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On m-quasi Einstein almost Kenmotsu manifolds

Abstract. In this article, we consider m-quasi Einstein structures on
two class of almost Kenmotsu manifolds. Firstly, we study a closed
m-quasi Einstein metric on a Kenmotsu manifold. Next, we proved
that if a Kenmotsu manifold M admits an m-quasi Einstein metric with
conformal vector field V , then M is Einstein. Finally, we prove that
a non-Kenmotsu almost Kenmotsu (κ, µ)′-manifold admitting a closed
m-quasi Einstein metric is locally isometric to the Riemannian product

Hn+1 × Rn, provided that λ−κ(2n+m)
2m = 1.
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1 - Introduction

Let M be a smooth Riemannian manifold. As an extension of Einstein
metric, Case et al [4] introduced the concept of quasi Einstein metric and this
is closely related to the warped product spaces (see [3]). In this context, one
defines m-Bakry-Emery Ricci tensor as in [1]

Ricmf = Ric+Hessf − 1

m
df ⊗ df,(1.1)

namely one puts 0 < m ≤ ∞, while Ric and Hessf indicate the Ricci tensor
and the Hessian of a smooth function f , respectively. The tensor Ricmf was
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extended by Limoncu [19] (see also [2]) for an arbitrary vector field V on M .
He defines RicmV as follows

RicmV = Ric+
1

2
£V g −

1

m
V # ⊗ V #,(1.2)

where £ indicates the Lie-derivative and V # is the 1-form associated to V . In
this setting, a metric g on a Riemannian manifold M will be called m-quasi
Einstein metric if there exist a vector field V and constant λ such that

Ric+
1

2
£V g −

1

m
V # ⊗ V # = λg.(1.3)

We say that an m-quasi Einstein metric is trivial when V = 0 and this triviality
is equivalent to say that M is Einstein. The equation (1.3) reduces to a Ricci
soliton when we take m = ∞ (for details see [16,21]). Using the terminology
of Ricci soliton, an m-quasi Einstein metric is called expanding, steady, or
shrinking, respectively, if λ < 0, λ = 0, or λ > 0.

Recently, many works on Ricci solitons and their various generalizations
within the framework of contact metric manifolds and almost cosympletic man-
ifolds were published (see [5,6,8,11,12,14,22,23,29]). Recently, the equation
(1.3) has been studied by Ghosh [13] on contact metric manifolds and obtained
several fruitful results. But, as far as we know, there are no studies on m-
quasi Einstein metrics on almost Kenmotsu manifolds. So that in this paper,
we want fill this gap and classify certain class of almost Kenmotsu manifolds
which admits an m-quasi Einstein metric.

2 - Preliminaries

Here we review some basic notions and properties of almost Kenmotsu man-
ifolds, see details in [9,10,17].

Let (M, g) be a smooth Riemannian manifold of dimension 2n + 1. If a
(1,1)-tensor field ϕ, a global vector field ξ (called Reeb vector field) and a
global 1-form η satisfy the following tensorial equations

ϕ2X = −X + η(X)ξ, η(ξ) = 1,(2.1)

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),(2.2)

for any vector field X Y on M , then we say that (ϕ, ξ, η, g) is an almost contact
metric structure and this structure with M is called almost contact metric
manifold. One can obtain from (2.1) and (2.2) that

η(X) = g(X, ξ), ϕξ = 0, η ◦ ϕ = 0.
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Define a (1,2)-type torsion tensor Nϕ on M as Nϕ = [ϕ,ϕ] + 2dη ⊗ ξ, where
[ϕ,ϕ] is the Nijenhuis tensor. If Nϕ vanishes identically, then we say that M is
normal.

An almost Kenmotsu manifold is defined as an almost contact metric mani-
fold such that dη = 0 and dΦ = 2η ∧ Φ, where the fundamental 2-form Φ is
defined by Φ(X,Y ) = g(X,ϕY ). Following Janssens and Vanhecke [17], a nor-
mal almost Kenmotsu manifold is called a Kenmotsu manifold [18]. The study
of these manifolds was developed by several authors (for instance [15,20,24,
27,28,30]). Kenmotsu manifolds are characterized by

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX.(2.3)

Let M be an almost Kenmotsu manifold. We consider the self-adjoint operators
on M

h =
1

2
£ξϕ, h′ = h ◦ ϕ,

where £ indicates the Lie-derivative. The above defined operators satisfy the
equalities (see [10,17])

hξ = 0, trg(h) = trg(h
′) = 0, hϕ+ ϕh = 0(2.4)

where trg denotes the trace operator. We also found the following formulas
in [17]

∇Xξ = X − η(X)ξ + h′X,(2.5)

Ric(ξ, ξ) = g(Qξ, ξ) = −2n− trg(h
2),(2.6)

where Q is the Ricci operator associated with the Ricci tensor Ric.

D e f i n i t i o n 2.1. A vector field V on a Riemannian manifold is said to be
conformal if there exists a smooth function ν such that

£V g = 2νg.(2.7)

If ν vanishes, then we say that V is Killing.

3 - m-quasi Einstein Kenmotsu manifolds

It is proved by Dileo and Pastore [9] that an almost Kenmotsu manifold
is normal if and only if the foliations of the distribution D (where D is the
distribution orthogonal to ξ, that is, D = Kerη) are Kählerian and the tensor
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field h vanishes. The following formulas are valid for any Kenmotsu manifolds
(see [18])

∇Xξ = X − η(X)ξ,(3.1)

R(X,Y )ξ = η(X)Y − η(Y )X,(3.2)

Qξ = −2nξ,(3.3)

where R is the curvature tensor. As a result of (3.1) and (3.3), one can prove
(for details see [25])

(∇XQ)ξ = −QX − 2nX,(3.4)

(∇ξQ)X = −2QX − 4nX.(3.5)

First we consider a closed m-quasi Einstein strucuture on Kenmotsu man-
ifolds. It is seen that the relation (1.2) turn into (1.1), when we uptake the
1-form V # is closed with V = Df . So that it is natural generalization of gra-
dient Ricci soliton (that is, satisfying (1.3) for V = Df and m = ∞). Before
entering to the main result, we call up the following

L emma 3.1. For a closed m-quasi Einstein metric the following formula
holds:

R(X,Y )V = (∇Y Q)X − (∇XQ)Y +
1

m
{V #(X)QY − V #(Y )QX}

+
λ

m
{V #(Y )X − V #(X)Y }.(3.6)

P r o o f. Because of V # is closed, one can write the equation (1.3) as

∇XV +QX = λX +
1

m
V #(X)V.(3.7)

Applying (3.7) in the well known expression of the curvature tensor

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ],

one easily derives (3.6). This completes the proof. �

De f i n i t i o n 3.2. On an almost contact metric manifold M , a vector field
V is said to be infinitesimal contact transformation if £V η = ση, for some func-
tion σ. In particular, we call V as a strict infinitesimal contact transformation
if £V η = 0.
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Now we are in the position to prove the following conclusion.

T h e o r em 3.3. Assume that a Kenmotsu manifold M admits a closed m-
quasi Einstein structure with m �= 1. Then one of the following conditions
occurs

(1) V is pointwise collinear with ξ and in such a case M is η-Einstein.

(2) V is strictly infinitesimal contact transformation.

(3) M is Einstein.

P r o o f. First, replacing Y by ξ in the equation (3.6), employing (3.4) and
(3.5) one has

R(X, ξ)V = −QX − 2nX − λ+ 2n

m
V #(X)ξ +

η(V )

m
{λX −QX}.(3.8)

By (3.2), one can reach at

g(R(X, ξ)Y, V ) = g(X,Y )η(V )− η(Y )g(X,V ).

The aforesaid equation together with (3.8) implies

λ+ 2n+m

m
V #(X)ξ − η(V )

m
((λ+m)X −QX) +QX + 2nX = 0.(3.9)

The, taking the scalar product with ξ and applying (3.3), one has

λ+ 2n+m

m
(g(X,V )− η(X)η(V )) = 0.(3.10)

Since λ and m are constants, (3.10) entails that either V = η(V )ξ or λ =
−(2n+m).

C a s e 1. Differentiating V = η(V )ξ along X and making use of (3.1) one
has

∇XV = (∇Xη)(V )ξ + g(∇XV, ξ)ξ + η(V )∇Xξ

= g(∇XV, ξ)ξ + η(V )(X − η(X)ξ).

The above formula combining with (3.7) we get

λX −QX +
1

m
V #(X)V

= 2nη(X)ξ + λη(X)ξ +
1

m
V #(X)η(V )ξ + η(V )(X − η(X)ξ).
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It follows that

ϕQX = (λ− η(V ))ϕX,(3.11)

where we applied ϕV = 0. Setting X by ϕX in (3.11) and recalling that Ricci
operator Q and ϕ commutes on M (see Lemma 4.1 of [15]), we obtain

QX = (λ− η(V ))X − (λ− η(V ) + 2n)η(X)ξ.(3.12)

Contraction of (3.12) over X, one immediately obtains

λ− η(V ) =
r

2n
+ 1.

Uptaking the above equation in (3.12), we reach at

QX =
( r

2n
+ 1

)
X −

( r

2n
+ 2n+ 1

)
η(X)ξ,

which means that M is η-Einstein. This completes the proof of (1).

C a s e 2. Here λ = −(2n+m). Making use of this, by (3.9) one has

(
η(V )

m
+ 1

)
(QX + 2nX) = 0.(3.13)

If we consider η(V ) = −m, then from (3.7), (3.3) one can find

∇ξV = η(V )ξ − V.

As a result of (3.1), one can prove that £V ξ = 2(V − η(V )ξ). Equation (1.3)
implies £V g(X, ξ) = 2(η(X)η(V )− g(X,V )), which in turn, shows that £V η =
0, which means that V is a strictly infinitesimal contact transformation. Let us
suppose that η(V ) �= −m, then (3.13) shows that M is Einstein with constant
scalar curvature −2n(2n+ 1). �

Ghosh [13] proved that a K-contact manifold with conformal m-quasi Ein-
stein metric is η-Einstein (non-trivial) and V is Killing. But, in the case of
Kenmotsu manifold, it is interesting to study m-quasi Einstein metric with V
as conformal vector field. In this setting, we prove

Th e o r em 3.4. Let M be a Kenmotsu manifold of dimension 2n + 1. If
the metric g is m-quasi Einstein and V is a conformal vector field, then M is
Einstein with constant scalar curvature −2n(2n+ 1).
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P r o o f. Because of V is conformal vector field, the equation (1.3) becomes

Ric(X,Y ) = (λ− ν)g(X,Y ) +
1

m
V #(X)V #(Y ).(3.14)

Differentiating (3.14), one has

(∇ZRic)(X,Y )

= −(Zν)g(X,Y ) +
1

m
{(∇ZV

#)(X)V #(Y ) + V #(X)(∇ZV
#)(Y )}.

Taking the cyclic sum of aforementioned equation over {X,Y, Z}, since V is
conformal, we obtain

(∇XRic)(Y, Z) + (∇Y Ric)(Z,X)

+ (∇ZRic)(X,Y ) + {(Xν)− 2ν

m
V #(X)}g(Y, Z)

+ {(Y ν)− 2ν

m
V #(Y )}g(X,Z) + {(Zν)− 2ν

m
V #(Z)}g(X,Y ) = 0.(3.15)

Contraction of (3.15) over Y and Z entails that

2

2n+ 3
(Xr) + (Xν)− 2ν

m
V #(X) = 0.

As a result of this, (3.15) takes the form

(∇XRic)(Y, Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y )

− 2

2n+ 3
{(Xr)g(Y, Z) + (Y r)(Z,X) + (Zr)g(X,Y )} = 0.(3.16)

Putting Y = Z = ξ, by (3.4) and (3.5) we obtain

(Xr) + 2(ξr)η(X) = 0.(3.17)

Trace of (3.5) yields (ξr) = −2(r + 2n(2n + 1)). By this equation, one can
find that £ξr = −2(r + 2n(2n + 1)). Applying d to this equation, since £ξ

commutes with d, we have £ξdr = −2dr. In terms of gradient operator D,
the last equation can be written as £ξDr = −2Dr. This together with (3.1)
implies that

∇ξDr = −Dr − (ξr)ξ.

As a result of (3.17), one can find that

(ξr)ξ + 2ξ(ξr)ξ = 0.
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In view of (ξr) = −2(r+2n(2n+1)), we find that ξ(ξr) = −2(ξr) and going back
to the above equation, we have (ξr) = 0, which shows that r = −2n(2n + 1).
Hence, the scalar curvature r is constant. Uptaking this constancy of r in (3.16)
one has

(∇XRic)(Y, Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y ) = 0.

Substituting Z in the aforesaid equation by ξ and taking account of (3.4) and
(3.5) we have QX = −2nX, which shows that M is Einstein with negative
scalar curvature. �

4 - m-quasi Einstein almost Kenmotsu (κ,µ)′-manifolds

If the curvature tensor R of an almost Kenmotsu manifolds M satisfies

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )h′X − η(X)h′Y },(4.1)

for any vector fields X, Y and κ, µ are constants, then we call M an almost
Kenmotsu (κ, µ)′-manifold. Classification of almost Kenmotsu (κ, µ)′-manifolds
have done by many geometers. In this regard, we recommend [7,9,20,24,26,
28,31,32] for more information. According to the results of [10], any almost
Kenmotsu (κ, µ)′-manifold satisfies µ = −2 and h′2 = (κ + 1)ϕ2. From this,
we have κ ≤ −1 and the equality holds only if h = 0. We recall the following
result for our later use.

L emma 4.1 (Lemma 3 in [32]). The expression of Ricci operator Q on an
almost Kenmotsu (κ, µ)′-manifold M is of the form

QX = −2nX + 2n(κ+ 1)η(X)ξ − 2nh′X,(4.2)

where κ ≤ −1. Moreover, the scalar curvature of M is 2n(κ− 2n).

L emma 4.2 (Lemma 4.1 in [10]). On an almost Kenmotsu (κ, µ)′-manifold
with κ ≤ −1, we have

(∇Xh′)Y = g((κ+ 1)X − h′X,Y )ξ

+ η(Y )((κ+ 1)X − h′X)− 2(κ+ 1)η(X)η(Y )ξ.

As seen in Section 3, it is known that closed m-quasi Einstein metric is an
extension of gradient Ricci soliton, therefore in this section we study closed
m-quasi Einstein structures on an almost Kenmotsu (κ, µ)′-manifold M and
generalize the result of Wang et al [30].
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Th e o r em 4.3. Let M be a non-Kenmotsu almost Kenmotsu (κ, µ)′-mani-
fold of dimension 2n + 1. If a metric of M is closed m-quasi Einstein, then
M is locally isometric to the Riemannian product of an (n + 1)-dimensional
manifold of constant sectional curvature −4 and a flat n-dimensional manifold,

provided that
λ− κ(2n+m)

2m
= 1.

P r o o f. By the support of Lemma 4.1, one can prove that

(∇Y Q)X − (∇XQ)Y =− 2n{(∇Y h
′)X − (∇Xh′)Y }

− 2n(κ+ 1){η(Y )(X + h′X)− η(X)(Y + h′Y )}.

Then, by (3.6) and Lemma 4.2 we have

g(R(X,Y )V, ξ) =
λ− 2nκ

m
{V #(Y )η(X)− V #(X)η(Y )},(4.3)

where we have used Qξ = 2nκξ. Going back to (4.1), equation (4.3) implies

(
λ− 2nκ

m
− κ

)
{V #(Y )η(X)− V #(X)η(Y )}

− 2{V #(h′X)η(Y )− V #(h′Y )η(X)} = 0.

Replacing X in the above equation by ξ, we obtain

2V #(h′Y ) =
1

m
(λ− κ(2n+m)){η(V )η(Y )− V #(Y )}.

Since λ− κ(2n+m) = 2m and h′ is a symmetric operator, the above equation
implies

h′V = η(V )ξ − V.(4.4)

Recalling the relation h′2 = (κ + 1)ϕ2, the action of h′ on (4.4) yields
(κ+ 1)(V − η(V )ξ) = h′V . This together with (4.4) implies that

(κ+ 2)(V − η(V )ξ) = 0.(4.5)

From this, we have either κ = −2 or V = η(V )ξ = fξ. Now, we show that the
second case cannot occur on M . Let us suppose that the second case is true,
that is, V = fξ, where f = η(V ) is a smooth function, the covariant derivative
of this relation along X yields

∇XV = (Xf)ξ + f(X − η(X)ξ + h′X).
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Since V # is closed, we have ∇XV = λX − QX +
1

m
V #(X)V and going back

to the above equation we have

λX −QX +
1

m
V #(X)V = (Xf)ξ + f(X − η(X)ξ + h′X).(4.6)

Applying (4.2), by (4.6) we obtain

(4.7) (λ+ 2n− f)X + (2n− f)h′X + (fη(X)− (Xf)

− 2n(κ+ 1)η(X))ξ +
1

m
V #(X)V = 0.

By h′ξ = 0, (4.7) implies

(λ+ 2n− f)h′X + (2n− f)h′2X = 0,(4.8)

where we have employed h′V = 0. Calling up the relation h′2 = (κ+ 1)ϕ2, the
contraction of (4.8) yields

2n(κ+ 1)(2n− f) = 0,

and this implies f = 2n because of κ < −1. Substituting in (4.7) we obtain

λmX + 2n(2n− κm)η(X)ξ = 0.(4.9)

Taking X orthogonal to ξ, we have λ = 0. Thus, (4.9) becomes (2n−κm)η(X)ξ

= 0. By virtue of this, we have κ =
2n

m
> −1, which contradicts our assumption.

So that the only choice is κ = −2. By Corollary 4.2 and Proposition 4.1 [10]
we claim that M is locally isometric to the Riemannian product Hn+1 × Rn.

Substituting κ = −2 in the relation
λ− κ(2n+m)

2m
= 1, we obatin λ = −4n,

which shows that a closed m-quasi Einstein metric is expanding. �

Rema r k 4.4. Theorem 1.2 of Wang et al [30] is a direct corollary of our
Theorem 4.3.

Ac k n ow l e d gm e n t s. The authors would like to thank the anonymous
referee for his or her valuable suggestions that have improved the paper.
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