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Abstract. Let R be a commutative ring with unity. The R-algebra
G = G(A,M,N,B) is a generalized matrix algebra defined by the Morita
context (A,B,M,N, ξMN,ΩNM). In this article, we study multiplicative
generalized Lie type derivations on generalized matrix algebras and prove
that it has the standard form.
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1 - Historical Development

There has been a great deal of work concerning characterizations of Lie
derivations on rings. The first characterization of Lie derivations was obtained
by Martindale [16] in 1964 who proved that every Lie derivation on primitive
ring can be written as a sum of derivation and an additive mapping of ring to its
center that maps commutators into zero, i.e, Lie derivation has the standard
form. Chen and Zhang [4] described multiplicative Lie derivation on upper
triangular matrix algebra. Further, the authors [2] characterized multiplicative
generalized Lie triple derivations on triangular algebras. Following the well-
established approach and the sophisticated computational method by Cheung
[5], several authors studied the different linear mappings on generalized matrix
algebras for example [6,7,10,11,12,13,17,23] and the bibliographic content
existing therein.
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Recently, many authors studied Lie n-derivation on various kind of algebras
[3, 8, 9, 15, 17] and references therein. In the year 2014, Wang and Wang
[22] studied multiplicative Lie n-derivation on generalized matrix algebras and
proved that it has standard form under certain assumptions. Also, Wang [21]
investigated Lie n-derivation on unital algebras with idempotents and obtained
that every Lie n-derivation can be written as a sum of derivation, singular
Jordan derivation and anti-derivation on the unital algebras with idempotents.
Furthermore, Qi [19] characterized Lie n-derivation on reflexive algebras and
obtained that it has the standard form, i.e, it can be expressed as the sum of
linear derivation and linear functional vanishing at every (n-1)-th commutator
on reflexive algebras. Lin [14] carried out the study of multiplicative generalized
Lie n-derivation on triangular algebras and proved that every multiplicative
Lie n-derivation can be written as sum of additive generalized derivation and a
central mapping annihilating (n-1)-th commutator on triangular algebras under
some limitations.

Motivated by these studies our main purpose is to characterize multiplica-
tive generalized Lie n-derivation on generalized matrix algebra and show that
every multiplicative generalized Lie n-derivation on generalized matrix algebra
can be written as the sum of an additive generalized derivation and a central
mapping annihilating (n-1)-th commutator with some limitations. We also
study some direct implications of our main result.

2 - Basic Definitions & Preliminaries

Let R be a commutative ring with unity and U be an R-algebra having
center Z(U). A map L : U → U (not necessarily linear) is called a multiplicative
derivation (resp. multiplicative Lie derivation) on U if L(ab) = L(a)b + aL(b)
(resp. L([a, b]) = [L(a), b] + [a,L(b)]) holds for all a, b ∈ U. In addition, if L is
linear on U, then L is said to be a derivation (resp. Lie derivation) on U. A
map GL : U → U (not necessarily linear) is called a multiplicative generalized
derivation (resp. multiplicative generalized Lie derivation) on U associated
with a multiplicative derivation (resp. multiplicative Lie derivation) L on U
if GL(ab) = GL(a)b + aL(b) (resp. GL([a, b]) = [GL(a), b] + [a,L(b)]) holds
for all a, b ∈ U. In addition, if GL is linear associated with a derivation (resp.
Lie derivation) L on U, then GL is said to be a generalized derivation (resp.
generalized Lie derivation) on U.

For a broad scope of maps. Define the family of polynomials:

p1(x1) = x1

p2(x1, x2) = [pn(x1), x2] = [x1, x2]
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p3(x1, x2, x3) = [pn(x1, x2), x3] = [[x1, x2], x3]

...

pn(x1, x2, · · · , xn) = [pn(x1, x2, · · · , xn-1), xn].

The polynomial pn(x1, x2, · · · , xn) is called n-th commutator where n ≥ 2. A
map (not necessarily linear) L : U → U is said to be a multiplicative Lie n-
derivation on U if

L(pn(x1, x2, · · · , xn)) =
i=n∑
i=1

pn(x1, x2, · · · , xi-1,L(xi), xi+1, · · · , xn)

for all x1, x2, · · · , xn ∈ U. This notion of Lie n-derivation developed on cer-
tain von Neumann algebras by Abdullaev in [1]. Undoubtedly, any multi-
plicative Lie 2-derivation is multiplicative Lie derivation and multiplicative Lie
3-derivation is multiplicative Lie triple derivation and so on.

Further, A map (not necessarily linear) GL : U → U is said to be a multi-
plicative generalized Lie n-derivation on U if there exists a multiplicative Lie
n-derivation L such that

GL(pn(x1, x2, · · · , xn)) = pn(GL(x1), x2, · · · , xi-1, xi, xi+1, · · · , xn)

+

i=n∑
i=2

pn(x1, x2, · · · , xi-1,L(xi), xi+1, · · · , xn)

for all x1, x2, · · · , xn ∈ U. Obviously, any multiplicative generalized Lie 2-
derivation is multiplicative generalized Lie derivation and multiplicative gen-
eralized Lie 3-derivation is multiplicative generalized Lie triple derivation and
so on. These maps collectively known as multiplicative generalized Lie type
derivations on U.

A Morita context consists of two unital R-algebras A and B, two bimodules
(A,B)-bimodule M and (B,A)-bimodule N, and two bimodule homomorphisms
called the bilinear pairings ξMN : M ⊗

B
N −→ A and ΩNM : N ⊗

A
M −→ B

satisfying the following commutative diagrams:

M⊗
B
N⊗

A
M

ξMN⊗IM ��

IM⊗ΩNM

��

A⊗
A
M

∼=

��
M⊗

B
B

∼= �� M

and N⊗
A
M⊗

B
N

ΩNM⊗IN ��

IN⊗ξMN

��

B⊗
B
N

∼=

��
N⊗

A
A

∼= �� N.
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If (A,B,M,N, ξMN,ΩNM) is a Morita context, then the set

[
A M
N B

]
=

{[
a m
n b

]
a ∈ A,m ∈ M, n ∈ N, b ∈ B

}

forms an R-algebra under matrix addition and matrix-like multiplication con-
sisting one of two bimodules M and N is nonzero. Aforesaid an R-algebra
known as generalized matrix algebra of order 2 which is symbolized by

G = G(A,M,N,B) =

[
A M
N B

]
.

This kind of algebra was first introduced by Morita in [18]. All associative
algebras having nontrivial idempotents are isomorphic to generalized matrix
algebras. The familiar examples of generalized matrix algebras are full matrix
algebras over a unital algebra and triangular algebras [20,22]. Moreover, G is
mentioned as triangular algebra if N = 0.

The center of G is

Z(G) =

{[
a 0
0 b

]
am = mb, na = bn for all m ∈ M, n ∈ N

}
.

Define two natural projections πA : G → A and πB : G → B by πA

([
a m
n b

])

= a and πB

([
a m
n b

])
= b. Moreover, πA(Z(G)) ⊆ Z(A) and πB(Z(G)) ⊆

Z(B) and there exists a unique algebraic isomorphism ξ : πA(Z(G)) → πB(Z(G))
such that am = mξ(a) and na = ξ(a)n for all a ∈ πA(Z(G)),m ∈ M and n ∈ N.

Let 1A (resp.1B) be the identity of the algebra A (resp. B) and let I be

the identity of generalized matrix algebra G, e =

[
1A 0
0 0

]
, f = I − e =

[
0 0
0 1B

]
and G11 = eGe, G12 = eGf , G21 = fGe, G22 = fGf . Thus

G = eGe+eGf +fGe+fGf = G11+G12+G21+G22 where G11 is subalgebra
of G isomorphic to A, G22 is subalgebra of G isomorphic to B, G12 is (G11,G22)-
bimodule isomorphic to M and G21 is (G22,G11)-bimodule isomorphic to N.

Now we mention some results which will be used subsequently in developing
the proof of our results:

L emma 2.1 ([2, Proposition 4.3]). Every generalized derivation d on G
has the form

d

([
a m
0 b

])
=

[
U(a) an0 − n0b+W(m)
0 V(b)

]
,
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where a ∈ A,m, n0 ∈ M, b ∈ B and U : A → A,W : M → M,V : B → B are
R-linear mappings satisfying

(i) U is a generalized derivation on A and W(am) = U(a)m+aW(m) for all
a ∈ A and m ∈ M,

(ii) V is a generalized derivation on B and W(mb) = mV(b) +W(m)b for all
b ∈ B and m ∈ M.

L emma 2.2 ([14, Theorem 3.3]). Let T be a (n-1)-torsion free triangular
algebra such that

1. Z(A) = πA(Z(T)) and Z(B) = πB(Z(T)),

2. For any a ∈ A, if [a,A] ∈ Z(A), then a ∈ Z(A).

If GL : T → T is a multiplicative generalized Lie n-derivation, then there exists
an additive generalized derivation d of T and a map τ : T → Z(T) vanishing at
pn(x1, x2, . . . , xn) for all x1, x2, . . . , xn ∈ T such that GL = d+ τ.

3 - Key Content

The main result of the this paper states as follows:

T h e o r em 3.1. Let G be a (n-1)−torsion free generalized matrix algebra
such that

1. Z(A) = πA(Z(G)) and Z(B) = πB(Z(G)),

2. A or B does not contain nonzero central ideals,

3. for n ≥ 3 and for any a ∈ A, if [a,A] ∈ Z(A), then a ∈ Z(A),

4. if n is odd and N �= 0, then for each m ∈ M the condition mN = 0 = Nm
implies m = 0,

5. if n is odd and M �= 0, then for each n ∈ N the condition nM = 0 = Mn
implies n = 0.

If GL : G → G is a multiplicative generalized Lie n-derivation, then there exists
an additive generalized derivation δ of G and a map φ : G → Z(G) vanishing
at pn(x1, x2, . . . , xn) for all x1, x2, . . . , xn ∈ G such that GL = δ + φ.
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Let us assume that GL : G → G is a generalized Lie n-derivation with associated
Lie n-derivation L. Set

T = eGe+ eGf + fGf.

Then T is a triangular algebra itself. Also note that Z(T) = Z(G). Now we
define maps δ1,G

′
L : G → G by

δ1(x) = [GL(f), x] and G′
L(x) = GL(x)− δ1(x).

It is easy to verify that δ1 is an inner derivation and G′
L is a multiplicative

generalized Lie n-derivation. Since

G′
L(f) = GL(f)− δ1(f) = GL(f)− [GL(f), f ] = GL(f)−GL(f)f + fGL(f),

we find that eG′
L(f)f = 0.

Now we consider only the multiplicative generalized Lie n-derivation which
satisfies eGL(f)f = 0. The proof of the theorem will be organized in a series of
lemmas:

L emma 3.1. GL(0) = 0.

P r o o f. Obviously true. �

L emma 3.2. eGL(x)f = 0 for all x ∈ A ∪ B.

P r o o f. Using [x, f ] = 0, we find that

0 = GL(pn(x, f, . . . , f))

= pn(GL(x), f, . . . , f) + pn(x,L(f), . . . , f).

Multiplying by e from the left and by f from the right, we obtain that

(3.1) 0 = eGL(x)f + e[x,L(f)]f.

Also, we have

0 = GL(pn(f, f, . . . , f))

= pn(GL(f), f, . . . , f) + pn(f,L(f), . . . , f)

= eGL(f)f − eL(f)f

= −eL(f)f.

Hence in view of (3.1), we find that eGL(x)f = 0 for all x ∈ A ∪ B. �
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Now we define a map δ2 : G → G by

δ2(x) = [GL(e), x] and G′′
L(x) = GL(x)− δ2(x).

Obviously, δ2 is an inner derivation and G′′
L is a multiplicative generalized Lie

n-derivation. In view of Lemma 3.2, we find that

eG′′
L(x)f = eGL(x)f − eδ2(x)f = eGL(x)f − e[GL(e), x]f = 0

for all x ∈ A ∪ B. Also, we have

G′′
L(e) = GL(e)− δ2(e) = GL(e)− [GL(e), e] = GL(e)− fGL(e)e.

This gives fG′′
L(e)e = 0. Now consider only those multiplicative generalized Lie

n-derivation which satisfies fGL(e)e = 0. In particular, we have fL(e)e = 0.

L emma 3.3. fGL(x)e = 0 and GL(x) = eGL(x)e + fGL(x)f for all x ∈
A ∪ B.

P r o o f. Since [x, e] = 0 for all x ∈ A ∪ B, we have

0 = GL(pn(x, e, . . . , e))

= pn(GL(x), e, . . . , e) + pn(x,L(e), . . . , e)

= fGL(x)e− f [x,L(e)]e

= fGL(x)e.

Using Lemma 3.2, the above yields that GL(x) = eGL(x)e + fGL(x)f for all
x ∈ A ∪ B. �

L emma 3.4. GL(m) = eGL(m)f for all m ∈ M.

P r o o f. For any m ∈ M, we have

GL(m) = GL(pn(m,−e, . . . ,−e))

= pn(GL(m),−e, . . . ,−e) +
n∑

k=2

pn(m,−e, . . . , L(−e)︸ ︷︷ ︸
kth−place

, . . . ,−e)

= eGL(m)f + (−1)n-1fGL(m)e+ (n-1)[m,L(−e)](3.2)

Multiplying by e from the left and by f from the right, we obtain that
(n-1)[m,L(−e)] = 0 and hence [m,L(−e)] = 0 for all m ∈ M. This implies
that L(−e) ∈ Z(G). From (3.2), we obtain that

(3.3) GL(m) = eGL(m)f + (−1)n-1fGL(m)e.
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Now if n is even, then form (3.3) we find that GL(m) = eGL(m)f − fGL(m)e.
On multiplying by f from the left and by e from the right, we get fGL(m)e = 0.
Finally, GL(m) = eGL(m)f.

If n is odd, then form (3.3) we find that GL(m) = eGL(m)f + fGL(m)e.
Since [m1,m2] = 0 for all m1,m2 ∈ M. Now we have

0 = GL(pn(m,m1,m2,−e, . . . ,−e))

= pn(GL(m),m1,m2,−e . . . ,−e) + pn(m,L(m1),m2,−e, . . . ,−e)

= [[fGL(m)e,m1] + [m, fL(m1)e],m2].

This leads to [fGL(m)e,m1] + [m, fL(m1)e] ∈ Z(G). On the other way,

0 = GL(pn(m,−e, . . . ,−e,m1))

= pn(GL(m),−e, . . . ,−e,m1) +

n∑
k=2

pn(m,L(−e),−e, . . . ,−e,m1)

= [−fGL(m)e,m1] + [m, fL(m1)e].

On comparing the last two expressions, we find that 2[fGL(m)e,m1] ∈ Z(G)
implies that

fGL(m)em1 −m1fGL(m)e ∈ Z(G)

for all m,m1 ∈ M. Hence it follows that fGL(m)eM ∈ Z(B) and MfGL(m)e ∈
Z(A). Since MfGL(m)e is central ideal of A and hence MfGL(m)e = 0, then
it leads to fGL(m)eM = 0. Similarly, fGL(m)eM = 0. Now by assumption
(5), we get fGL(m)e = 0 for all m ∈ M. Hence from (3.3), we obtain that
GL(m) = eGL(m)f for all m ∈ M. �

L emma 3.5. GL(exf) = eGL(x)f and fGL(x)e = 0 for all x ∈ T.

P r o o f. For any m ∈ M, it follows that

GL(m) = GL(pn(m, f,−e, . . . ,−e))

= pn(GL(m), f,−e, . . . ,−e) + pn(m,L(f),−e, . . . ,−e)

+ pn(m, f,L(−e), . . . ,−e) + · · ·+ pn(m, f,−e, . . . ,L(−e))

= eGL(m)f + [m,L(f)].

On multiplying by e from the left and by f from the right, we have [m,L(f)] = 0
and hence L(f) ∈ Z(G). This leads to GL(m) = eGL(m)f. For any x ∈ T, we
obtain that

GL(exf) = GL(pn(x, f, . . . , f))



[9] generalized matrix algebras and lie type derivations 275

= pn(GL(x), f, . . . , f) +

n∑
k=2

pn(x,L(f), . . . , f)

= eGL(x)f + (−1)n-1fGL(x)e.(3.4)

Since GL(exf) ∈ M, we find that (−1)n-1fGL(x)e = 0 and hence fGL(x)e = 0.
From (3.4), we get GL(exf) = eGL(x)f for all x ∈ T. �

L emma 3.6. For any a ∈ A, b ∈ B and m ∈ M, we have

1. GL(a+m)−GL(a)−GL(m) ∈ Z(G),

2. GL(b+m)−GL(b)−GL(m) ∈ Z(G).

P r o o f. Since L(f) ∈ Z(G), using Lemma 3.5, for any a ∈ A and m ∈ M,
we have

GL(am1) = GL(pn(a+m,m1, f, . . . , f))

= pn(GL(a+m),m1, f, . . . , f) +

n∑
i=2

pn(a+m,L(m1), f, . . . , f)

= [eGL(a+m)e+ fGL(a+m)f,m1] + [a,L(m1)].

On the other hand, we get

GL(am1) = GL(pn(a,m1, f, . . . , f))

= pn(GL(a),m1, f, . . . , f) +
n∑

k=2

pn(a,L(m1), f, . . . , f)

= [GL(a),m1] + [a,L(m1)].

Combining the above two expressions, we find that [eGL(a + m)e + fGL(a +
m)f −GL(a),m1] = 0. Therefore, GL(a+m)− eGL(a+m)f −GL(a) ∈ Z(G).
This gives that GL(a+m)−GL(m)−GL(a) ∈ Z(G) for all a ∈ A and m ∈ M.
Similarly, we can show the other part. �

L emma 3.7. GL is additive on M.

P r o o f. For any m1,m2 ∈ M, in view of Lemma 3.6 we have

GL(m1 +m2) = GL(pn(f +m1,−e−m2, f, . . . , f))

= pn(GL(f +m1),−e−m2, f, . . . , f)
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+pn(f +m1,L(−e−m2), f, . . . , f)

+pn(f +m1,−e−m2,L(f), . . . , f)

+ · · ·+ pn(f +m1,−e−m2, f, . . . ,L(f))

= pn(GL(m1),−e, f, . . . , f) + pn(m1,L(−e), f, . . . , f)

+pn(m1,−e,L(f), . . . , f) + · · ·+ pn(m1,−e, f, . . . ,L(f))

+pn(GL(m1),−m2, f, . . . , f) + pn(m1,L(−m2), f, . . . , f)

+pn(m1,−m2,L(f), . . . , f) + · · ·+ pn(m1,−m2, f, . . . ,L(f))

+pn(GL(f),−e, f, . . . , f) + pn(f,L(−e), f, . . . , f)

+pn(f,−e,L(f), . . . , f) + · · ·+ pn(f,−e, f, . . . ,L(f))

+pn(GL(f),−m2, f, . . . , f) + pn(f,L(−m2), f, . . . , f)

+pn(f,−m2,L(f), . . . , f) + · · ·+ pn(f,−m2, f, . . . ,L(f))

= GL(pn(m1,−e, f, . . . , f)) + GL(pn(m1,−m2, f, . . . , f))

+GL(pn(f,−e, f, . . . , f)) + GL(pn(f,−m2, f, . . . , f))

= GL(m1) + GL(m2).

�

L emma 3.8. GL(a + m + b) − GL(a) − GL(m) − GL(b) ∈ Z(G) for all
a ∈ A,m ∈ M and b ∈ B.

P r o o f. For any a ∈ A, b ∈ B and m1,m ∈ M, we have

GL([a+m+ b,m1]) = GL(pn(a+m+ b,m1, f, . . . , f))

= pn(GL(a+m+ b),m1, f, . . . , f)

+pn(a+m+ b,L(m1), f, . . . , f)

= [GL(a+m+ b),m1] + [a+m+ b,L(m1)].

On the other hand,

GL([a+m+ b,m1]) = GL[a,m1] + GL[b,m1]

= GL(pn(a,m1, f, . . . , f) + GL(pn(b,m1, f, . . . , f))

= pn(GL(a),m1, f, . . . , f) + pn(a,L(m1), f, . . . , f)

+pn(GL(b),m1, f, . . . , f) + pn(b,L(m1), f, . . . , f)

= [GL(a),m1] + [a,L(m1)] + [GL(b),m1] + [b,L(m1)].

Combining the above two expressions we find that [GL(a +m + b) − GL(a) −
GL(b),m1] = 0. Therefore, GL(a+m+ b)−GL(a)− eGL(a+m+ b)f −GL(b) ∈
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Z(G). This gives that GL(a+m+ b)−GL(a)−GL(m)−GL(b) ∈ Z(G) for all
a ∈ A, b ∈ M and m ∈ M. �

Now from Lemma 3.8, we can conclude that GL(T) ⊆ T. This implies that
GL|T is a multiplicative generalized Lie n-derivation. From Lemma 2.2, there
exist an additive generalized derivation d on T and a map τ : T → Z(T) such
that GL = d+ τ. Now from Lemma 2.1, generalized derivation d on T has the
form

d

([
a m
0 b

])
=

[
U(a) am0 −m0b+W(m)
0 V(b)

]
,

where a ∈ A,m,m0 ∈ M, b ∈ B and U : A → A,W : M → M,V : B → B are
R-linear mappings satisfying

(i) U is a generalized derivation on A and W(am) = U(a)m+ aW(m) for all
a ∈ A and m ∈ M,

(ii) V is a generalized derivation on B and W(mb) = mV(b) +W(m)b for all
b ∈ B and m ∈ M.

Particularly,

GL(f) = d(f) + τ(f) =

[
0 −m0

0 0

]
+ τ(f).

This implies that m0 = 0 and hence

(3.5) d

([
a m
0 b

])
=

[
U(a) W(m)
0 V(b)

]
.

Obviously, GL(e) = τ(e) ∈ Z(G) and GL(−f) = τ(−f) ∈ Z(G). In particular,
we have L(e) ∈ Z(G) and L(−f) ∈ Z(G). Now define a map φ1 : G → Z(G) by
φ1(a+m+n+ b) = τ(a+m+ b) and set G′

L = GL −φ1. From here we observe
that G′

L|T = d is an additive generalized derivation on T and G′
L(n) = GL(n)

for all n ∈ N.

L emma 3.9. GL(n) = fGL(n)e for all n ∈ N.

P r o o f. For any n ∈ N, we have

GL(n) = GL(pn(n,−f, . . . ,−f))

= pn(GL(n),−f, . . . ,−f) +
n∑

k=2

pn(n,L(−f),−f, . . . ,−f)

= (−1)n−1eGL(n)f + fGL(n)e.
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If n is even, then GL(n) = −eGL(n)f + fGL(n)e for all n ∈ N. On multiplying
by e from the left and by f from the right, we find that 2eGL(n)f = 0 implies
to eGL(n)f = 0.

If n is odd, then GL(n) = eGL(n)f + fGL(n)e for all n ∈ N. On using
[n1, n2] = 0, we have

0 = GL(pn(n, n1,m, f, . . . , f))

= pn(GL(n), n1,m, f, . . . , f) + pn(n,L(n1),m, f, . . . , f)

= [[eGL(n)f, n1] + [n, eL(n1)f ],m].

This implies that [eGL(n)f, n1] + [n, eL(n1)f ] ∈ Z(G). On the other hand, we
obtain that

0 = GL(pn(n, e, . . . , e, n1))

= pn(GL(n), e, . . . , e, n1) + pn(n, e, . . . , e,L(n1))

= −[eGL(n)f, n1] + [n, eL(n1)f ].

On comparing the above two expressions, we get 2[eGL(n)f, n1] ∈ Z(G), and
hence it follows that [eGL(n)f, n1] ∈ Z(G) for all n, n1 ∈ N. Therefore,
eGL(n)fn1 − n1eGL(n)f1 ∈ Z(G). Hence eGL(n)fN ⊆ Z(A) and NeGL(n)f ⊆
Z(B). Now by assumption, we obtain that eGL(n)fN = 0 and NeGL(n)f = 0
and hence eGL(n)f = 0 for all n ∈ N. �

L emma 3.10. GL(a+m+n+b)−GL(a)−GL(m)−GL(n)−GL(b) ∈ Z(G)
for all a ∈ A,m ∈ M, n ∈ N and b ∈ B.

P r o o f. For any a ∈ A, b ∈ B and m1,m ∈ M, we have

GL(pn(a+m+ n+ b,m1,m2, f, . . . , f))

= pn(GL(a+m+ n+ b),m1,m2, f, . . . , f)

+

n∑
k=2

pn(a+m+ n+ b,L(m1),m2, f, . . . , f)

= [[GL(a+m+ n+ b),m1],m2]

+[[a+m+ n+ b,L(m1)],m2] + [[n,m1],L(m2)].

On the other hand,

GL(pn(a+m+ n+ b,m1,m2, f, . . . , f))

= GL(pn(n,m1,m2, f, . . . , f) + GL(pn(b,m1,m2, f, . . . , f))
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= pn(GL(n),m1,m2, f, . . . , f) + pn(n,L(m1),m2, f, . . . , f)

+pn(n,m1,L(m2), f, . . . , f)

= [[GL(n),m1],m2] + [[n,L(m1)],m2] + [[n,m1],L(m2)].

From the above two expressions, we obtain that [[GL(a+m+ n+ b)−GL(n),
m1],m2] = 0. This implies that [[fGL(a + m + n + b)e − GL(n),m1],m2] = 0
and hence [fGL(a+m+ n+ b)e−GL(n),m1] ∈ Z(G). This leads to

(fGL(a+m+n+ b)e−GL(n))m1−m1(fGL(a+m+n+ b)e−GL(n)) ∈ Z(G).

Therefore, (M(fGL(a +m + n + b)e − GL(n)) ∈ Z(A) and (fGL(a +m + n +
b)e−GL(n))M ∈ Z(B). Now by assumptions, we find that

(3.6) fGL(a+m+ n+ b)e = GL(n).

For any a ∈ A, b ∈ B and m1,m ∈ M, we have

GL(pn(a+m+ n+ b, n1,m1, f, . . . , f))

= pn(GL(a+m+ n+ b), n1,m1, f, . . . , f)

+

n∑
k=2

pn(a+m+ n+ b,L(n1),m1, f, . . . , f)

= [[GL(a+m+ n+ b), n1],m1]

+[[a+m+ n+ b,L(n1)],m1] + [[m,n1],L(m1)].

On the other hand,

GL(pn(a+m+ n+ b, n1,m1, f, . . . , f))

= GL(pn(m,n1,m1, f, . . . , f)

= pn(GL(m), n1,m1, f, . . . , f) + pn(n,L(n1),m1, f, . . . , f)

+pn(m,n1,L(m1), f, . . . , f)

= [[GL(m), n1],m1] + [[m,L(n1)],m1] + [[m,n1],L(m1)].

From the above two expressions we obtain that [[GL(a+m+ n+ b)−GL(m),
n1],m1] = 0. This implies that [[eGL(a + m + n + b)f − GL(m), n1],m1] = 0
and hence [eGL(a+m+ n+ b)f −GL(m), n1] ∈ Z(G). This leads to

(eGL(a+m+n+ b)f −GL(m))n1−n1(eGL(a+m+n+ b)f −GL(m)) ∈ Z(G).

Therefore, (N(eGL(a +m + n + b)f − GL(m)) ∈ Z(A) and (eGL(a +m + n +
b)f −GL(m))N ∈ Z(B). Now by assumptions, we find that

(3.7) eGL(a+m+ n+ b)f = GL(m).
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Now for any m1 ∈ M, we have

GL(pn(a+m+ n+ b,m1, f, . . . , f))

= pn(GL(a+m+ n+ b),m1, f, . . . , f)

+pn(a+m+ n+ b,L(m1), f, . . . , f)

= [eGL(a+m+ n+ b)e+ fGL(a+m+ n+ b)f,m1]

+[a+m+ n+ b,L(m1)].

On the other hand,

GL(pn(a+m+ n+ b,m1, f, . . . , f))

= GL([a+ b,m1])

= GL([a,m1]) + GL([b,m1])

= pn(GL(a),m1, f, . . . , f) + pn(a,L(m1), f, . . . , f)

+pn(GL(b),m1, f, . . . , f) + pn(b,L(m1), f, . . . , f)

= [GL(a),m1] + [a,L(m1)] + [GL(b),m1] + [b,L(m1)].

On comparing the above two expressions, we get [eGL(a+m+m+b)e+fGL(a+
m+m+ b)f −GL(a)−GL(b),m1] = 0. This implies that eGL(a+m+n+ b)e+
fGL(a+m+ n+ b)f −GL(a)−GL(b) ∈ Z(G). Now using (3.6) and (3.7), we
find that GL(a+m+ n+ b)−GL(a)−GL(m)−GL(n)−GL(b) ∈ Z(G). �

L emma 3.11. GL is additive on N.

P r o o f. For any n1, n2 ∈ N, we have n1+n2 = pn(e+n1,−f−n2, e, . . . , e).
Then the proof follows similarly as Lemma 3.7. �

Define a map φ2 : G → Z(G) by

φ2(a+m+ n+ b) = G′
L(a+m+ n+ b)−G′

L(a)−G′
L(m)−G′

L(n)−G′
L(b).

Now set G′′
L = G′

L − φ2. Obviously, G′′
L(a) = G′

L(a),G
′′
L(m) = G′

L(m),G′′
L(n) =

G′
L(n) and G′′

L(b) = G′
L(b) for all a ∈ A, b ∈ B,m ∈ M and n ∈ N.

L emma 3.12. φ2 ∈ Z(G).

P r o o f. By using Lemma 3.10, we obtain that

φ2(a+m+ n+ b)

= G′
L(a+m+m+ b)−G′

L(a)−G′
L(m)−G′

L(n)−G′
L(b)
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= GL(a+m+ n+ b)− φ1(a+m+ n+ b)−GL(a) + φ1(a)

−GL(m) + φ1(m)−GL(n) + φ1(n)−GL(b) + φ1(b) ∈ Z(G).

�

P r o o f o f T h e o r em 2.1. In view of (3.5), we obtain that G′′
L|A = G′

L|A =
U1,G

′′
L|B = G′

L|B = V3,G
′′
L|M = G′

L|M = W2 and G′′
L|N = G′

L|N = GL|N. Now
for any b ∈ B, we have

G′′
L(bn) = GL(pn(b, n, e, . . . , e))

= pn(GL(b), n, e, . . . , e) + pn(b,L(n), e, . . . , e)

= [G′′
L(b), n] + [b,L(n)]

= G′′
L(b)n+ bL(n).

In the similar way G′′
L(na) = G′′

L(n)a+nL(a). For any x = a1+m1+n1+b1, y =
a2 +m2 + n2 + b2 ∈ G, we find that

G′′
L(x+ y) = G′′

L(a1 +m1 + n1 + b1 + a2 +m2 + n2 + b2)

= G′
L(a1 + a2) + G′

L(m1 +m2) + G′
L(n1 + n2) + G′

L(b1 + b2)

= G′
L(a1) + G′

L(m1) + G′
L(n1) + G′

L(b1)

+ G′
L(a2) + G′

L(m2) + G′
L(n2) + G′

L(b2)

= G′
L(a1 +m1 + n1 + b1) + G′

L(a2 +m2 + n2 + b2)

= G′′
L(x) + G′′

L(y).

This implies that G′′
L is additive.

Now set T = G′′
L|N. From above observations, we conclude that

(3.8) G′′
L

([
a m
n b

])
=

[
U(a) V(m)
T (n) W(b)

]

for all a ∈ A,m ∈ M, n ∈ N, b ∈ B and satisfies following conditions:

(i) U is a generalized derivation on A, V(am) = U(a)m+aV(m) and T (na) =
T (n)a+ nU(a),

(ii) W is a generalized derivation on B, V(mb) = U(m)b + mW(m) and
T (bn) = T (b)n+ bW(n).

Let us assume φ = φ1 + φ2 and G′′
L = GL − φ. For any n ∈ N, we have
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G′′
L(pn(m,n,m1, f, . . . , f))

= GL(pn(m,n,m1, f, . . . , f))− φ(pn(m,n,m1, f, . . . , f))

= pn(GL(m), n,m1, f, . . . , f) + pn(m,L(n),m1, f, . . . , f)

+pn(m,n,L(m1), f, . . . , f)− φ(pn(m,n,m1, f, . . . , f))

= [[G′′
L(m), n] + [m,L(n)],m1] + [[m,n],L(m1)]

−φ(pn(m,n,m1, f, . . . , f)).

On the other hand, by (3.8)

G′′
L(pn(m,n,m1, f, . . . , f)) = [G′′

L(mn− nm),m1] + [mn− nm,L(m1)]

= [G′′
L(mn)−G′′

L(nm),m1] + [[m,n],L(m1)].

Now from the above two relations, we obtain that

[G′′
L(mn)−G′′

L(nm)− [G′′
L(m), n]− [m,L(n)],m1] ∈ Z(G).

This implies that [G′′
L(mn) − G′′

L(nm) − [G′′
L(m), n] − [m,L(n)],m1] = 0, and

hence G′′
L(mn)−G′′

L(nm)− [G′′
L(m), n]− [m,L(n)] ∈ Z(G). Now multiplying this

expression by e on both sides, we obtain that G′′
L(mn) − G′′

L(m)n − mL(n) ∈
Z(A). Now without loss of generality, we assume that κ(m,n) = G′′

L(mn) −
G′′

L(m)n−mL(n). Then we have

κ(m,na) = G′′
L(mna)−G′′

L(m)na−mL(na)

= G′′
L(mn)a+mnL(a)−G′′

L(m)na−mL(n)a−mL(na)

= G′′
L(mn)a−G′′

L(m)na−mL(n)a

= κ(m,n)a.

Since κ(m,n)A is a central ideal of A, we arrive at κ(m,n) = 0. This leads to
G′′

L(mn) = G′′
L(m)n+mL(n) for allm ∈ M, n ∈ N. In the similar manner, we can

show that G′′
L(nm) = G′′

L(n)m+ nL(m). Set G′′
L = δ. Now it can be easily seen

that δ is an additive generalized derivation on G. and φ(pn(x1, x2, . . . , xn)) = 0
for all x1, x2, . . . , xn ∈ G.

From above observations, we can conclude that if GL : G → G is a multi-
plicative generalized Lie n-derivation, then there exists an additive generalized
derivation δ of G and a map φ : G → Z(G) vanishing at pn(x1, x2, . . . , xn) for
all x1, x2, . . . , xn ∈ G such that GL = δ + φ. �
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4 - Applications

As a direct consequence of Theorem 3.1, we have the following results:

C o r o l l a r y 4.1. Let G be a (n-1)−torsion free generalized matrix algebra
such that

1. Z(A) = πA(Z(G)) and Z(B) = πB(Z(G)),

2. A or B does not contain nonzero central ideals.

If GL : G → G is a multiplicative generalized Lie derivation, then there exists
an additive generalized derivation δ of G and a map φ : G → Z(G) vanishing
at [x1, x2] for all x1, x2 ∈ G such that GL = δ + φ.

Co r o l l a r y 4.2. Let A be a (n-1)-torsion free unital algebra and Mr(A)
be full matrix algebra with r ≥ 3. If GL : Mr(A) → Mr(A) is a multiplicative
generalized Lie n-derivation, then there exists an additive generalized derivation
δ of Mr(A) and a map φ : Mr(A) → Z(Mr(A)) vanishing at pn(x1, x2, . . . , xn)
for all x1, x2, . . . , xn ∈ Mr(A) such that GL = δ + φ.

P r o o f. One can directly check that Mr(A) satisfies all conditions of The-
orem 3.1. Therefore, every multiplicative generalized Lie n-derivation can be
expressed as a sum of additive generalized derivation and a map vanishing at
(n-1)-th commutator on full matrix algebras. �

Ac k n ow l e d gm e n t s. The authors would like to thank the anonymous
referee for his/her valuable comments and suggestions.
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