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Inequalities for sine and cosine polynomials

Abstract. In this paper, we prove that, letting λ be a real number,

(i) λ

n∑
k=1

(−1)k sin(kx) ≤
n∑

k=1

sin(kx)

k

is valid for all n ≥ 1 and x ∈ [0, π] if and only if λ ∈ [0, 2]. This
extends the classical Fejér-Jackson inequality which states that (i) holds
for λ = 0. An application of (i) reveals if a > 0 and b are real numbers,
then

(ii)
41

96
+

n∑
k=1

cos(kx)

k + 1
≥ a

(
cos(x) + b

)2

holds for all n ≥ 2 and x ∈ [0, π] if and only if a ≤ 2/75 and b = 3/8. This
refines a result of Koumandos (2001) who proved that the expression on
the left-hand side of (ii) is nonnegative for all n ≥ 2 and x ∈ [0, π]. The
cosine polynomial in (ii) was first studied by Rogosinski and Szegö in
1928.
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1 - Introduction

The inequality of Fejér-Jackson is a classical result in the theory of trigono-
metric polynomials. It states that

(1.1)
n∑

k=1

sin(kx)

k
≥ 0 (n ≥ 1; 0 ≤ x ≤ π).
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The validity of (1.1) was conjectured by Fejér in 1910 and the first proof was
given one year later by Jackson [9]. Since then, more than twenty proofs of
(1.1) were discovered. A very short proof was published by Landau [14] in
1933. He used elementary properties of trigonometric functions to prove the
inequality by induction on n. In 1988, Lupaş [15] presented the elegant integral
representation

n∑
k=1

sin(k arccos(t))

k
=

√
1− t

2

∫ t

−1

1− Pn(y)

1− y

dy√
t− y

(−1 < t < 1),

where Pn denotes the n-th Legendre polynomial. Since |Pn(y)| < 1 for y ∈
(−1, 1), we obtain (1.1).

Many authors studied generalizations and numerous related results of (1.1).
Moreover, it was shown that inequalities for trigonometric sums have applica-
tions in various fields, like, for instance, geometric function theory, approxi-
mation theory, combinatorics and number theory. For detailed information on
this subject we refer to Askey [2], Askey and Gasper [3], Barnard et al. [4],
Dimitrov and Merlo [7], Koumandos [11], Milovanović et al. [17, chap. 4] and
Raigorodskii and Rassias [18].

The referee pointed out that “inequalities such as (1.1) and other rele-
vant results on trigonometric sums have proved recently to be applicable to
really essential problems in Mathematics, such as the Riemann Hypothesis”;
see Derevyanko et al. [6], Maier et al. [16] and the references cited therein.

We note that the sine polynomial in (1.1) is closely connected to the partial
sums of the Fourier series of the fractional part function,

{x} =
1

2
− 1

π

∞∑
k=1

sin(2kπx)

k
(x ∈ R \ Z).

In 1913, Young [22] (see also Alzer and Kwong [1]) presented a companion
to (1.1) for the cosine polynomial

Fn(x) =
n∑

k=1

cos(kx)

k
,

namely,

(1.2) 1 + Fn(x) ≥ 0 (n ≥ 1; 0 ≤ x ≤ π).

Brown and Koumandos [5] showed in 1997 that in (1.2) the additive constant
1 can be replaced by a smaller number if we assume that n ≥ 2,

(1.3)
5

6
+ Fn(x) ≥ 0 (n ≥ 2; 0 ≤ x ≤ π).
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The constants 1 and 5/6, given in (1.2) and (1.3), respectively, are best possible.
Recently, Fong et al. [8] discovered the following remarkable refinement of (1.3),

(1.4)
5

6
+ Fn(x) ≥

1

4

(
cos(x) + 1

)2
(n ≥ 2; 0 ≤ x ≤ π).

Equality holds in (1.4) if and only if n = 2 and x = arccos(−1/3).
In 1928, Rogosinski and Szegö [19] published an interesting counterpart of

(1.2) for the polynomial

Cn(x) =

n∑
k=1

cos(kx)

k + 1
.

They proved that

(1.5)
1

2
+ Cn(x) ≥ 0 (n ≥ 1; 0 ≤ x ≤ π),

and in 2001 Koumandos [10] showed that (1.5) can be improved if n ≥ 2,

(1.6)
41

96
+ Cn(x) ≥ 0 (n ≥ 2; 0 ≤ x ≤ π).

Both constants, 1/2 and 41/96, respectively, are sharp.
With regard to (1.4) it is natural to ask whether it is possible to replace in

(1.6) the constant lower bound 0 by a simple nonnegative cosine polynomial.
Here, we provide an affirmative answer to this question. In Section 2, we collect
a few lemmas. They are needed to prove a new extension of the Fejér-Jackson
inequality given in Section 3. This extension as well as some further lemmas,
which we present in Section 4, play an important role in the proof of a refinement
of Koumandos’ inequality (1.6). Our refinement is given in Section 5.

In what follows, we maintain the notations introduced in this section. The
numerical values have been calculated via the computer program MAPLE 13.

2 - Lemmas, part 1

First, we collect some inequalities for trigonometric functions. They are
helpful for the proof of the theorem presented in Section 3.

L emma 2.1. For all real numbers k > 1 and x ∈ [0, σ/k] we have

0 ≤ sin((k − 1)x)

k − 1
− sin(kx)

k
,

where σ = 4.49 . . . is the smallest positive zero of h(x) = sin(x)− x cos(x).
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P r o o f. Let α ∈ (0, 1], y ∈ [0, σ] and

g(α, y) =
sin(αy)

α
− sin(y).

Since 0 ≤ αy ≤ σ and h(t) ≥ 0 for t ∈ [0, σ], we obtain

α2 ∂

∂α
g(α, y) = −h(αy) ≤ 0.

Thus,

g(α, y) ≥ g(1, y) = 0.

Let k > 1 and x ∈ [0, σ/k]. We set α∗ = 1−1/k and y∗ = kx. Then, α∗ ∈ (0, 1]
and y∗ ∈ [0, σ]. It follows that

0 ≤ 1

k
g(α∗, y∗) =

sin((k − 1)x)

k − 1
− sin(kx)

k
.

�

Co r o l l a r y 2.2. For all even integers k ≥ 2 and real numbers t ∈ [π −
1.4π/k, π] we have

0 ≤ sin((k − 1)t)

k − 1
+

sin(kt)

k
.

P r o o f. We set t = π − x. Then, x ∈ [0, σ/k]. From Lemma 2.1 we
conclude that

0 ≤ sin((k − 1)x)

k − 1
− sin(kx)

k
=

sin((k − 1)t)

k − 1
+

sin(kt)

k
.

�

Next, we present some properties of the function

(2.1) fm(y) = (−1)(m+1)/2

∫ y

0

cos(ms)

cos(s)
ds.

L emma 2.3. For all odd integers m ≥ 1 and real numbers y ∈ [0, π/2) we
have

(2.2) fm(y) ≥ 1

m

(
1− 2

cos(y)

)
.
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P r o o f. Let y ∈ [0, π/2). We distinguish two cases.

C a s e 1. m ≡ 3 (mod 4).
Using integration by parts yields

fm(y) =

∫ y

0

cos(ms)

cos(s)
ds

=
1

m

(
sin(my)− 1

cos(y)
+ 1

)
+

1

m

∫ y

0

(
1− sin(ms)

) sin(s)

cos2(s)
ds

≥ 1

m

(
sin(my)− 1

cos(y)
+ 1

)

≥ 1

m

(
1− 2

cos(y)

)
.

Ca s e 2. m ≡ 1 (mod 4).
Again using integration by parts gives

fm(y) = −
∫ y

0

cos(ms)

cos(s)
ds

=
1

m

(
− sin(my)− 1

cos(y)
+ 1

)
+

1

m

∫ y

0

(
1 + sin(ms)

) sin(s)

cos2(s)
ds

≥ 1

m

(
− sin(my)− 1

cos(y)
+ 1

)

≥ 1

m

(
1− 2

cos(y)

)
.

�

L emma 2.4. For all odd integers m ≥ 11 and real numbers y ∈
[
π/m,

π/2− 1.4π/m
]
we have

(2.3) fm(y) + y − tan(y/2) > 0.

P r o o f. Let t ∈ [0, π/2] and

η(t) = 0.64t− tan(t/2).

Since

η(0) = 0, η(π/2) = 0.005 . . . , η′′(t) = − sin(t)(
1 + cos(t)

)2 ≤ 0,



306 horst alzer and man kam kwong [6]

we conclude that η is nonnegative on [0, π/2]. Using this result and (2.2) gives
for odd m ≥ 11 and y ∈ [π/m, π/2− 1.4π/m],

(2.4) fm(y) + y − tan(y/2) ≥ 1

m

(
1− 2

cos(y)

)
+ 0.36y = φm(y), say.

We obtain

φ′′
m(y) =

−2

m cos3(y)

(
1 + sin2(y)

)
< 0,

mφm(π/m) = 1− 2

cos(π/m)
+ 0.36π ≥ 2.13− 2

cos(π/11)
= 0.04 . . . ,

φm

(
π/2− 1.4π/m

)
= 0.18π +

1

m
(1− 0.36 · 1.4 · π)− 2

m sin(1.4π/m)

≥ 1

2
− 2

11 · sin(1.4π/11)

= 0.03 . . . .

It follows that

(2.5) φm(y) ≥ min
(
φm(π/m), φm(π/2− 1.4π/m)

)
> 0.

From (2.4) and (2.5) we conclude that (2.3) is valid. �

L emma 2.5. For all integers n ≥ 1 and real numbers x ∈ (0, π) we have

(2.6)
n∑

k=1

(
2− (−1)k

k

)
sin(kx) ≥ f2n+1(x/2) +

x

2
− tan(x/4).

P r o o f. Let x ∈ (0, π). We have

2
n∑

k=1

sin(kx) =
cos(x/2)− cos((n+ 1/2)x)

sin(x/2)
(2.7)

≥ cos(x/2)− 1

sin(x/2)

= − tan(x/4)
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and

n∑
k=1

(−1)k+1

k
sin(kx) =

∫ x

0

n∑
k=1

(−1)k+1 cos(kt)dt(2.8)

=
x

2
+

(−1)n+1

2

∫ x

0

cos((n+ 1/2)t)

cos(t/2)
dt

=
x

2
+ f2n+1(x/2).

Using (2.7) and (2.8) reveals that (2.6) holds. �

The next statement is known as comparison principle; see Koumandos [11]
and Kwong [12].

L emma 2.6. Let ak, bk and ck (k = 1, . . . , N) be real numbers such that

ak > 0 (k = 1, . . . , N),
b1
a1

≥ b2
a2

≥ · · · ≥ bN
aN

≥ 0,

m∑
k=1

akck ≥ 0 (m = 1, . . . , N).

Then,
∑N

k=1 bkck ≥ 0.

3 - An inequality for sine polynomials

The following extension of the Fejér-Jackson inequality (1.1) is valid.

T h e o r em 3.1. Let λ be a real number. The inequality

(3.1) λ

n∑
k=1

(−1)k sin(kx) ≤
n∑

k=1

sin(kx)

k

holds for all integers n ≥ 1 and real numbers x ∈ [0, π] if and only if λ ∈ [0, 2].

P r o o f. We assume that (3.1) is valid for all n ≥ 1 and x ∈ [0, π]. Let
x ∈ (0, π). From (3.1) with n = 2 we obtain

λ
(
− sin(x) + sin(2x)

)
≤ sin(x) +

sin(2x)

2
.

We multiply both sides by 1/ sin(x). This gives

λ
(
−1 + 2 cos(x)

)
≤ 1 + cos(x).
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If x → 0, then λ ≤ 2, and if x → π, then −3λ ≤ 0, that is, λ ≥ 0.
Next, let λ ∈ [0, 2]. If λ = 0, then (3.1) reduces to (1.1). Hence, it remains

to prove (3.1) with λ = 2. Let x = π− t with t ∈ [0, π]. Then, (3.1) with λ = 2
is equivalent to

(3.2) 0 ≤
n∑

k=1

(
2− (−1)k

k

)
sin(kt) = Sn(t), say.

We have

S1(t) = 3 sin(t), S2(t) = 3 sin(t)
(
cos(t) + 1

)
,

S3(t) =
28

3
sin(t)

((
cos(t) +

9

56

)2

+
143

3136

)
,

S4(t) = 14 sin(t)
(
cos(t) + 1

)((
cos(t)− 1

6

)2

+
5

252

)
.

These representations show that (3.2) is valid for n = 1, 2, 3, 4. Next, let n ≥ 5.
We consider five cases.

C a s e 1. t ∈ [0, π/n].
Then, each term of Sn(t) is nonnegative. Hence, Sn(t) ≥ 0.

C a s e 2. n is odd and t ∈ [π − π/n, π].
Let n = 2N + 1. Then,

Sn(t) =

N∑
k=1

(4k − 1)

(
sin((2k − 1)t)

2k − 1
+

sin(2kt)

2k

)
+

4N + 3

2N + 1
sin((2N + 1)t).

Let k ∈ {1, . . . , N}. Since [π−π/(2N +1), π] ⊂ [π− 1.4π/(2k), π], we conclude
from Corollary 2.2 that

sin((2k − 1)t)

2k − 1
+

sin(2kt)

2k
≥ 0.

Moreover, we have sin((2N + 1)t) ≥ 0. This implies that Sn(t) ≥ 0.

C a s e 3. n is even and t ∈ [π − 1.4π/n, π].
Let n = 2N . We have

Sn(t) =

N∑
k=1

(4k − 1)

(
sin((2k − 1)t)

2k − 1
+

sin(2kt)

2k

)
.

An application of Corollary 2.2 reveals that Sn(t) ≥ 0.
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C a s e 4. t ∈ [π/n, π − 1.4π/n].
Let y = t/2, m = 2n+ 1 ≥ 11 and

Lm(y) = fm(y) + y − tan(y/2),

where fm is defined in (2.1). From Lemma 2.5 we obtain

(3.3) Sn(t) ≥ Lm(y).

Since

y ∈ [π/(m− 1), π/2− 1.4π/(m− 1)] ⊂ [π/m, π/2− 1.4π/m],

we conclude from Lemma 2.4 and (3.3) that Sn(t) ≥ 0.

C a s e 5. n is odd and t ∈ [π − 1.4π/n, π − π/n].
Let y = t/2 and m = 2n+ 1 ≥ 11. Then,

(3.4) Sn(t) ≥ Lm(y).

We have

f ′
m(y) =

cos(my)

cos(y)
.

Since

my ∈ [mπ/2−1.4πm/(m−1),mπ/2−mπ/(m−1)] ⊂ [2m0π−π/2, 2m0π+π/2]

with m0 =
m− 3

4
∈ N,

we conclude that cos(my) ≥ 0. It follows that fm is increasing. Since y �→
y − tan(y/2) is increasing on [0, π/2], we obtain

(3.5) Lm(y) ≥ Lm

(
π/2− 1.4π/(m− 1)

)
.

We have π/m ≤ π/2− 1.4π/(m− 1) ≤ π/2− 1.4π/m, so that Lemma 2.4 gives
Lm

(
π/2− 1.4π/(m− 1)

)
≥ 0. Combining this result with (3.4) and (3.5) leads

to Sn(t) ≥ 0.
The Cases 1 - 5 reveal that Sn(t) ≥ 0 for n ≥ 5 and t ∈ [0, π]. �

Rema r k 3.2. For each n ∈ N the sine polynomial on the left-hand side of
(3.1) attains negative values on (0, π). This means that (3.1) does not provide a
refinement of the Fejér-Jackson inequality (1.1). Nevertheless, (3.1) with λ = 2
implies (1.1). To show this we set

ak = 2− (−1)k

k
, bk =

1

k
, ck = ck(x) = sin(kx) (k = 1, . . . , n).
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Then,
ak > 0 (k = 1, . . . , n) and

bkak+1 − akbk+1 =
(
1 + (−1)k

) 2

k(k + 1)
≥ 0 (k = 1, . . . , n− 1).

Let x ∈ [0, π]. From (3.1) (with λ = 2 and π − x instead of x) we obtain

m∑
k=1

akck ≥ 0 (m ≥ 1).

If follows from Lemma 2.6 that

0 ≤
n∑

k=1

bkck =
n∑

k=1

sin(kx)

k
.

Rema r k 3.3. A remarkable extension of (1.1) and (1.2) was given by
Vietoris [20] in 1958. He proved that the polynomials

∑n
k=1 ak sin(kx) and∑n

k=0 ak cos(kx) are nonnegative for all x ∈ [0, π] if

(3.6) a0 ≥ a1 ≥ · · · ≥ an > 0 and a2k ≤ 2k − 1

2k
a2k−1 (1 ≤ k ≤ n/2).

By using inequality (3.2) and the comparison principle it can be shown that∑n
k=1 ak sin(kx) ≥ 0 (0 ≤ x ≤ π) holds under weaker conditions than (3.6).

For details we refer to Kwong [12]; see also Kwong [13].

4 - Lemmas, part 2

In this section, we provide two lemmas which play a role in the proof of
Theorem 5.1 given in Section 5. The following lemma offers a property of

(4.1) An(x) =
41

100
+

12

25
cos(x) +

8

25
cos(2x) +

n∑
k=3

cos(kx)

k + 1
.

L emma 4.1. For all integers n ∈ {4, 5, . . . , 12} and real numbers x ∈ [0, π]
we have An(x) > 0.

P r o o f. It suffices to show that if n ∈ {4, . . . , 12}, then An has no zero on
[0, π]. Let x ∈ [0, π]. We set X = cos(x) ∈ [−1, 1]. Then, we obtain

A4(x) =
8

5
X4 +X3 −

24

25
X2 −

27

100
X +

29

100
,

A5(x) =
8

3
X5 +

8

5
X4 −

7

3
X3 −

24

25
X2 +

169

300
X +

29

100
,
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A6(x) =
32

7
X6 +

8

3
X5 −

184

35
X4 −

7

3
X3 +

282

175
X2 +

169

300
X +

103

700
,

A7(x) = 8X7 +
32

7
X6 −

34

3
X5 −

184

35
X4 +

14

3
X3 +

282

175
X2 −

187

600
X +

103

700
,

A8(x) =
128

9
X8 + 8X7 −

1504

63
X6 −

34

3
X5 +

3944

315
X4 +

14

3
X3 −

3062

1575
X2 −

187

600
X +

1627

6300
,

A9(x) =
128

5
X9 +

128

9
X8 −

248

5
X7 −

1504

63
X6 +

478

15
X5 +

3944

315
X4 −

22

3
X3 −

3062

1575
X2

+
353

600
X +

1627

6300
,

A10(x) =
512

11
X10 +

128

5
X9 −

10112

99
X8 −

248

5
X7 +

54016

693
X6 +

478

15
X5 −

82616

3465
X4 −

22

3
X3

+
45068

17325
X2 +

353

600
X +

11597

69300
,

A11(x) =
256

3
X11 +

512

11
X10 −

3136

15
X9 −

10112

99
X8 +

2776

15
X7 +

54016

693
X6 −

354

5
X5

−
82616

3465
X4 + 11X3 +

45068

17325
X2 −

197

600
X +

11597

69300
,

A12(x) =
2048

13
X12 +

256

3
X11 −

60928

143
X10 −

3136

15
X9 +

552832

1287
X8 +

2776

15
X7 −

1781504

9009
X6

−
354

5
X5 +

1836592

45045
X4 + 11X3 −

661516

225225
X2 −

197

600
X +

220061

900900
.

Next, we apply Sturm’s theorem to determine the number of distinct real
roots of an algebraic polynomial located in an interval; see van der Waerden [21,
sect. 79]. This gives that each of the nine polynomials in X has no zero in
[−1, 1]. We obtain the same result if we use An(π) > 0 for n ∈ {4, . . . , 12} and
the MAPLE procedure “sturm” which provides the number of zeros in (−1, 1].
It follows that each of the functions A4, . . . , A12 has no zero on [0, π]. �

We define

(4.2) u(x) =
5

14
sin(x) +

111

700
sin(2x) +

2

225
sin(3x)

and

(4.3) vn(x) =
sin(nx) + sin((n+ 1)x)

n+ 2
.

L emma 4.2. For all integers n ≥ 13 and real numbers x ∈ (0, π) we have
u(x) + vn(x) > 0.
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P r o o f. Let n ≥ 13. We consider three cases.

C a s e 1. x ∈ (0, 0.2].

Let

p(x) = u(x)− 0.66x.

Then,

(4.4) p′′(x) = − 8

25
sin(x)

(
cos(x) + t1

)(
cos(x) + t2

)

with

t1 =
1

56

(
111−

√
9605

)
= 0.23 . . . , t2 =

1

56

(
111 +

√
9605

)
= 3.73 . . . .

It follows that p′′(x) < 0 which implies that

p′(x) ≥ p′(0.2) = 0.004 . . . and p(x) > p(0) = 0.

Since sin(t) > −t/4 for t > 0, we obtain

u(x) + vn(x) > 0.66x+
1

n+ 2

(
−nx

4
− (n+ 1)x

4

)

=

(
0.66− 2n+ 1

4(n+ 2)

)
x

> 0.16x > 0.

Ca s e 2. x ∈ [0.2, 2.2].

Let

q(x) = u(x)− 2

15
.

Since q′′(x) = p′′(x), we conclude from (4.4) that

q′′(x) < 0 for x ∈ [0.2, t0) and q′′(x) > 0 for x ∈ (t0, 2.2],

where t0 = arccos(−t1) = 1.80 . . . . We have

q′(0.2) = 0.66 . . . , q′(t0) = −0.34 . . . , q′(2.2) = −0.28 . . . .

This implies that there exists a number x0 ∈ (0.2, t0) such that q′ is positive on
[0.2, x0) and negative on (x0, 2.2]. Thus,

(4.5) q(x) ≥ min
(
q(0.2), q(2.2)

)
= 0.004 . . . .



[13] inequalities for sine and cosine polynomials 313

Using (4.5) yields

u(x) + vn(x) >
2

15
− 2

n+ 2
≥ 0.

Ca s e 3. x ∈ [2.2, π).
Let

w(x) = u(x)− π − x

15
.

We have w′′(x) = p′′(x) and cos(x) ≤ cos(2.2) = −0.58 . . . . From (4.4) we
obtain w′′(x) > 0. It follows that

w′(x) < w′(π) = 0 and w(x) > w(π) = 0.

We have

|vn(x)| =
2

n+ 2

∣∣ sin((n+ 1/2)x) cos(x/2)
∣∣ ≤ 2

15
cos(x/2) ≤ π − x

15
.

Thus,

u(x) + vn(x) >
π − x

15
− π − x

15
= 0.

This completes the proof of Lemma 4.2. �

5 - An inequality for cosine polynomials

We are now in a position to present a refinement of Koumandos’ inequality
(1.6).

T h e o r em 5.1. Let a > 0 and b be real numbers. The inequality

(5.1)
41

96
+ Cn(x) ≥ a

(
cos(x) + b

)2

holds for all integers n ≥ 2 and real numbers x ∈ [0, π] if and only if a ≤ 2/75
and b = 3/8.

P r o o f. First, we assume that (5.1) is valid for all n ≥ 2 and x ∈ [0, π].
Then, from (5.1) with n = 2 and x = arccos(−3/8) we get

0 =
41

96
+ C2(arccos(−3/8)) ≥ a(−3/8 + b)2 ≥ 0.

This leads to b = 3/8. It follows that we obtain from (5.1) with n = 3 and
x = π,

1

96
=

41

96
+ C3(π) ≥ a(−1 + 3/8)2 =

25

64
a.
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Thus, a ≤ 2/75.

Next, we assume that 0 < a ≤ 2/75 and b = 3/8. Then, we have to show
that for n ≥ 2 and x ∈ [0, π],

(5.2)
41

96
+ Cn(x) ≥

2

75

(
cos(x) + 3/8

)2
.

We have

41

96
+ C2(x)−

2

75

(
cos(x) + 3/8

)2
=

16

25

(
cos(x) + 3/8

)2

and

41

96
+C3(x)−

2

75

(
cos(x)+3/8

)2
=

1

100

(
cos(x)+1

)(
9
(
2 cos(x)−1

)2
+64 cos2(x)

)
.

This implies that (5.2) is valid for n = 2, 3 and x ∈ [0, π]. Moreover, if
n = 2, then equality holds in (5.2) if and only if x = arccos(−3/8); and if
n = 3, then equality is valid if and only if x = π.

We have
41

96
+ Cn(x)−

2

75

(
cos(x) + 3/8

)2
= An(x),

where An is defined in (4.1).

Next, we show that An(x) > 0 for n ≥ 4 and x ∈ [0, π]. From Lemma 4.1
we conclude that this is true if n ∈ {4, 5, . . . , 12}.

Let n ≥ 13. Since

An(0) ≥ A13(0) = 2.62 . . . and An(π) ≥ A13(π) = 0.07 . . . ,

it remains to prove that An(x) > 0 for x ∈ (0, π). Let

(5.3) Bn(x) = 2 sin(x)An(x).

Then, we obtain the sine polynomial

Bn(x) =
1

2
sin(x) +

23

100
sin(2x) +

3

25
sin(3x) +

n−1∑
k=4

2 sin(kx)

k(k + 2)

+
sin(nx)

n
+

sin((n+ 1)x)

n+ 1
.

We have the representation

(5.4) Bn(x) = u(x) + vn(x) +Hn(x),
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where u and vn are defined in (4.2) and (4.3), respectively, and

Hn(x) =
1

7
sin(x) +

1

14
sin(2x) +

1

9
sin(3x) +

n∑
k=4

2 sin(kx)

k(k + 2)
+

sin((n+ 1)x)

(n+ 1)(n+ 2)
.

Let

ak = 2− (−1)k

k
(k = 1, . . . , n+ 1),

b1 =
1

7
, b2 =

1

14
, b3 =

1

9
, bk =

2

k(k + 2)
(k = 4, . . . , n),

bn+1 =
1

(n+ 1)(n+ 2)
,

ck = ck(x) = sin(kx) (k = 1, . . . , n+ 1).

By direct computation we obtain

ak > 0 (k = 1, . . . , n+ 1),
b1
a1

≥ b2
a2

≥ · · · ≥ bn+1

an+1
> 0,

and from Theorem 3.1 (with λ = 2 and π − x instead of x) we conclude that
for x ∈ (0, π) we have

0 ≤
m∑
k=1

akck (m = 1, . . . , n+ 1).

Applying Lemma 2.6 reveals that

(5.5) 0 ≤
n+1∑
k=1

bkck = Hn(x).

Next, we use Lemma 4.2, (5.4) and (5.5). This leads to Bn(x) > 0, and from
(5.3) we conclude that An(x) > 0. �

The proof of Theorem 5.1 shows that the following result is valid.

C o r o l l a r y 5.2. For all integers n ≥ 2 and real numbers x ∈ [0, π] we have

41

96
+ Cn(x) ≥

2

75

(
cos(x) + 3/8

)2
.

The sign of equality holds if and only if n = 2, x = arccos(−3/8) or n = 3,
x = π.

A c k n ow l e d gm e n t s. We are grateful to Professor A. Zaccagnini and
the referee for helpful comments.
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