ BU

p = CU
p .

P r o o f. For U ∈ U put eU (x) = |U ∩ [0, x)|, so every function increasing
on U is not smaller than eU . Hence the cut EU is generated also by the set
{eU | U ∈ U}. Since aUp ≤ eU , one gets AU

p ≤ EU . The inequality SU ≤ EU

is trivial, and FU ≤ BU
p holds because every U ∈ U intersects some interval

[pn, pn+1) in more than one point, and hence no function bUp is nondecreasing
modulo U .

Moreover, for all U ∈ U ,

aUp , b
U
p ≤ cUp = aUp + bUp , whence

1

2
cUp ≤ max{aUp , bUp } ≤ cUp .

Hence max{AU
p , B

U
p } = CU

p , because for all U ∈ U there exists V ∈ U s.t.

cVp ≤ 1
2c

U
p .

One has N < FU , SU because U is PQS, so it cannot be rapid. It follows
that only AU

p might possibly be equal to N.
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Finally, if EU < FU , then obviously SU ∩FU ̸= ∅. Conversely, f ∈ SU ∩FU
implies f ∈ EU , and hence AU

p ≤ SU = EU < FU ≤ BU
p = CU

p . Moreover if

aUp ∈ FU , then it is nondecreasing on some V ∈ U . It follows that aUp becomes
increasing by taking off at most one point from each interval V ∩ [pn, pn+1),
and the resulting set V ′ belongs to U , too. So aUp ∈ EU , and also AU

p = EU . �

We conclude this section by extending Proposition 1.9 of [4] to arbitrary
PQS ultrafilters, thus obtaining that the class of f -QS ultrafilters can be closed
under isomorphisms only in the trivial case when every P-point is selective.

P r o p o s i t i o n 1.6. Assume that the ultrafilter U is not a Q-point, and
let f be an arbitrary nondecreasing unbounded function. Then there exists an
increasing function φ such that the ultrafilter φU ∼= U is not f -QS.

P r o o f. Let P = ⟨[pn, pn+1) | n ∈ N⟩ be an interval partition witnessing the
non-Q-pointness of U , i.e. such that there is no U ∈ U with |U ∩ [pn, pn+1)| ≤ 1
for all n ∈ N. Pick a sequence bn such that f(bn) > pn+1 and bn+1 − bn >
pn+1 − pn. Define the function φ by

φ(pn + j) = bn + j for 0 ≤ j < pn+1 − pn.

So the points φ(pn) = bn determine an interval partition that has no selection
set in φU . Moreover f(bn) > pn+1, hence any function g such that

g(bn + j) = pn+1 − j for 0 ≤ j < an+1 − an

is positive and not greater than f on φ[N], but cannot be nondecreasing modulo
φU . �

2 - Weakly Ramsey ultrafilters

An interesting weakening of the Ramsey property of selective ultrafilters
has been considered by A. Blass in [1]:

D e f i n i t i o n 2.1. The ultrafilter U on N is weakly Ramsey (shortly WR)
if for every finite colouring of [N]2 there is U ∈ U s.t. [U ]2 has only two colours.
U is properly weakly Ramsey (abbreviated PWR) if it is WR but not selective.

Throughout this section we assume that U is a PWR ultrafilter, and that
P = ⟨[pn, pn+1) | n ∈ N⟩ is an interval partition witnessing the non-selectivity
of U , so there is no U ∈ U with |U ∩ [pn, pn+1)| ≤ 1 for all n ∈ N.

The behaviour of functions modulo a PWR ultrafilter U is subject to severe
constraints, which recall those given by selectivity; namely every function f is
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U -equivalent either to a 1-to-1 function, or to a function that is constant on
each interval [pn, pn+1), independently of the choice of the interval partition P.
More precisely (see Theorem 5 of [1]):

L emma 2.1. Let f : N → N and an interval partition P be given. Let
U be a PWR ultrafilter: then there exists U ∈ U such that exactly one of the
following cases occurs:

(i) f is constant on U ;

(ii) f is increasing on U ;

(iii) f(x) < f(y) whenever x, y ∈ U and there is n such that x < pn ≤ y, and
f is constant on U ∩ [pn, pn+1) for all n ∈ N;

(iv) f(x) < f(y) whenever x, y ∈ U and there is n such that x < pn ≤ y, and
f is decreasing on U ∩ [pn, pn+1) for all n ∈ N.

In particular, the ultrafilter fU is selective if and only if f is constant on each
interval [pn, pn+1), i.e. of type (iii).

P r o o f. Put p(x) = n if x ∈ [pn, pn+1), and identify [N]2 with the set of
pairs {(x, y) ∈ N2 | x < y}. Define the 6-colouring of [N]2 according to all
possible combinations of p(x) ≤ p(y) and f(x) ⪌ f(y).

By the choice of the interval partition, any 2-coloured set [U ]2 with U ∈ U
must comprehend both pairs with p(x) = p(y) and pairs with p(x) < p(y). Now,
when both are paired with f(x) = f(y), then case (i) occurs, whereas case (ii)
occurs when both are paired with f(x) < f(y); case (iii) and (iv) occur when
p(x) < p(y) is paired with f(x) < f(y) and p(x) = p(y) with either f(x) = f(y),
or f(x) > f(y), respectively. It is easily seen that no one of the remaining cases
can occur. E.g., pairing p(x) = p(y) with f(x) < f(y) and p(x) < p(y) with
f(x) = f(y) yields a contradiction by taking p(x) = p(y) < p(z), etc..

All functions of type (ii) and (iv) are 1-1 modulo U , so fU is isomorphic
to U . On the other hand, if f is constant on each interval, then g ◦ f is non
decreasing modulo U for all g. Hence all functions are nondecreasing modulo
fU , which is therefore selective. �

In order to classify the different types of PWR ultrafilters, we recall the
notation of Section 1. For U ∈ U and pn ≤ x < pn+1 let

aUp (x) = |U ∩ [pn, x)|, bUp (x) = |U ∩ [x, pn+1)|, cUp (x) = |U ∩ [pn, pn+1)|;

AU
p = {aUp | U ∈ U}, BU

p = {bUp | U ∈ U}, CU
p = {cUp | U ∈ U};



82 m. forti [10]

SU = {f | f 1-1 mod U}, and EU = {f | f increasing mod U}.

Then we have

Th e o r em 2.2. Let U be a PWR ultrafilter. Let AU
p , B

U
p , C

U
p , E

U , and SU be

the cuts of the ultrapower NN
U whose right parts are generated by AU

p ,BU
p , CU

p , EU ,

and SU respectively. Let FU be the cut of the ultrapower NN
U whose left part is

generated by FU = {f | U f -QS}. Then, independently of the chosen interval
partition,

min{AU
p , B

U
p } = SU ≤

{
AU

p = EU

BU
p = FU

≤ CU
p = max{AU

p , B
U
p }.

Moreover a PWR ultrafilter U is rapid if and only if N = FU , and then all
considered cuts coincide with N.

P r o o f. According to Lemma 2.1, all functions are nondecreasing modulo
U , except those of type (iv). Moreover every function of type (iv) w.r.t. U ∈ U
is greater than bUp , so the cuts FU and BU

p coincide.
Similarly a function is 1-1 on some U ∈ U if and only if its type is either (ii)

or (iv). All functions of the former type are not less than the corresponding
function aUp , while those of the latter type are not less than the corresponding

function bUp . Hence the cut S
U coincides with the smaller between AU

p and BU
p .

The equality max{AU
p , B

U
p } = CU

p has been proved in Theorem 1.5, without

any use of quasi-selectivity, as well as the trivial inequality AU
p ≤ EU . On the

other hand, each function aUp is increasing modulo U , so for all U ∈ U there is

V ∈ U such that aUp ≥ eV on V , and the converse inequality AU
p ≥ EU follows.

Finally, U being a P-point, it is rapid if and only if the functions that are
1-1 modulo U are coinitial in NN

U \ N, i.e. N = SU . But then also FU has
to be equal to N, otherwise U would be f -QS for some f , and so selective by
Proposition 1.3. So it remains to prove that N = FU implies N = CU

p . Assume

the contrary: then CU
p = AU

p > BU
p = N. Define the bijection σ of N by

σ(x) = pn + pn+1 − x− 1 for pn ≤ x < pn+1.

Then clearly
aUp >U bUp ⇐⇒ aσUp <σU bσUp .

So AσU
p < BσU

p = FσU , and σU ∼= U would be simultaneously rapid and PQS,
against Proposition 1.3. �

It follows immediately that a PWR ultrafilter U is QS if and only if the
identity is less than the cut BU . More generally, the above theorem allows for a
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complete specification of the “quasi-selectivity” properties of PWR ultrafilters.
Namely

C o r o l l a r y 2.3. Let U be a PWR ultrafilter, and let AU
p , B

U
p , and CU

p be

the cuts of the ultrapower NN
U whose right parts are generated by AU

p ,BU
p , and

CU
p respectively. Then

1. U is PQS if and only if N ̸= BU
p , or equivalently if and only if U is not

rapid;

2. U is SQS if and only if AU
p < BU

p , or equivalently AU
p ̸= CU

p ;

(in particular U is QS if and only if id < CU
p )

3. U is isomorphic to a QS ultrafilter if and only if AU
p ̸= BU

p .

P r o o f.
1. Any unbounded function f < BU = FU witnesses that U is f -QS, and

the last assertion of Theorem 2.2 implies that such a function f exists unless
U is rapid.

2. We have CU
p = max{AU

p , B
U
p }, hence AU

p ̸= CU
p is equivalent to SU =

AU
p < BU

p = FU , by Theorem 2.2. So there is U ∈ U s.t. aUp < BU
p : then aUp is

increasing modulo U , and U is aUp -QS.

3. If AU
p < BU

p , then U is SQS; so there is a function f increasing modulo
U such that U is f -QS. Then U ∼= fU , and fU is QS by Proposition 1.1.

If AU
p > BU

p , define the bijection σ of N by σ(x) = pn + pn+1 − x − 1 for
pn ≤ x < pn+1. Then clearly

aUp >U bUp ⇐⇒ aσUp <σU bσUp .

So AσU
p < BσU

p , and σU is isomorphic to a QS ultrafilter by the preceeding case.
Conversely, let φ be a 1-1 function, which we may assume of type (ii) or

(iv), according to Lemma 2.1. In both cases there is an interval partition P ′

such that φ[pn, pn+1) ⊆ [p′n, p
′
n+1) for all n ∈ N. Then one has

aUp >U bUp ⇐⇒ aφUp′ <φU bφUp′ , when φ is of type (iv);

whereas

aUp <U bUp ⇐⇒ aφUp′ <φU bφUp′ , when φ is of type (ii).

It follows that the equality AU
p = BU

p is preserved under isomorphism, and
such ultrafilters cannot be QS (nor SQS). �
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3 - Final remarks and open questions

Recall that both PWR and PQS ultrafilters are nonselective P-points, so
the above results are nontrivial only when such ultrafilters exist. (And their
existence is independent of ZFC by a celebrated result of Shelah’s, see e.g. [15].)
However mild hypotheses, like CH or MA, suffice in making both classes rich
and distinct (see [1,4]). In fact these classes are already different unless both
are empty, because the former is closed under isomorphism, whereas the latter
is not, by Proposition 1.6.

In ZFC, one can draw the following diagram of implications

QS −→ ∃f. f -QS

↗ ↘
Selective P-point

↘ ↗
Weakly Ramsey

Recall that, assuming CH, the following facts hold:

(A) there exist PWR ultrafilters U such that the cut induced by CU
p in the

ultrapower NN
pU is arbitrarily chosen among those having left part closed

under exponentiation and right part of uncountable coinitiality (Theorem
4 of [1]);1

(B) there are non-WR P-points (Theorem 2 of [1]);

(C) there exist P-points that are not QS, and QS ultrafilters that are not
selective (Theorem 1.2 of [4]).

It follows from (A) that there exist rapid PWR ultrafilters, necessarily not
PQS, and also that for every f there exist f -QS PWR ultrafilters, necessarily
non-g-QS for suitable g.

So, considering also (B-C), we may conclude that, in the diagram above, no
arrow can be reversed nor inserted, except compositions.

Many weaker conditions than the Continuum Hypothesis have been consid-
ered in the literature, in order to get more information about special classes of
ultrafilters on N. Of particular interest are (in)equalities among the so called
“combinatorial cardinal characteristics of the Continuum”. E.g. one has that

1 It is worth mentioning that, according to Theorem 2.2, if CU
p is taken to be N, then U

is a rapid nonselective P-point. Thus one has a non-forcing proof of the consistency of the
existence of such ultrafilters.
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P-points or selective ultrafilters are generic if c = d or c = cov(B), respectively.
Moreover if cov(B) < d = c then there are filters that are included in P-points,
but cannot be extended to selective ultrafilters. See the comprehensive sur-
vey [3].

We remark that both QS and WR ultrafilters are P-points of a special kind,
since they share the property that every function is equivalent to an interval-
to-one function. So the question naturally arises as to whether this class of
“interval P-points” is distinct from either one of the other three classes.2

Ac k n ow l e d gm e n t s. The author is grateful to Mauro Di Nasso for many
useful discussions, and to Andreas Blass for some basic suggestions.
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