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On the local-to-global principle for value sets

Abstract. We consider the following problem: given a morphism Y →
X of algebraic curves over a number field k, describe the rational points
x ∈ X (k) lifting locally at every place to some rational point on Y, but
admitting no rational pre-image. In particular, we provide examples
where there exist infinitely many such points.
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1 - Introduction

A way to prove the unsolvability of certain Diophantine equations consists
in proving that the corresponding congruence to some suitable modulus is not
solvable, and this last fact can always be detected by finite computations. How-
ever, it may happen that each congruence associated to a given Diophantine
equation admits a solution while the equation itself admits no integral (or ra-
tional) solution. Hence the problem arises: for which Diophantine equations
does the solvability of all the associated congruences guarantees the existence
of a solution for the original Diophantine equation?

While this problem has been widely studied for equations in several vari-
ables, it seems that little work has been done around equations in a single
unknown.

We illustrate more precisely our setting: given a polynomial f(X) ∈ Z[X],
we say that an integer number λ is a strongly fake value of the polynomial f(X)
if the Diophantine equation

(1) f(x) = λ
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admits no integral solution x ∈ Z, while for each modulus m ≥ 1 the corres-
ponding congruence

f(x) ≡ λ (mod m)

admits a solution x ∈ Z.
In another language, the equation (1) admits ‘local’ p-adic solutions x ∈ Zp

for every prime p, but no ‘global’ solution in Z.
If the equation admits a p-adic solution for all but finitely many primes p,

we shall say that λ is a fake value of the polynomial.
An analogous definition will be given for rational functions and rational

values of λ, possibly over arbitrary number fields.

As we shall see, the first occurences of polynomials admitting fake values
arise in degree five. Here is an example: the Diophantine equation

(2) x5 + x4 − 19x2 + x3 − 19x = 19

admits no integral solution (actually no rational solution), but does admit a
solution in every ring of p-adic integers Zp. Note that the above equation can
be written as

(x2 + x+ 1)(x3 − 19) = 0,

so it corresponds to finding a root of a reducible polynomial. Replacing the
number 19 by another non-cube integer in the second factor above leads to
analogous examples where the equation admits p-adic solutions for all large
primes; for instance, the choice of the integer 2 produces the polynomial (x2 +
x+1)(x3 − 2) which admits roots in Zp for all primes p ≥ 5 (and, of course, no
rational root).

Hence, in our language, 0 is a strongly fake value for the polynomial (x2 +
x + 1)(x3 − 19), and it is a fake value - but not a strongly fake one - for the
polynomial (x2 + x+ 1)(x3 − 2).

One natural problem, which will be addressed in this work, is the following:

P r o b l em: Find polynomials admitting infinitely many fake values.

The first example, and basically the only one known at present over the ra-
tional integers, is provided by the famous Grunwald-Wang example: the number
16 is an eighth-power in the ring Zp for all odd prime p, but is not an eight-
power in Q.

So, the polynomial f(X) = X8 admits 16 as a fake value, and then auto-
matically all numbers of the form 16n8, for n ∈ Z, n �= 0, are fake values of f .

More generally, we shall consider a finite morphism between two (affine or
projective) algebraic curves f : Y → X over a (ring of S-integers of a) number
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field κ. In the case of projective curves we shall consider rational points, while
for affine curves integral points shall be considered. Note that if X ,Y are affine
and the morphism f : Y → X is finite, then there exists a ring of S-integers
OS ⊂ κ such that for each S-integral point p ∈ X (OS), every rational point
q ∈ f−1(p) is necessarily S-integral. In the sequel, a number field κ and a ring
of S-integers OS ⊂ κ will be tacitly meant to have been chosen.

We say that a rational (resp. S-integral) point p on the projective (resp.
affine) curve X is a fake value of the morphism f if for all but finitely many
valuations ν of κ, the pre-image f−1(p) contains a ν-adic point in Y(κν) (κν
denoting the completion of κ at the place ν), but no point in Y(κ) (resp. in
Y(OS)).

Noting that the polynomial f(X) = X8 appearing in Grunwald-Wang ex-
ample can be viewed as an isogeny Gm → Gm, R. Dvornicich and U. Zannier
in [4], [5] treated the natural generalization to isogenies of elliptic curves or
of more general commutative algebraic groups (see §7 for a compairison be-
tween their constructions and ours). To our knowledge, subsequent research
concentrated only on the local-to-global principle/obstructions in the context
of algebraic groups.

On the contrary, in this work we shall be interested in situations where
no algebraic group structure is present, and especially on morphisms to the
projective line.

To state our first result we need to introduce a definition: given an algebraic
curve X over a number field κ, we say that a subset A ⊂ X (κ) is a value set
over κ (or simply a value set) if there exists a morphism of algebraic curves
f : Y → X over κ, where the curve Y might be reducible, such that A =
f(Y(κ)). It is easy to see that every finite set is a value set. Also, finite unions
and intersections of value sets are again value sets (for the union, just take the
disjoint union of the corresponding curves Y, while for the intersection consider
the fiber product over X ).

A value set is called κ-thin (or simply thin) if it is the union of the images
of rational points under morphisms Y → X without rational sections (compare
with [15], chap. 9, [2], chap. 4 and [3], chap. 5).

When X = P1 is the projective line, Hilbert Irreducibility Theorem guar-
antees that X (κ) is not a thin set.

T h e o r em 1.1. Let f : Y → X be a finite morphism of (projective or
affine) algebraic curves over a number field κ. If f admits a fake value then
deg f ≥ 5. The set of fake values for f is a thin set belonging to the Boolean
algebra generated by the value sets. More explicitly, it is the complement of the
set f(Y(κ)) in a thin value set.
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The fact that no fake value can exist for morphisms of degree ≤ 4 was
observed e.g. by D. Harari and F. Voloch in [10] (see the proof of their Theorem
3 therein).

It is known since the eighties (Faltings’ theorem) that only curves of genus
≤ 1 can contain infinitely many rational points. Also, Siegel’s theorem (see
e.g. Chapter 3 of [3]), dating back to the twenties, asserts that the only affine
curves admitting infinitely many integral points, on some ring of S-integers, are
those parametrized (over an extension of the ground field) by A1 or by Gm.

We can prove that stronger restrictions hold if a curve is the target curve
of a morphism admitting infinitely many fake values:

T h e o r em 1.2. Let f : Y → X a morphism admitting infinitely many fake
values over any sufficiently large number field. Then X is a rational curve. If
X ,Y are smooth affine curves and f : Y → X a finite map admitting infinitely
many integral fake values, over sufficiently large rings of S-integers, then X is
isomorphic to the affine line A1.

Here, when we say that we require fake values over sufficiently large number
fields we mean the following: there exists a number filed κ′, such that over every
number field κ′′ containing κ′ the morphism admits infinitely many fake values.

In the particularly interesting case of polynomials, i.e. finite morphisms
A1 → A1, we found examples of polynomials of degree 5 with infinitely many
fake values, although only over rings of integers containing Z[

√
5] (see Sec-

tion 5).
We also found examples of degree thirteen over suitable (i.e. sufficiently

large) rings of integers, but again no example (with infinitely many f.v.) over
the ring of rational integers.

In general, such examples, both for polynomials and for morphisms of com-
plete curves, the ‘generic Galois group’ (see next section for the definition) has
strong restrictions. Using this fact, we prove that a sufficiently generic polyno-
mial (in the sense specified below of a Morse polynomial) as well as a generic
rational function, can have only finitely many fake values.

Following [7] and other authors, we say that a polynomial f(X) ∈ C[X] of
degree n ≥ 1 is a Morse polynomial if its derivative has n− 1 distinct zeros and
f takes distinct values at the zeros of its derivative.

We shall prove the following

Th e o r em 1.3. Let f(X) ∈ OS [X] be a Morse polynomial with S-integral
coefficients. Then its set of fake values in OS is finite.

For instance, the polynomial appearing on the left-hand side of equation
(2), which is a Morse polynomial, admits only finitely many fake values.
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An analogous notion is defined for rational functions: a rational function
f(x) ∈ C(x) is said to be a Morse function if it is a Morse function as a map
from the Riemann sphere to itself. This means that it has the maximal number
(i.e. 2(deg f − 1)) of critical points 1.

We shall prove:

T h e o r em 1.4. Let f(X) ∈ κ(X) be a rational function defined over the
number field κ. If f is a Morse function, it admits at most finitely many fake
values over κ.

We can also provide a procedure, for each fixed degree, to effectively find
out whether there exist polynomials of that degree admitting infinitely many
fake values.

The techniques to prove our theorems make use of three main ingredients:
the Frobenius-Chebotarev density theorem, the Galois theory of covering of
the line (over the complex number field) and Siegel’s (and Faltings’) finiteness
theorems on integral (and rational) points on curves.

After this paper was written, an anonymous referee showed us the rele-
vant reference [17], where M. Stoll studies the finite descent obstruction to the
local-to-global principle, proving in particular that the finite abelian descent
obstruction is the only obstruction in dimension zero.

The problem treated in this work, in the particular case of polynomial maps
and strongly fake values, was considered from a different perspective, namely
in the frame of Bohr topology, by K. Kudin and W. Rudin in [11].

As it will be explained in the sequel, these topics are closely related to the
problem of Kronecker conjugacy of polynomials, apparently introduced by H.
Davenport and studied in particular by M. Fried since the sixties (see the pa-
per [13] by P. Müller for further results and a bibliography). We recall that
two polynomials f(X), g(X) ∈ Z[X] are said to be Kronecker conjugate if they
share the same values set in A1(Fp) for all but finitely many primes p. Of
course, two linearly related polynomials. i.e. pairs of polynomials of the form
(f(X), f(aX+b)), for a, b ∈ Q, with a �= 0 are Kronecker conjugate. The prob-
lem in this theory is to classify pairs of Kronecker conjugate polynomials which
are not linearly related. As we shall see, each such pair gives rise to a poly-
nomial with infinitely many fake values; however, there also exist polynomials
with infinitely many fake values which do not admit any non-trivial Kronecker
conjugate.

1Note however that a Morse polynomial of degree ≥ 3, viewed as a rational function, is
not a Morse function, due to the fact that the point at infinity is totally ramified.
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2 - Notation and preliminaries

No t a t i o n. The following symbols will be used throughout in the paper:

– Sn, the symmetric group on n objects; An ⊂ Sn is the alternating group.

– For a group G acting on a set X and a point p ∈ X, Gp denotes the
stabilizer of p in G.

– If κ is a number field, we denote by Oκ its ring of integers.

– For a point x ∈ PN (κ) and a prime ideal p of Oκ, xp denotes the reduction
of x mod. p.

– For an algebraic curve X of genus g, we set χ(X ) = 2g − 2 (Euler char-
acteristic)2 .

– For a finite set A, we denote by �(A) its cardinality; when A is a group,
we write also |A|.

Let κ be a number field, f : Y → X be a finite morphism of smooth
absolutely irreducible algebraic curves defined over κ. The Galois closure of
the covering f : Y → X is provided by another curve Ỹ defined over κ, possibly
geometrically reducible, and a morphism f̃ : Ỹ → X defined over κ. In the
sequel of this section, we suppose to have fixed the number field κ and such
covers over κ

Ỹ → Y → X .

The Galois group of the Galois extension κ(Ỹ)/κ(X ) is called the Galois
group of f over κ and denoted by Gf,κ or simply Gf , omitting the reference to
the ground field κ.

If n = deg f ≥ 1 is the degree of f , then Gf,κ and Gf,κ̄ =: Ggeo
f are naturally

faithfully represented into Sn, as transitive subgroups, uniquely defined up to
conjugation in Sn.

If κ̃ is the field of scalars in κ(Ỹ), then the Galois group of f is the middle
term of the short exact sequence

(3) {0} → Ggeo
f → Gf,κ → Gal(κ̃/κ) → {0}.

In terms of field extensions, the above exact sequence corresponds to the tower

κ(X ) ⊂ κ̃(X ) ⊂ κ(Ỹ).

2For some authors, the Euler characteristic has opposite sign
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The group Ggeo
f does not change after extending the scalars from κ to

the complex number field C. Whenever X = P1 is the projective line, this
group can be described as follows: denoting by S ⊂ P1(C) the (finite) set of
branched points for the morphism f , we can view f as an unramified cover
Y(C) f−1(S) → P1(C) S. Fixing a base point p ∈ P1(C) S, the funda-
mental group π1(P1(C) S, p) acts on the fiber of p for f , which is a set of
cardinality n = deg f . The image of π1(P1(C) S, p) in Sn, depending only on
a numbering of the fiber f−1(p), is isomorphic to Ggeo

f .

Given a subgroup H ⊂ Gf,κ, we define the corresponding algebraic curve
UH over κ to be the quotient Ỹ/H; its function field is the fixed field κ(Ỹ)H for
the subgroup H. Each such curve is endowed with a projection UH → X . Note
that UH is absolutely irreducible if and only if the projection H → Gal(κ̃/κ) is
surjective.

Given a point x ∈ X (κ), its fiber f−1(x) is a finite union of Galois orbits for
the action of Gal(κ̃/κ) on the set X (κ̄) of the geometric points of X . We define
the Galois group of f−1(x) to be the image of Gal(κ̃/κ) under this action.

The following result is well known.

P r o p o s i t i o n 2.1. Let f : Y → X a finite morphism of algebraic curves
over a number field κ. Let x ∈ X (κ) a rational point. The Galois group of
f−1(x) is a sub-group of Gf,κ. Let q ∈ Y(κ̄) be an (algebraic) point in the fibre
f−1(x) of x. Let κ(q) be the field of definition of q. Then the Galois group of
the Galois-closure of the field extension κ(q)/κ is a quotient of a subgroup of
Gf,κ.

3 - Application of Frobenius-Chebotarev and Jordan’s theorems

In this section we give a characterization of the set of fake values, by proving
Theorem 1.1. We start with a definition:

D e f i n i t i o n - Property (∗). Given an integer n ≥ 1 and a subgroup H ⊂
Sn of the n-th symmetric group, we say that H has the property (∗) if it satisfies
the following two conditions

1. Every permutation in H has a fixed point.

2. For every point p ∈ {1, . . . , n} there exists an element h ∈ H with
h(p) �= p.

In other words, setting, for each point p ∈ {1, . . . , n}, Gp the stabilizer of p
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in Sn, a subgroup H ⊂ Sn satisfies property (∗) if and only if

H ⊂
⋃

p∈{1,...,n}

Gp =
⋃

g∈Sn

g Gn g
−1

but H �⊂ Gp for any p ∈ {1, . . . , n}.

Note that if G ⊂ Sn is a transitive subgroup, then the conditions above can
be restated forgetting the reference to Sn: letting K ⊂ G be the stabilizer of a
point, noticing that the other stabilizers are the conjugates of K in G we can
state condition (∗) as

(∗ 1) H ⊂
⋃

γ∈G γKγ−1

(∗ 2) H � γKγ−1, ∀γ ∈ G.

We can now classify the fake values by their Galois theoretic properties as
follows:

P r o p o s i t i o n 3.1. Let f : Y → X a finite morphism of algebraic curves
over a number field κ and let x ∈ X (κ) be a fake value. Let Ỹ → X be the
Galois closure over κ of the cover f : Y → X . Then the zero-dimensional
variety f−1(x) is reducible over κ. Let H ⊂ Gf,κ ⊂ Sn be the Galois group of
its residue field. Then H has the property (∗).

This proposition was essentially already known: for instance, the reducibil-
ity of the fiber was remarked by M. Stoll in [17] (see the proof of his Proposition
5.12). The proof of Proposition 3.1 makes use of the following two well-known
results:

L emma 3.2 (Frobenius density theorem). Let K/κ be a Galois extension
of a number field, with Galois group H. Let H ↪→ Sn be a faithful permutation
representation of H. Let C ⊂ H be an equivalence class of elements of H
which are conjugate in Sn. Then there exist infinitely many prime ideals p in
Oκ whose Frobenius class lies in C.

The above lemma has actually be improved by Chebotarev, who replaced
the equivalence relation induced by the embedding H ↪→ Sn by the finer rela-
tion of conjugation inside H.

L emma 3.3 (Theorem of Jordan). Let G be a finite group acting transi-
tively on a finite set with at least two elements. Then there exists an element
of G fixing no point.
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This second lemma is a theorem of Jordan. It can be rephrased by saying
that a group action with property (∗) is never transitive. In still another for-
mulation: no finite group is covered by the union of the conjugates of a proper
subgroup.

The reader is referred to Serre’s paper [16], who provides two proofs of
Jordan’s theorem, as well as a proof of our Proposition 3.1 in the particular
case of polynomial morphisms. Our proof is basically the same.

P r o o f o f P r o p o s i t i o n 3.1. Let m ≤ deg f be the cardinality of the
fiber f−1(x) ⊂ Y(κ̄). The Galois group H of the residue field of the (geometric
points of the) set f−1(x) acts on this set of cardinality m, so is (faithfully)
represented in Sm. Let h ∈ H be an element of the Galois group. For all but
finitely many prime ideals p of Oκ, the set f−1(xp) (where we used the symbol
f also to designate the induced morphism on the reduced varieties Yp → Xp)

is formed by m points in Yp(Oκ/p). The Frobenius automorphism of p acts
on this fiber. By Frobenius’ theorem, there exist infinitely many primes p of
Oκ such that the corresponding Frobenius automorphism lifts to an element in
the conjugacy class of h. Now, if x admits a p-adic lift to Y, then xp admits
a lift to a Oκ/p-rational point in Yp. This means that one of the points of the
fiber of xp is fixed by the Frobenius automorphism. But since this Frobenius
automorphism lies in the class of h, the automorphism h itself must have a
fixed point. This proves that every element of H has a fixed point. However,
since x is a fake value, there is no point in f−1(x) fixed by the whole group H;
these two facts mean precisely that H has the property (∗).

By the Theorem of Jordan, the action of H on the fiber f−1(x) cannot be
transitive, so the fiber is reducible over κ.

Take then a fake value x for a morphism f : Y → X . Letting as before
Ỹ → X be the Galois closure of the cover f : Y → X , there exists a subgroup
H ⊂ Gf with property (∗) such that the Galois group of the residue field of the
fiber of f−1(x) is H. This means that if we let UH be the algebraic curve Ỹ/H,
corresponding to the fixed field κ̃(Ỹ )H , then x is the image of a κ-rational point
of UH . Below the diagram of algebraic curves and morphisms.

(4)

Ỹ

Y UH

X
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From the above discussion we obtain the

Th e o r em 3.4. We keep the above notation. The set of fake values is
contained in the union of the images of the rational points of the curves UH ,
for H ⊂ Gf satisfying Property (∗).

More precisely, the set of fake values is the complement of the set f(Y(κ))
inside this union.

Note that, since H must always be a proper subgroup of Gf , the degree of
each morphism UH → X must be ≥ 2. Hence the above statement implies the
last part of Theorem 1.1.

To end the proof of that theorem, it remains to exclude the existence of any
fake value in degree ≤ 4. Indeed, suppose that x is a rational point of X whose
fiber is reducible over κ; in degree 2 or 3, any reducible fiber has a rational
point, so that x is actually a rational value of the morphism; in degree 4, the
number field extension associated to a reducible fiber must be the compositum
of two quadratic extensions: now, there are infinitely many primes which are
inert for both extensions, and these primes do not admit lifting of the given
rational point.

This achieves the proof of Theorem 1.1.

Note that each fake value in degree five has the property that its fiber splits
into two components, one of degree three and the other of degree two; the
quadratic number field corresponding to the second component is the quadratic
extension contained in the sextic extension obtained as the Galois closure of
the field of definition of any (cubic) point in the degree-three component.

We now prove Theorem 1.2. Its proof needs the following elementary lemma
from group theory:

L emma 3.5. Let G be a finite group, K ⊂ G a subgroup and H � G a
normal subgroup. If

H ⊂
⋃
γ∈G

γKγ−1,

then H ⊂ K.

P r o o f. From the above inclusion and the fact that H is normal it follows
that H is also included into

⋃
γ∈G γK ∩ Hγ−1. By Jordan’s Theorem, this

implies that K ∩H is not a proper subgroup of H, i.e. H ⊂ K as wanted.

P r o o f o f T h e o r em 1.2. Suppose that f : Y → X is a finite morphism
of degree n, defined over a number field κ, admitting infinitely many fake values
over arbitrarily large number fields κ′ ⊃ κ. By taking κ′ sufficiently large, we
can suppose that the group Gf,κ′ coincides with its geometric part Ggeo

f .
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Recall that we want to rule out the possibility that X has genus one (in the
projective case) and that X � Gm (in the affine case).

Consider an infinite family of fake values provided by a cover UH → X as
described in the proof of Theorem 1.1 and suppose by contradiction that X has
genus one (in the projective case) or X � Gm (in the affine case). Then, by
Faltings’ theorem in the projective case UH must also have genus 1, while in
the affine case by Siegel’s theorem UH � Gm. In both cases the map UH → X
must be unramified, and must also be an abelian cover of X . Then H �Ggeo

f is

a normal subgroup of Ggeo
f (with abelian quotient). However, as proved in the

above lemma, a normal subgroup H of a transitive group Ggeo
f ⊂ Sn cannot

have property (∗).

To construct examples of morphisms f : Ỹ → X̃ with infinitely many fake
values, one must then find a cover such that there exists a subgroup H ⊂ Gf

satisfying property (∗) such that the corresponding curve UH in the diagram
(4) has infinitely many rational (or integral) points. The subgroup H too can
be viewed as the stabilizer of a point in a suitable action of Gf on a finite set
(for instance the pre-image of an unramified point in the fiber of the morphism
g : UH → X ). Then condition (∗) can be rephrased in the following way: the
group Gf acts on two sets, one of cardinality deg f and one of cardinality deg g,
in such a way that whenever an element γ ∈ Gf fixes a point in the second set
it also fixes a point in the first one.

In this work, we shall be interested in producing examples of infinite families
of fake values over arbitrarily large number fields (or arbitrarily large rings of S-
integers). Hence we shall consider mainly the geometric part Ggeo

f of the Galois
group Gf , and look for groups admitting two distinct “interesting” actions with
the above property. In particular, our groups Ggeo

f will never be abelian, which
rules out the examples concerning isogenies of commutative algebraic groups
considered in [4], [5].

4 - Proof of Theorems 1.3 and 1.4

Let OS ⊂ κ be a ring of integers of a number field, and f(X) ∈ OS [X] a
Morse polynomial of degree n ≥ 5.

We start by showing that the geometric Galois group Ggeo
f is the full group

Sn. This fact can be viewed by observing, as we did in §2, that the geometric
Galois group is represented in Sn as the monodromy action of the fundamental
group of the complement in P1(C) of the ramification values of the map f ,
viewed as a morphism of the Riemann sphere P1(C) to itself. Due to the
hypothesis on f , this permutation group is generated by transpositions; now,
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every transitive subgroup of Sn generated by transpositions is the full group.
Since the full Galois group Gf is always contained in Sn (in its canonical

representation) and contains its geometric part Ggeo
f , which in the present case

is the full group Sn, we must have Gf = Sn.
Now, letting as before Ỹ be the Galois closure of the covering f : P1 → P1,

we can calculate the Euler characteristic of Ỹ via Hurwitz formula: taking into
account that the point ∞ ∈ P1 is totally ramified (i.e. of index n = deg f) in
the cover f : P1 → P1 and that n − 1 points admit one single pre-image with
ramification index 2 (the other pre-images being unramified), the morphism
Ỹ → P1 admits n!/n ramified points of index n and n!(n− 1)/2 ramified points
of index 2. Hence

(5) χ(Ỹ) = −2n! +
n!

n
(n− 1) +

n!(n− 1)

2
= n!

(
n− 1

n
+

n− 1

2
− 2

)
.

Suppose now that the morphism f : P1 → P1 admits infinitely many fake
values. Then there must exist an infinite family of such fake values, all obtained
as images of rational points from a curve g : UH → P1, associated to a subgroup
H ⊂ Sn satisfying property (∗). Moreover, the affine curve UH g−1(∞) must
contain infinitely many S-integral points. By Siegel’s theorem, this forces the
Euler characteristic of UH to be strictly negative (and the set g−1(∞) to have
cardinality ≤ 2).

Consider then the cover Ỹ → UH . Again by Hurwitz formula, the relation
between the Euler charcateristics of the curves UH and Ỹ reads

χ(UH) =
χ(Ỹ)− Ram(Ỹ/UH)

�(H)
,

where Ram(Ỹ/UH) =
∑

p∈Ỹ(ep−1), and ep is the ramification at p of the cover

Ỹ → UH . Hence, in order to have χ(UH) < 0, we must have

(6) Ram(Ỹ/UH) > χ(Ỹ) = n!

(
n− 1

n
+

n− 1

2
− 2

)
.

Now, the ramified points of such a cover are those points p ∈ Ỹ whose stabilizer
Hp is non-trivial. Recall that there are n!/n points in Ỹ whose stabilizer in
Sn = Ggeo

f has order n and all the other points have a stabilizer which is either
trivial or of order 2; these last stabilizers are generated by transpositions. Since
the subgroup H ⊂ Sn satisfies property (∗), no power of any n-cycle (apart
the identity) can be contained in H. Hence the only elements of H fixing some
point in Ỹ are the transpositions.

Observe now that all the transpositions in Sn are conjugate to each other,
so their set of fixed points has the same cardinality. Since Sn contains

(
n
2

)
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transpositions, and there are n!(n − 1)/2 points fixed by a transposition, it
follows that each transposition fixes exactly [n!(n−1)/2]/

(
n
2

)
= (n−1)! points.

This holds in particular for all the transpositions belonging to the subgroup H,
so

Ram(Ỹ/UH) = h(n− 1)!,

where h is the number of transpositions in H. From (6) and the above identity
we obtain

h(n− 1)! > n!

(
n− 1

n
+

n− 1

2
− 2

)
,

i.e.

(7) h > n− 1 +
n(n− 1)

2
− 2n =

(
n

2

)
− n− 1.

In other words, H must contain all but at most n transpositions of the sym-
metric group Sn.

Recall also that H is non-transitive (otherwise, by Jordan’s theorem, it
cannot satisfy property (∗)) and not contained in the stabilizer of a point. Then
H conserves a partition of {1, . . . , n} of the form {1, . . . , k}∪{k+1, . . . , n}, for
some 1 < k < n− 1. But then the number h of transpositions in H is bounded
as

h ≤
(
k

2

)
+

(
n− k

2

)
≤ 1 +

(
n− 2

2

)
,

which, together with the lower bound (7), forces n ≤ 4. However, we are
supposing here n ≥ 5, and this concludes the proof.

Theorem 1.4 is proved in a similar way. Again, a Morse function f : P1 → P1

of degree n has a Galois group Gf = Ggeo
f � Sn. Letting again Ỹ → P1 be

the Galois closure of the cover f : P1 → P1, every ramified point in the cover
Ỹ → P1 has ramification index 2. Since the ramification divisor has degree
2n− 2, there are n!(2n− 2)/2 ramified points for the cover Ỹ → P1. Hence the
Euler characteristic of Ỹ equals

χ(Ỹ) = n!(n− 3).

As before, a subgroup H ⊂ Sn giving rise to an infinite family of fake values
must satisfy property (∗) and the corresponding curve UH = Ỹ/H must satisfy
χ(UH) ≤ 0, by Faltings’ theorem. An argument similar to the previous one
shows that each transposition in Sn fixes 2(n− 1)! points of Ỹ. Hence H must
contain at least n!(n−3)/2(n−1)! = n(n−3)/2 transpositions. Then the proof
is concluded exactly as before.
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5 - Examples in degree five

The Icosahedral group. The icosahedral group is defined as the group
of rotations of the icosahedron. It is isomorphic to the alternating group A5

and constitutes one of the “coincidences” in the classification of finite simple
groups, in the sense that it belongs to three different series of simple groups.
Namely, we have the isomorphisms

A5 � SL2(F4) � PSL2(F5).

It acts naturally on a five-point set, e.g. the set P1(F4), but also on a ten-
point set: the set of unordered pairs of points in P1(F5), or the set of opposite
pairs of sides of an icosahedron. It also acts on the set P1(F16) P1(F4) =
F16 F4, containing twelve points, the number of faces of a dodecahedron and
of vertices of an icosahedron. Note that this last action is imprimitive, since
the Frobenius automorphism of the extension F16/F4 acts on the twelve-point
set P1(F16) P1(F4), and its action commutes with the action of SL2(F4). This
is in accordance wth the fact that the rotation group of the icosahedron too
acts imprimitively on the vertices of the icosahedron, since its action commutes
with the antipodal map. Hence, we obtain an action on a six-point set, namely
the set of opposite pairs of vertices of the icosahedron. This last action can
be viewed via the isomorphism A5 � PSL2(F5) and the six-point set can be
identified with P1(F5). Using the same trick as above, we obtain an action
on P1(F25) P1(F5), which contains twenty points, as many as the faces of an
icosahedron. Again, this action is imprimitive, since it commutes with that
of the Frobenius involution (corresponding again to the antipodal map on the
icosahedron). Finally, recall that an icosahedron has thirty edges: the number
thirty is the cardinality of the set of F5-rational points in the surface P1×P1 ∆,
∆ being the diagonal of P1 × P1, and the action of PSL2(F5) on that surface
being the obvious one.

As we observed, in order to produce infinite families of fake values it is
important to realize a finite group as a Galois group of an extension of function
fields, and to compare two actions of that group.

A first example. We shall start with the action of G = A5 on a five-point
set, deriving from the monodromy action of a degree five cover of the projective
line. More precisely, we look for a polynomial f(X) ∈ Q[X] of degree five,
inducing a cover P1 → P1 whose monodromy group is the alternating group.
We shall use a cover which ramifies only over three points (the minimal number
of branched points for a non-abelian cover). Start from the identity

(1, 2, 4) ◦ [(2, 3) ◦ (4, 5)] = (1, 2, 3, 4, 5)
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which shows that the groups A5 can be generated by a three-cycle and a prod-
uct of two disjoint transpositions, whose product is a five-cycle. We can then
represent the fundamental group π1(P1(C) {p1, p2,∞}), for any choice of
p1, p2 ∈ C, in the alternating group A5, by sending one generator, corresponding
to a loop around p1, to the three-cycle (1, 2, 4), and the second generator, cor-
responding to a loop around p2, to the permutation (2, 3) ◦ (4, 5). The product
of these elements of the fundamental group will correspond to a loop around
∞. We then look for a cover which is totally ramified over ∞, and has two
more branched points: for one of them the pre-image has a ramified point of
order 3, for the second one two ramified points of order 2, all the remaining
pre-images being unramified.

A concrete instance is represented by the polynomial

(8) f(X) = 9X5 + 15X4 + 40X3 = X3(9X2 + 15X + 40).

It ramifies over 0 and 64. It defines a cover f : P1 → P1 whose Galois closure is
given by a rational curve Ỹ � P1, as it can be shown using the Hurwitz formula:
indeed the degree of the cover Ỹ → P1 is 60 = |A5|. The ramified points form
three orbits: one of them is the pre-image of ∞ and contains 12 points with
ramification index 5; a second one is the pre-image of 0: it contains 20 points
with ramification index 3; the third one consists in the pre-image of 64, and
contains 30 points with ramification index 2. Then the Euler characteristic of
Ỹ turns out to be −2 · 60 + 12 · 4 + 20 · 2 + 30 = −2, which forces Ỹ to be a
rational curve (over Q̄ at least).

The icosahedral pattern is well recognizable. Since, however, the icosahedral
group cannot act on P1 over the rationals, the Galois group Gf,Q must then be
the full group S5. However, after replacing Q by Q(

√
5), we would obtain a

Galois group Gf,Q(
√
5) = Ggeo

f = A5.

We have now to look for a group H satisfying property (∗). Automatically
the curve UH = Ỹ/H will be rational and will provide infinitely many rational
fake values for the morphism f . However, if we want to construct infinitely
many integral fake values, we must also construct such a curve UH so that,
denoting by g : UH → P1 the corresponding morphism, the pre-image g−1(∞)
of the point at infinity has cardinality ≤ 2. Otherwise, by Siegel’s theorem,
the affine curve UH {g−1(∞)} will have only finitely many integral points, so
only finitely many fake values so constructed will be integral.

To construct the subgroup H, consider the mentioned action of G = A5 on
a ten point set and define H to be the stabilizer of one of these points. For
instance, H can be taken to be the subgroup of G sabilizing the set {1, 2} ⊂
{1, . . . , 5}, i.e. fixing one element in the set of cardinality

(
5
2

)
= 10 consisting

of the cardinality-two subsets of {1, . . . , 5}. We claim that H has the property
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(∗). This means that every even permutation stabilizing {1, 2} admits at least
one fixed point: indeed, if this permutation does not fix 1 and 2, it interchanges
them and so acts on the set {3, 4, 5} via an odd permutation, which necessarily
fixes one of these last three points.

Let us study now the morphisms Ỹ → UH → P1, in order to detect the
pre-image of ∞ with respect to the last arrow. Note that the index of H in G
is 10, so the degree of the morphism g : UH → P1 is also 10. Since H contains
no 5-cycle, no point of Ỹ lying over ∞ ramifies in the projection Ỹ → P1. Hence
the pre-image of ∞ in UH must be ramified with index 5, so g−1(∞) cosists in
two points.

We then obtain that, over a suitable ring of S-integers, the polynomial
f(X) defined in (8) admits infinitely many fake values. These fake values are
parametrized by the units in such a ring of S-integers, being values at S-units
of a degree ten Laurent polynomial g(t) ∈ Q(

√
5)[t±1].

We note that in this case the polynomial f and the Laurent polynomial g
play symmetrical roles. If we let K be the stabilizer of a point for the action
of G = A5 on a five point set, while H is the stabilizer of a point in the ten
point set acted on by the same group G, as described above, we have that each
element of H fixes a point on the first set (of cardinality 5), while each element
of K fixes a point in the second set (in other words: every even permutation
of {1, . . . , 5} fixing one point admits an invariant subset of cardinality 2). It
follows that not only each rational value of g is a fake value of f , unless it is
a rational value of f too, but also that each rational value of f which is not a
rational value of g is a fake value for g.

A second example. Here we construct another example of a degree five
polynomial admitting infinitely many fake values, over arbitrary number fields;
however, this second polynomial admits only finitely many integral fake values,
over any ring of S-integers.

We start from the identity

(1, 2, 3) ◦ (3, 4, 5) = (1, 2, 3, 4, 5)

holding in A5. Interpreting as above the first permutation as a loop around,
say, the point 0 ∈ P1 and the second permutation as a loop around the point
1 ∈ P1, their product corresponds to a loop around ∞. Hence we obtain a
representation of π1(P1 {0, 1,∞}) → A5 which corresponds to a cover f :
P1 → P1, totally ramified over ∞, and such that the pre-images of 0 and 1 both
consist in three points, one of which is ramified at order 3.

A concrete example is represented by the polynomial

f(x) = 6X5 − 15X4 + 10X3.
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The Galois closure of the corresponding cover is provided by a curve Ỹ of genus
5. The quotient UH = Ỹ/H by the same subgroup H ⊂ An considered in the
previous example turns out to have genus 1; it provides a cover g : UH → P1

fitting in the diagram (4). Then, over a suitable number field, UH contains
infinitely many rational points, and their images in P1 are fake values for f , up
to finitely many exceptions. However, only finitely many of such fake values are
algebraic integers, or more generally S-integers for any fixed finite set of places
S, since the affine curve UH g−1(∞) has only finitely many integral points by
Siegel’s theorem.

An example involving elliptic curves. This time we start from the
Galois closure Ỹ of our cover f : Y → P1, to be defined later.

We consider the so-called Bring’s curve (see W.L. Edge’s paper [6] or the
one by M. Weber [19]), defined as the complete intersection in P4:

(9) Ỹ :




x1 + x2 + x3 + x4 + x5 = 0

x21 + x22 + x23 + x24 + x25 = 0

x31 + x32 + x33 + x34 + x35 = 0.

It has genus four and is acted on in the obvious way by the symmetric group
S5, the action being defined over Q. We shall first consider the action of the
subgroup A5 ⊂ S5 on Ỹ.

The elements of order five of A5 have four fixed points each on Ỹ: for
instance the five-cycle (1, 2, 3, 4, 5) fixes the point (1 : ζ : ζ2 : ζ3 : ζ4), for each
primitive fifth root of unity ζ. Since A5 contains six cyclic subgroups of order
five, and each subgroup has four fixed points, there are 24 points of Ỹ whose
stabilizer has order five. It follows that they form two orbits for the group A5.
The elements of order two in A5 fix two points each: for instance the involution
(1, 2) ◦ (3, 4) fixes the points (1 : −1 : ξ : −ξ : 0) where ξ2 = −1. This family of
points forms a unique orbit.

It then follows from Hurwitz genus formula that the quotient Ỹ/A5 is iso-
morphic to the projective line P1 (actually also over Q). Letting K ⊂ A5 be
the stabilizer of a point for the action of A5 on five points, the curve E := Ỹ/K
turns out to have genus one. The cover f : E → P1 has degree five, and ram-
ifies over three points with indices 5, 5, 2. Letting again H be the stabilizer
of a two-point subset of the five-point set acted on by A5, we obtain that the
curve UH =: E′ too has genus one. Also, it is isogenous to E (see [19], where
M. Weber proves that the jacobian of Bring’s curve Ỹ is the fourth-power of a
single elliptic curve).

If K stabilizes the point 5 ∈ {1, . . . , 5} and H the sub-set {1, 2}, so that
K ∩H =< (1, 2) ◦ (3, 4) > then the fiber product C = E×P1 E

′ turns out to be
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a genus-two curve. We then obtain the diagram

(10)

C

E E′

P1

The morphism g : E′ → P1 has degree 10 and each of its rational values, apart
finitely many of them - precisely those coming from rational points on the
genus-two curve C - are fake values for the degree-five morphism f : E → P1.
The vice-versa also holds, since the subgroup K is also included in the union
of the conjugates of H: not only the rational values of g are fake values for f ,
but also the rational values of f are fake values for g.

Up to now, this symmetry occured in every example of infinite families of
fake values. However, this is not a general fact, as we shall se in our next
example.

Another example in degree five. We slightly modify the last construc-
tion, by exploiting the action of the full group S5 on Bring’s curve Ỹ. The
quotient curve Ỹ/S5 is clearly rational, since it is dominated by Ỹ/A5, which
was proved to be rational (even over Q). Letting K ′ be the stabilizer of a point
for the action of S5 on a five-point set, the curve Ỹ/K ′ turns out to be ratio-
nal, and the corresponding morphism f ′ : P1 → P1 is represented by a rational
function of degree five.

Since H ⊃ K and H ⊂
⋃

γ∈A5
γ K γ−1, a fortiori H ⊂

⋃
γ∈S5

γ K ′ γ−1.
However, this time it is not true that K ′ is included in the union of the conju-
gates of H.

The inclusion K ′ ⊂ S5 corresponds to a morphism g′ : E′ → P1, obtained
as g′ = h ◦ g where g : E′ → P1 is the arrow appearing in diagram (10) and
h : P1 → P1 is a quadratic morphism.

This time, the rational values of g′ are fake values for f ′, with finitely many
exceptions, but the vice-versa does not hold.

6 - Examples in degree seven and thirteen

We present two more examples, already known in the literature. They
arise as examples of pairs of Kronecker conjugate polynomials, i.e. pairs of
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polynomials, not linearly related, representing the same set of values modulo
all but finitely many primes. However, this phenomenon does not occur over
Q, but only over sufficiently large number fields.

The simple group with 168 elements. Another coincidence in the list of
finite simple groups is represented by the isomorphism

(11) PSL2(F7) � SL3(F2) =: G.

The the group G admits two natural actions: on the projective line over F7,
which contains eight rational points, and on the ‘Fano plane’, i.e. the set P2(F2),
consisting of seven points, arranged so that every line contains three points and
every point is contained in three lines.

This group can be generated by three elements a, b satisfying a2 = b3 =
(ab)7 = 1. It is the “smallest” hyperbolic triangle group. Using the repre-
sentation of G as 3 × 3 matrices in F2, the group G acts naturally on P2(F2),
consisting of seven points and seven lines. The two matrices

A =



1 0 0
1 1 0
0 0 1


 , B =



0 0 1
1 0 0
0 1 0




have indeed order 2 and 3, while their product has order 7.
Viewing G as the group PSL2(F7), acting on P1(F7) = F7 ∪ {∞}, it can be

generated by the projective automorphisms:

(12) a : x �→ −1/x, b : x �→ −1/(x+ 1),

of respective order 2 and 3. Their product has order 7. In the isomorphism
between SL3(F2) and PSL2(F7) the pair (A,B) can be identified with (a, b).

An example in degree seven. Using the realization of the group G de-
fined in (11) as the automorphism group of P2(F2), G can be viewed as the
monodromy group of a degree seven polynomial map f : P1 → P1, totally
ramified over ∞ and ramified also over 0 and 1. The fiber of 0 consists of two
points ramified at order 3 and one unramified points (the local monodromy over
0 being represented by the permutation induced by the matrix B), while the
fiber of 1 consists in two ramified points (of index 2 each) and three unramified
ones, in accordance to the fact that A induces an automorphism with three
fixed points.

The Galois closure (over Q̄) of such a cover is represented by a genus-three
curve, which is the famous Klein’s quartic, studied e.g. in the monography [12],
admitting the plane model

Ỹ : X3Y + Y 3Z + Z3X = 0.
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Letting K ⊂ G ⊂ S7 be the stabilizer of a point, the quotient Ỹ/K is a Q-
rational curve and defines the mentioned cover Y = P1 → X = P1 of degree 7.

It is easy to find a group H ⊂ G ⊂ S7 having property (∗): indeed, take for
H the stabilizer of a line in P2(F3). The fact that (∗) holds follows from the
duality principle in projective geometry. More explicitly: (1) every projective
automorphism fixing a line has a fixed point; (2) given a line l and a point p,
there exists an automorphism leaving l invariant and not fixing p. The assertion
(1) is just the fact that if a matrix has a rational eigenvector its transpose too
has one rational eigenvector.

From Hurwitz formula again it follows that UH = Ỹ/H is a rational curve
and the corresponding map g : UH � P1 → P1 has a totally ramified point, so
in suitable coordinates it is a polynomial map.

This proves that over s suitable large number field, namely a number field κ
over which the Galois groups Gf,κ and Ggeo

f coincide, the polynomial f admits
infinitely many fake values, namely all the integral values of g outside finitely
many (those which are common integral values of f and g, which are finite in
number by Siegel’s theorem).

An example in degree 13. Our next example is similar in nature to the
one in degree 7. We shall use the group

G = PSL3(F3)

of order 2808 = 23 ·33 ·13. It acts on the projective plane P2(F3), which contains
13 points. The group G can be generated by elements of order 2 and of order
3 with product of order 13, for instance:

A =



1 0 1
0 −1 0
0 0 −1


 , B =



0 0 −1
1 0 0
0 −1 0


 .

The projective automorphism induced by the matrix A has five fixed points and
four two-cycles; the one induced by B has one fixed point and four three-cycles.
The corresponding representation of G ↪→ S13 is the monodromy representation
of a polynomial f(X) ∈ Q[X] of degree 13, inducing a cover f : P1 → P1

unramified outside three points. The Galois closure of the cover is a curve of
genus 127.

Consider, as in the previous construction, the dual action of G on the hy-
perplanes (i.e lines) of P2(F3); letting H be the stabilizer of a point in the
dual projective plane, i.e. a line of P2, we obtain that H has the property (∗).
The induced cover g : UH → P1 is again provided by a rational curve, and the
point at infinity is again totally ramified, so that in suitable coordinates g is a
polynomial.
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As in previous examples, over every number fields the polynomials f and g
share only finitely many common rational values. Over every sufficiently large
number field κ, so large that the Galois action of G on Ỹ can be defined over
κ, the rational values of g which are not rational values of f are fake values for
f and vice-versa.

7 - On the Grunewald-Wang and Dvornicich-Zannier examples

The Grunewald-Wang example (actually discovered first by Trost - see the
reference in [5]) concerns the polynomial g(X) = 16X8, whose values at integers
are perfect eighth-power modulo every prime. Actually, they are also eighth
power in the ring of p-adic integers, except for p = 2. For instance, the number
16 = g(1) is a fake value for f(X) = X8, not a strongly fake one however since
it is not an eighth-power in Q2.

Over the field Q(
√
−17) it becomes a strong fake value. This is due to the

fact that 16 = (1 + i)8, Q2(
√
−17) = Q2(i), but 16 is not an eighth power in

Q(
√
−17).
Note that over every number field containing any eighth root of 16, e.g.

over any number field containing i =
√
−1 or

√
2, the polynomial g(X) stops

producing fake values for f . Indeed, the reason for the existence of fake values
for the polynomial f(X) lies in the ‘arithmetic part’ of its Galois group Gf,Q,
which is an extension

{0} → Z/8Z → Gf,Q → (Z/2Z)2 → {0},

where Z/8Z � Ggeo
f and (Z/2Z)2 � Gal(Q(ζ8)/Q), ζ8 being a primitive eighth

root of unity. Then |G| = |Gf,Q| = 32 and the group acts on an eight-point
set as the group of affine transformations of the ‘line’ A1(Z/8Z) over the ring
Z/8Z: the normal subgroup Z/8Z identifies with the group of translations, and
a general transformation is of the form

x �→ αx+ b

for α ∈ (Z/8Z)∗ � (Z/2Z)2 and b ∈ Z/8Z. The group K is the stabilizer of
a point, say the origin; it identifies with the group of linear transformations
x �→ αx. For the group H one can take the group generated by

x �→ −x, x �→ 3x+ 4.

Now, H ⊂
⋃

γ∈G γKγ−1, but also K ⊂
⋃

γ∈G γHγ−1. This is in accordance
with the fact that the rational values of g are fake values for f , but also the
rational value of f are fake values of g. Note that the image of H in (Z/2Z)2 is
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surjective: otherwise the curve UH would not be geometrically irreducible, and
would contain only finitely many rational points. Note also that H does not
fix any point in A1(Z/8Z); it is the stabilizer of the set {0, 4} ⊂ A1(Z/8Z).

Of course, extending the ground field so to eliminate the ‘arithmetic part’,
represented by the group (Z/2Z)2 in the above exact sequence, reduces the
Galois group to the commutative group Z/8Z, for which no pairs of subgroups
(K,H) satisfying property (∗) can exist.

The examples of Dvornicich-Zannier. Let us now consider the exam-
ples coming from divisibility on elliptic curves. While Dvornicich and Zannier
used a sligthly different point of view, we show how their constructions fit in
our framework.

Given an elliptic curve E over a number field κ and an integer m > 1,
consider the multiplication by m-map f = [m] : E → E. Letting κ̃ be the field
of definition of the m-torsion on E over κ, the Galois group Gf,κ is an extension

(13) {0} → (Z/mZ)2 → Gf,Q → Gal(κ̃/κ) → {0}.

The group Gal(κ̃/κ) injects into the group GL2(Z/mZ). Since any rational
point in E(κ) provides a section of the morphism Gf,Q → Gal(κ̃/κ), the group
Gf,κ =: G is a semi-direct product of the normal abelian group (Z/mZ)2 �
(ker [m]) =: E[m] by the group Gal(κ̃/κ) similiarly to what happens in Grune-
wald-Wang example. The group G acts naturally on the group E[m]. Every
fiber f−1(P ) of any point of E(κ) is a principal homogeneous space for E[m]
and indeed the action of G on the fibers is compatible with the action of G on
E[m].

We must look for pairs of subgroups K,H ⊂ G, where K is the stabilizer of
a point of E[m] and H satisfies property (∗) with respect to K. We also want
that the projection of H into Gal(κ̃/κ) be surjective.

As shown in [4] there are no examples for m a prime number, while for
m = 4 an example is constructed in [5].

As to the first assertion, we have to exclude the existence of a subgroupH ⊂
G satisfying property (∗) and inducing a surjectionH → Gal(κ̃/κ) := ∆. Recall
that here G is the semi-direct product of the additive group (Z/pZ)2, p = m a
prime, by the matrix group ∆ ⊂ GL2(Z/pZ). The fact that every element of
H admits a fixed point implies that the projection H → ∆ is injective (indeed,
every non-trivial element of the kernel would be a non identical translation,
admitting no fixed point). Then H is the image of a section ∆ → G. It is well
known that such sections come from points in A2(Z/pZ). In other terms, the
first cohomology group H1(∆, (Z/pZ)2) vanishes, so every section ∆ → G has
for image the stabilizer of some point in A2(Z/pZ).
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As to an explicit example with m = 4, Dvornicich and Zannier constructed
an elliptic curve for which the field of rationality κ̃ for the four-torsion is quartic
over the field of definition κ and the group ∆ � Gal(κ̃/κ) identifies with the
group of matrices

{(
1 0
0 1

)
,

(
−1 0
2 −1

)
,

(
1 2
2 −1

)
,

(
−1 2
0 1

)}
⊂ GL2(Z/4Z).

Now, the subgroup H can be generated by the transformations

v �→
(
−1 2
2 −1

)
· v, v �→

(
−1 2
0 1

)
· v +

(
2

0

)
.

Note that the projectionH → ∆ is surjective. The first transformation fixes the
points

(
0
0

)
,
(
2
0

)
, the second one the points

(
0
±1

)
, so no point is fixed by the whole

group H; the two transformations are indeed involutions and they commute;
their product admits the fixed point

(±1
0

)
. It follows that property (∗) holds.

8 - Some relations with other topics

As mentioned in the Introduction, examples of polynomials admitting in-
finitely many fake values can be constructed via the so called pairs of Kronecker
conjugates: these are pairs of polynomials (f(X), g(X)) in a polynomial ring
OS [X] representing the same sets modulo all but finitely many prime ideals p

of OK .
In our setting, the polynomial f(X) induces a finite morphism f : A1 → A1.

Defining the (affine) curve Ỹ and the group Gf,κ as explained in section 2, a
subgroupH satisfying property (∗) and such that the quotient curve UH = Ỹ/H
is again isomorphic to A1 over κ provides a polynomial g : UH → A1 whose set
of values modulo every prime p is contained in the reduction modulo p of the
value set of f .

Let K ⊂ Gf,κ = G be the subgroup corresponding to the polynomial f , i.e.
such that X = Ỹ/K and f : X = A1 → A1 be the induced morphism. Suppose
now that

(14)
⋃
γ∈G

γHγ−1 =
⋃
γ∈G

γKγ−1.

Then f and g are Kronecker conjugate. Note that the above condition is sym-
metric, while condition (∗) is not.

A pair of Kronecker polynomials (f(X), g(X)) is said to be a proper pair
over κ if the two polynomials are not linearly related over κ, i.e. g(X) is not
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of the form f(αx + β) for any α ∈ κ∗, β ∈ κ. M. Fried [7], [8] (see also the
bibliography of [13]) proved that there exist no indecomposable Kronecker pairs
of polynomials over the integers. Also he found that over suitable number fields
there are proper pairs of Kronecker conjugate polynomials (f(X), g(X)) with f
of degree 7, 11, 13, 15, 21, 31, and only these degrees are allowed. Such pairs of
polynomials are even linearly unrelated over the algebraic closure of their field
of definition. Note that, on the contrary, the polynomials X8 and 16X8, which
are linearly unrelated over Q, become linearly related over Q(

√
2), or over Q(i).

The examples of degree 7 and 13 have been discussed in §6, and can be
derived from the principle of projective duality in the plane.

In the paper [13] P. Müller extended Fried’s research to the classification of
proper pairs (f(X), g(X)) of Kronecker conjugates with f being decomposable
with length two, i.e. of the form f = f1 ◦ f2 for indecomposable polynomials
f1, f2. A complete classification in the general case seems hopeless at present.

The condition (14) can be further strengthened in the following way: given
a finite group G, consider the pairs (H,K) of subgroups satisfying the condition

(∗ ∗ ∗) For every conjugacy class C ⊂ G, �(C ∩H) = �(C ∩K).

This is again a symmetric condition on the pair (H,K). Clearly, condition
(∗ ∗ ∗) is stronger then condition (14), so in particular stronger then (∗).

Pairs of subgroups (H,K) satisfying (∗ ∗ ∗) were first considered by F.
Gassmann in [9]: the triple (G,H,K) is called a Gassmann triple.

They lead to arithmetically equivalent number fields, i.e. non-isomorphic
pairs of number fields κ1, κ2 having the same Dedekind zeta function. The
first example arises in degree 7, and is related to ours in §6, deriving from
the principle of projective duality. See Perlis’ article [14], where the relation
between arithmetic equivalence and condition (∗∗∗) is shown and the fact that
there are no examples in degree ≤ 6 is deduced.

In a different domain, T. Sunada [18] proved that pairs of subgroups satis-
fying (∗ ∗ ∗) lead to pairs of non-isometrical isospectral Riemannian manifolds.
Namely, given a compact Riemannian manifold M and a free isometric action
on it by a finite group G, a pair of non-conjugate subgroups (H,K) satisfying
(∗ ∗ ∗) produces the two quotient varieties M/H and M/K which are non-
isometric but isospectral. See also P. Buser’s paper [1] for further remarks on
this topic, and for an application in that context of the group-theoretic situation
arising from Grunewald-Wang example (section 3 of [1]).

Ac k n ow l e d gm e n t s. The results of this work were presernted at the
Number Theory Web Seminar, organized by M. Bennett, Ph. Habegger and
A. Ostafe. The author is grateful to the organizers for the invitation, and to
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the listeners whose interventions enabled him to improve the presentation of
the paper. In particular, the author is very grateful to P. Sarnak and D. Neftin
who pointed out the connections to arithmetic equivalence and isospectrality,
and to the references of P. Müller and R. Buser.

He is also grateful to J.-L. Colliot-Thélène for explaining him the relation
with the theory of torsors, although this point of view has not been adopted in
the present work, and to D. Dikranjan and U. Zannier for several conversations
on these topics.

Finally, he wants to thank a competent anonymous referee, who pointed out
to him the relevant references to works of M. Stoll [17] and Harari-Voloch [10].
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