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On generalized matrix algebras having multiplicative
generalized Lie type derivations

Abstract. Let R be a commutative ring with unity. The R-algebra
® = B(A, M, N, B) is a generalized matrix algebra defined by the Morita
context (A, B, M, N, &vn, Qnm)- In this article, we study multiplicative
generalized Lie type derivations on generalized matrix algebras and prove
that it has the standard form.
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1 - Historical Development

There has been a great deal of work concerning characterizations of Lie
derivations on rings. The first characterization of Lie derivations was obtained
by Martindale [16] in 1964 who proved that every Lie derivation on primitive
ring can be written as a sum of derivation and an additive mapping of ring to its
center that maps commutators into zero, i.e, Lie derivation has the standard
form. Chen and Zhang [4] described multiplicative Lie derivation on upper
triangular matrix algebra. Further, the authors [2] characterized multiplicative
generalized Lie triple derivations on triangular algebras. Following the well-
established approach and the sophisticated computational method by Cheung
[5], several authors studied the different linear mappings on generalized matrix
algebras for example [6,7,10,11,12,13,17,23] and the bibliographic content
existing therein.
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Recently, many authors studied Lie n-derivation on various kind of algebras
(3,8,9,15,17] and references therein. In the year 2014, Wang and Wang
[22] studied multiplicative Lie n-derivation on generalized matrix algebras and
proved that it has standard form under certain assumptions. Also, Wang [21]
investigated Lie n-derivation on unital algebras with idempotents and obtained
that every Lie n-derivation can be written as a sum of derivation, singular
Jordan derivation and anti-derivation on the unital algebras with idempotents.
Furthermore, Qi [19] characterized Lie n-derivation on reflexive algebras and
obtained that it has the standard form, i.e, it can be expressed as the sum of
linear derivation and linear functional vanishing at every (n-1)-th commutator
on reflexive algebras. Lin [14] carried out the study of multiplicative generalized
Lie n-derivation on triangular algebras and proved that every multiplicative
Lie n-derivation can be written as sum of additive generalized derivation and a
central mapping annihilating (n-1)-th commutator on triangular algebras under
some limitations.

Motivated by these studies our main purpose is to characterize multiplica-
tive generalized Lie n-derivation on generalized matrix algebra and show that
every multiplicative generalized Lie n-derivation on generalized matrix algebra
can be written as the sum of an additive generalized derivation and a central
mapping annihilating (n-1)-th commutator with some limitations. We also
study some direct implications of our main result.

2 - Basic Definitions & Preliminaries

Let R be a commutative ring with unity and &l be an PR-algebra having
center 3(H). A map L : { — 4 (not necessarily linear) is called a multiplicative
derivation (resp. multiplicative Lie derivation) on 4l if L(ab) = L(a)b + aL(b)
(resp. L([a,b]) = [L(a),b] + [a,L(b)]) holds for all a,b € 4. In addition, if L is
linear on 4, then L is said to be a derivation (resp. Lie derivation) on . A
map Gr, : 4 — 4 (not necessarily linear) is called a multiplicative generalized
derivation (resp. multiplicative generalized Lie derivation) on 4l associated
with a multiplicative derivation (resp. multiplicative Lie derivation) L on &
if Gr(ab) = Gr(a)b + aL(b) (resp. Gur([a,b]) = [GL(a),b] + [a,L(b)]) holds
for all a,b € 4. In addition, if Gy, is linear associated with a derivation (resp.
Lie derivation) L on 4, then Gy, is said to be a generalized derivation (resp.
generalized Lie derivation) on &L

For a broad scope of maps. Define the family of polynomials:

pi(r1) = @

pa(z1,22) = [pa(®1), ¥2] = [21, 72)]
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p3(21,22,23) = [pa(®1,72), 73] = [[21, 2], 23]
Pu(T1, %2, ;) = [Pa(T1,%2, + ,Tn-1), Ta).
The polynomial py(z1,22,- -+ ,s) is called n-th commutator where n > 2. A

map (not necessarily linear) L : &l — I is said to be a multiplicative Lie n-
derivation on i if

L(pn(xlvaa”' 7xn)) — an(xtha”' )xi-le(xi)yxi‘Flv"' ,$n)
i=1

for all z1,z5,--- ,zy € Y. This notion of Lie n-derivation developed on cer-
tain von Neumann algebras by Abdullaev in [1]. Undoubtedly, any multi-
plicative Lie 2-derivation is multiplicative Lie derivation and multiplicative Lie
3-derivation is multiplicative Lie triple derivation and so on.

Further, A map (not necessarily linear) Gp, : 4{ — 4 is said to be a multi-
plicative generalized Lie n-derivation on 4 if there exists a multiplicative Lie
n-derivation L such that

GL(pn(xth, e 7xn)) - pn(GL(xl),x% oty Li-1,Ti, Li+t, 737n)

=n
+ an($17$27 e 71‘i—17L([Ei)7$i+17 o axn)
i=2

for all 41,25, -+ ,xq € . Obviously, any multiplicative generalized Lie 2-
derivation is multiplicative generalized Lie derivation and multiplicative gen-
eralized Lie 3-derivation is multiplicative generalized Lie triple derivation and
so on. These maps collectively known as multiplicative generalized Lie type
derivations on 4.

A Morita context consists of two unital $R-algebras A and B, two bimodules
(A, B)-bimodule M and (B, A)-bimodule N, and two bimodule homomorphisms
called the bilinear pairings &y @ M Qé) N — A and Onyym : N % M — B

satisfying the following commutative diagrams:

MON@M—_EM A oM and No MeN—MON _poN
B A A A B B
In®QNM = IN®&EuN =
M® B = M N®A = N
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If (A,B,M,N, &un, QM) is a Morita context, then the set

e =il

forms an R-algebra under matrix addition and matrix-like multiplication con-
sisting one of two bimodules M and N is nonzero. Aforesaid an R-algebra
known as generalized matriz algebra of order 2 which is symbolized by

A M

N B |’

aEA,mEM,nEN,bEB}

6 = 6(A,M,N,B) = {

This kind of algebra was first introduced by Morita in [18]. All associative
algebras having nontrivial idempotents are isomorphic to generalized matrix
algebras. The familiar examples of generalized matrix algebras are full matrix
algebras over a unital algebra and triangular algebras [20,22]. Moreover, & is
mentioned as triangular algebra if N = 0.

The center of & is

so-{[3 1

Define two natural projections ma : & — A and 7 : & — B by ma <[ Z TZ ])
-

am = mb,na = bn for all m € NLnEN}.

= a and 73 <[ Z TZ D = b. Moreover, 74 (3(®)) C 3(A) and 7p(3(®))

3(B) and there exists a unique algebraic isomorphism & : w4 (3(®)) — m5(3(8))
such that am = mé&(a) and na = &(a)n for all a € mo(3(&)),m € M and n € N.
Let 1o (resp.lp) be the identity of the algebra A (resp. B) and let I be

the identity of generalized matrix algebra &, e = { 1(‘? 8 ] , f=1—e=

[8 10 ] and &1 = eGe, Gy = ebf, Gy = [Ge, & = f6f. Thus
B

B =eBet+eBf+ fGe+ fEf = G171 + B1o+ Bo1 + Bgy where &17 is subalgebra
of & isomorphic to A, 99 is subalgebra of & isomorphic to B, 12 is (&11, &a9)-
bimodule isomorphic to M and ®9; is ($22, B11)-bimodule isomorphic to N.

Now we mention some results which will be used subsequently in developing
the proof of our results:

Lemma 2.1 ([2, Proposition 4.3]). Every generalized derivation d on &
has the form

(5 3D (4 =)
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where a € A,m,ng € M,be B andUd : A - AW : M — MV :B — B are
R-linear mappings satisfying

(1) U is a generalized derivation on A and W(am) = U(a)m+aW(m) for all
a €A andme M,

(i7) V is a generalized derivation on B and W(mb) = mV(b) + W(m)b for all
be B and m € M.

Lemma 2.2 ([14, Theorem 3.3]). Let T be a (n-1)-torsion free triangular
algebra such that

1. 3(A) = ma(3(%)) and 3(B) = m8(3(%)),
2. For any a € A, if [a,A] € 3(A), then a € 3(A).

If G, : ¥ = % is a multiplicative generalized Lie n-derivation, then there exists
an additive generalized derivation d of ¥ and a map T : T — 3(%) vanishing at
pu(Ts, T2, . .. xy) for all xq,xp, ..., x, € T such that G, = d + 7.

3 - Key Content

The main result of the this paper states as follows:

Theorem 3.1. Let & be a (n-1)—torsion free generalized matriz algebra
such that

1. 3(A) = ma(3(8)) and 3(B) = m8(3(®)),
2. A or B does not contain nonzero central ideals,
3. for n>3 and for any a € A, if [a,A] € 3(A), then a € 3(A),

4. if n is odd and N # 0, then for each m € M the condition mN = 0 = Nm
implies m = 0,

5. if n is odd and M # 0, then for each n € N the condition nM = 0 = Mn
implies n = 0.

If G, : & — & is a multiplicative generalized Lie n-derivation, then there exists
an additive generalized derivation 6 of & and a map ¢ : & — 3(&) vanishing
at pu(x1, 22, ..., xy) for all x3,22,..., 2, € & such that G, = § + ¢.
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Let us assume that Gg, : & — & is a generalized Lie n-derivation with associated
Lie n-derivation L. Set
T=eBe+eBf+ fEF.

Then T is a triangular algebra itself. Also note that 3(%) = 3(®). Now we
define maps 61, G}, : & — & by

51(x) = [GL(f),z] and Gi,(z) = Gr(x) — 51 ().

It is easy to verify that d; is an inner derivation and Gi is a multiplicative
generalized Lie n-derivation. Since

GL(f) = GL(f) — 01(f) = GL(f) — [GL(f), ] = GL(f) — GL(f) f + fGL(S),

we find that eGy(f)f = 0.

Now we consider only the multiplicative generalized Lie n-derivation which
satisfies eGr,(f)f = 0. The proof of the theorem will be organized in a series of
lemmas:

Lemma 3.1. Gp(0) =0.

Proof. Obviously true. O

Lemma 3.2. eGp(z)f =0 for allx € AUB.

Proof. Using [z, f] = 0, we find that
0 = Gulpala, f,---, 1))
= pa(G ()fv" 7f)+pn(%L(f),---,f)-

Multiplying by e from the left and by f from the right, we obtain that
(3.1) 0= eGr(z)f + elz,L(f)]f.

Also, we have

0 = Gu(pa(/, /)
= (G L(f) 2 )+ pa(fS L0, -0 f)
= eGL(f)f—eL( )
= —eL(f)f.

Hence in view of (3.1), we find that eGy,(x)f =0 for all x € A UB. O
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Now we define a map s : & — & by
52(z) = [GL(e), x] and GY.(z) = Gr(x) — d2(z).

Obviously, d2 is an inner derivation and Gf is a multiplicative generalized Lie
n-derivation. In view of Lemma 3.2, we find that

eGY (z)f = eGL(x)f — eda(x) f = eGL(z)f — e[GL(e),z]f =0
for all z € A UB. Also, we have
Gl(e) = Gle) — a(e) = Cule) — [Grle), e] = Grle) — fGue)e.

This gives fGY (e)e = 0. Now consider only those multiplicative generalized Lie
n-derivation which satisfies fGp (e)e = 0. In particular, we have fL(e)e = 0.

Lemma 3.3. fGrL(z)e =0 and Gr(z) = eGrL(x)e + fGL(z)f for all x €
AUB.

Proof. Since [z,e] =0 for all z € A UB, we have

0 = Gp(pa(z,e,...,e€))
= pn(GL(x),e,...,€) +pn(z,L(e),...,€)
= fGu(z)e — flz,L(e)]e
= fGr(x)e.
Using Lemma 3.2, the above yields that Gp(z) = eGr(z)e + fGr(z)f for all
xr e AUB. O

Lemma 3.4. Gp(m) = eGr(m)f for all m € M.

Proof. For any m € M, we have

GL(m) = Gp(pa(m,—e,...,—e€))
= pa(GrL(m), —e,...,—e) + kZ;pn(m, —e,... ,ktl;(—le) ey —€)
(3.2) = eGL(m)f + (=)™ fGrL(m)e + (n-1)[m, L(—e)]

Multiplying by e from the left and by f from the right, we obtain that
(n-1)[m,L(—e)] = 0 and hence [m,L(—e)] = 0 for all m € M. This implies
that L(—e) € 3(®). From (3.2), we obtain that

(3.3) GrL(m) = eGrL(m)f + (=1)** fGr(m)e.
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Now if n is even, then form (3.3) we find that Gr,(m) = eG(m)f — fGr(m)e.
On multiplying by f from the left and by e from the right, we get fGr,(m)e = 0.
Finally, G,(m) = eGr,(m) f.

If n is odd, then form (3.3) we find that Gr(m) = eGr(m)f + fGrL(m)e.
Since [my, mo] = 0 for all mi, me € M. Now we have

0 = Gr(pa(m,mi,ma,—e,...,—e€))
= po(Gr(m),m1,ma, —e...,—€) + pa(m,L(m1), mo, —e, ..., —e)
= [[fGL(m)e,m1] + [m, fL(m1)e], ma].

This leads to [fGr(m)e, m1] + [m, fL(m1)e] € 3(&). On the other way,
0 = Gr(pa(m,—e,...,—e,my))

= po(GpL(m), —e,...,—e,my1) + an(m,L(—e), —€,...,—e,my)

k=2

= [~fGL(m)e,m1] + [m, fL(m1)e].

On comparing the last two expressions, we find that 2[fGy(m)e, m1] € 3(8)
implies that
fGrL(m)emy — my fGr(m)e € 3(8)

for all m, m; € M. Hence it follows that fGr,(m)eM € 3(B) and MfGy,(m)e €
3(A). Since MfGp,(m)e is central ideal of A and hence MfGp,(m)e = 0, then
it leads to fGp(m)eM = 0. Similarly, fGr(m)eM = 0. Now by assumption
(5), we get fGr(m)e = 0 for all m € M. Hence from (3.3), we obtain that
Gr(m) = eGp(m)f for all m € M. O

Lemma 3.5. Gr(exf) = eGr(z)f and fGL(x)e =0 for all x € T.

Proof. For any m € M, it follows that

GrL(m) = Gp(pa(m, f,—e,...,—e))
= pa(GL(m), f,—e,...,—€) + pa(m,L(f), —e,...,—¢)
+pn(m, f,L(—e),...,—€) + -+ pa(m, f,—e,...,L(—e))

= eGL(m)f + [m,L(f)].

On multiplying by e from the left and by f from the right, we have [m,L(f)] =0
and hence L(f) € 3(®). This leads to Gr,(m) = eGr,(m)f. For any z € T, we
obtain that

GL(€$f) = GL(pn(x?fw"af))
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(G fo S pala L )
(3.4) = eGr(z)f + (—1)“_1fG1:(233)6-
Since Gr(ezf) € M, we find that (—1)** fGr(z)e = 0 and hence fGy,(z)e = 0.
From (3.4), we get Gp(exf) = eGy(x)f for all z € . O
Lemma 3.6. For anya € A, b€ B and m € M, we have
1. GL(a+ m) — Gr(a) — GrL(m) € 3(&),
2. Gr(b+m) — GL(b) — Gr(m) € 3(8).

Proof. Since L(f) € 3(®), using Lemma 3.5, for any a € A and m € M,
we have

Gr(ami) = Gr(pala+m,m, f,..., f))
= pn(GL(a+m),m1,f,-.-,f>+§:pn(a+m,L(m1),f,---,f)
= [eGr(a+m)e+ fGr(a+ m)f,i:ﬂ + [a, L(m1)].
On the other hand, we get
Gr(am1) = Gi(pa(a,my, f,.... [))
= pn<GL<a>,m1,f,...,f>+k§n;pn<a,L<ml>,f,...,f>

= [GL(a),ma] + [a, L(ma)].

Combining the above two expressions, we find that [eGr(a + m)e + fGr(a +
m)f — Gr(a), m1] = 0. Therefore, Gr,(a +m) — eGr(a +m)f — Gr(a) € 3(8).
This gives that Gr,(a +m) — GL(m) — Gr(a) € 3(®) for all a € A and m € M.
Similarly, we can show the other part. (]

Lemma 3.7. Gy, is additive on M.

Proof. For any mi,mo € M, in view of Lemma 3.6 we have

Gr(mi1+m2) = GL(pa(f +m1,—e—mao, f,..., f))
= pn(GL(f+m1)7_€_m27f7"'>f)
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+pu(f +my,L(—e —ma), f,..., f)
+pa(f +mi,—e —mao, L(f),..., f)
o pa(f +ma, —e —ma, f,... L(f))
= pa(GL(m1),—¢, f,..., f) +pa(mi,L(—e), f,..., f)
+pa(mi, —e,L(f), ..., [) + -+ pa(mr, —e, f,... . L(f))
+pn(GL(m1), —ma, fy. .., f) + pa(mi, L(—=ma), f,..., f)
+pn(my, —mo, L(f),..., )+ -+ pa(mi, —ma, f,...,L(f))
+pn(Gr ( )= fyoo s )+ pu(fiL(=e), oy f)
+pa(fs =€, L(f),.. .. /) + -+ palf, —e, fo- .. L(S))
+pu(G () —ma, fyoooy f) + pa(fi L(=m2), f, ..., f)
+pa(fs =ma, L(f), -, f) + -+ palfy —ma, f5 . L(S))
= Gu(pa(ma, =€, f,..., f)) + GL(pa(ma, —ma, f, ..., f))
+GL(Pa(f, =€ fo -, ) + GL(pa(f, —ma, f, - )
= Gr(m1) + Gr(ma).

Lemma 3.8. GL(a +m + b) — Gp(a) — GL(m) — GL(b) € 3(&) for all
a€A,meM andb € B.

Proof. For any a € A,b € B and mi,m € M, we have

GL([a+m+b,mi]) = Grlpola+m+bmy, f,....[f))
= pu(GLla+m+b),mi, f,..., f)
+pn(a+m+b,L(my), f,..., [)

= [Gr(a+m+b),mi] + [a+m+b,L(my)].

On the other hand,

GrL([a+m+b,mi]) = Grla,m1] + Gp[b,mi]
= Gr(pn(a,ma, fy..., f) + GL(pa(b,ma, f, ..., f))
= pn(GL()M1,f, : ,f)‘HC‘n(a L(mi), f,..., f)
+pu(GL(b), m1, foo oo, ) + pa(b, L(ma), £, f)
= [Gr(a), m1] + [a, L(m1)] + [GL(b), ma] + [b, L(ma)].

Combining the above two expressions we find that [Gp(a + m + b) — Gp(a) —
G1(b), m1] = 0. Therefore, Gr,(a+m+b) — Gr(a) —eGr(a+m+b) f —G(b) €
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3(®). This gives that Gr,(a +m +b) — Gr(a) — GL(m) — G(b) € 3(8) for all
a€AbeMand me M. O

Now from Lemma 3.8, we can conclude that Gp(T) C T. This implies that
G|z is a multiplicative generalized Lie n-derivation. From Lemma 2.2, there
exist an additive generalized derivation d on ¥ and a map 7 : T — 3(%) such
that G, = d + 7. Now from Lemma 2.1, generalized derivation d on ¥ has the

a(lam | U(a) amo —mob+ W(m)
0 b - 0 V(b) ’
where a € A,m,mge M,be BandUd : A - AW : M — M,V :B — B are

R-linear mappings satisfying

(1) U is a generalized derivation on A and W(am) = U(a)m + aW(m) for all
a€AandmeM,

(74) V is a generalized derivation on B and W(mb) = mV(b) + W(m)b for all
be B and m e M.

Particularly,
0 —my

G =d o= |y T |+,

This implies that mg = 0 and hence

a m | U(a) W(m)
6 (6 ]) =10
Obviously, Gr(e) = 7(e) € 3(®) and Gr(—f) = 7(—f) € 3(8). In particular,
we have L(e) € 3(®) and L(—f) € 3(®). Now define a map ¢ : & — 3(&) by
d1(a+m+n+b) =7(a+m+b) and set G}, = Gr, — ¢1. From here we observe
that Gf |z = d is an additive generalized derivation on T and Gf (n) = Gr(n)
for all n € N.

Lemma 3.9. Gr(n) = fGr(n)e for all n € N.

Proof. For any n € N, we have
GL(n) = GL(pn(n7 _f7 RN _f))

k=

= (=1)"'eGr(n)f + fGL(n)e.

N
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If n is even, then Gr,(n) = —eGy,(n)f + fGr(n)e for all n € N. On multiplying
by e from the left and by f from the right, we find that 2eGy,(n)f = 0 implies
to eGr(n)f = 0.

If n is odd, then Gr(n) = eGr(n)f + fGL(n)e for all n € N. On using
[n1,n2] = 0, we have

0 = Gr(pa(n,ni,m,f,...,f))
= pu(GrL(n),n1,m, f,..., f) +pa(n,L(ny),m, f,..., f)
= [[eGL(n)fvnl] + [n, eL(nl)f],m].

This implies that [eGr(n)f,n1] + [n,eL(n1)f] € 3(&). On the other hand, we
obtain that

0 = Gr(pa(n,e,...,e,n1))
= pu(GL(n),e,...,e,n1) + pa(n,e,...,e,L(ny))
= [eGr(m)f,m] + n, eL(m) )

On comparing the above two expressions, we get 2[eGr,(n)f,n1] € 3(®), and
hence it follows that [eGr(n)f,n1] € 3(&) for all n,n; € N. Therefore,
eGr(n)fni —n1eGr(n)fi € 3(®). Hence eGr,(n)fN C 3(A) and NeGp,(n)f C
3(B). Now by assumption, we obtain that eGr(n)fN = 0 and NeGy,(n)f =

and hence eGr,(n)f =0 for all n € N. O

Lemma 3.10. GL(a+m+n+b)—GL(a)—GL(m)—GL(n)—GL(b) 63(05)
forallae A,me M,n €N and b € B.

Proof. Forany a € A;b € B and mi,m € M, we have

GL(pn(a+m+n+bamlam23f7"‘7f))
= pn(GL(a+m+n+b)7m17m27f7"‘7f)

+3 pala+m+n+bLimy),ma, f ..., f)

= [[G:(a +m+n+ b), ml], mg]
+[[a +m + n+ b,L(m1)], ma] + [[n, m1], L(ma)].

On the other hand,

GL(pn(a+m+n+b7mlam27f7"'>f))
= Gr(pa(n,mi,ma, f,..., f) 4+ GL(pa(b,m1,ma, f,..., f))
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= po(Gr(n),mi,ma, f,..., f) + pa(n,L(mi),ma, f,..., f)
+pn(n7 my, L(m2)7 f7 SRR f)
= [[GL(n),m1], ma] + [[n, L(ma)], ma] + [[n, ma], L(ma)].
From the above two expressions, we obtain that [[Gr(a +m +n + b) — Gp(n),

mq],ma] = 0. This implies that [[fGr(a + m + n + b)e — Gr(n), m1],m2] =0
and hence [fGr(a +m +n+b)e — Gr(n),m1] € 3(®8). This leads to

(fGrL(a+m+n+b)e—Gr(n))m; —mi(fGr(a+m+n+b)e—Gr(n)) € 3(&).

Therefore, (M(fGr(a +m +n +b)e — Gp(n)) € 3(A) and (fGr(a+m +n +
b)e — Gr(n))M € 3(B). Now by assumptions, we find that

(3.6) fGL(a+m+n+ble = Gr(n).
For any a € A,b € B and m1,m € M, we have

Gr(pa(a+m+n+b,ni,mi, f,...,f))
= pu(Gr(a+m+n+b),ni,mi, f,..., f)

—I—an(a—l—m+n+b,L(n1),m1,f,...,f)

= [[G;(a+m+n+b),n1],m1]
+[la +m + n+ b,L(n1)], m1] + [[m, n1], L(m)].

On the other hand,

GL(pn(a+m+n+b,n1,my, f,..., f))
GL(po(m,n1,ma, f,..., f)

pa(GL(m),ny,my, f,..., f) + pa(n,L(ny),my, f,..., f)
+pn(m,ny, L(ma), f,..., f)

= [[GL(m),n1],ma] + [[m, L(n)}, ma] + [[m, n1], L(m1)].

From the above two expressions we obtain that [[Gp(a +m +n +b) — Gp(m),
ni],m1] = 0. This implies that [[eGr(a + m +n + b)f — GL(m),n1],m1] = 0
and hence [eGr(a +m +n+0b)f — Gr(m),n1] € 3(&). This leads to

(eGL(a+m+n+0b)f—Gr(m))ni —ni(eGrL(a+m+n+b)f —Gr(m)) € 3(&).

Therefore, (N(eGr,(a +m +n +b)f — Gr(m)) € 3(A) and (eGr(a +m +n +
b)f — Gr(m))N € 3(B). Now by assumptions, we find that

(3.7) eGr(a+m+n+0b)f =Gp(m).
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Now for any m; € M, we have

Gr(pn(a+m+n+bmy, f,...,f))
= p(Grla+m+n+b),my, f,...,[)
+pnla+m+n+bLimy), f,....f)
= [eGrL(a+m+n+b)e+ fGr(a+m+n+b)f,mi]
+[a+m +n+b,L(m)].

On the other hand,

GrL(pn(a+m+n+bmy, f,..., f))

= Gr([a+b,m1])

= Gu(la,m]) + Gr([b, ma])

= pa(Gr(a),ma, f,..., f) + pala, L(ma), f,.... )

+pn(GL(b), m1, oo, f) + pa(b, L(ma), f,..., f)

= [Gu(a), mi] + [a, L(m1)] + [GL (D), ma] + [b, L(1m1)].
On comparing the above two expressions, we get [eGr,(a+m+m+b)e+ fGr(a+
m+m+b)f —Gr(a) — GrL(b), m1] = 0. This implies that eGr(a+m+n+b)e+

fGL(a+m+n+b)f —Gr(a) — GL(b) € 3(8). Now using (3.6) and (3.7), we
find that Gr(a + m+n+b) — Gp(a) — GL(m) — Gr(n) — GL(b) € 3(&). O

Lemma 3.11. Gy, is additive on N.

Proof. Forany ni,ne € N, we have n; +ng = pa(e+ny, —f —na,e, ..., e).
Then the proof follows similarly as Lemma 3.7. U

Define a map ¢y : & — 3(®) by
a(a+m+n+0b)=Grla+m+n+b)—Gi(a) — GL(m) — G(n) — GL(b).

Now set G = G, — ¢2. Obviously, G{ (a) = Gy (a), G{(m) = G}, (m), G} (n) =
G (n) and GY(b) = G1,(b) for all a € A,b € B,m € M and n € N.

Lemma 3.12. ¢o € 3(®).

Proof. By using Lemma 3.10, we obtain that

¢2(a+m+n+b)
= Gpla+m+m+b)—GL(a) — GL(m) — GL(n) — GL(b)
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= Grla+m+n+b) —oi(a+m+n+b)—Gr(a)+ ¢1(a)
—Gr(m) + ¢1(m) — GL(n) + ¢1(n) — GL(b) + ¢1(b) € 3(&).

0

Proof of Theorem 2.1. In view of (3.5), we obtain that G{'|a = G |a =
U, Gl |s = Gl = V3,G] |m = G|]m = W2 and GY|n = G[Ix = Gr|n. Now
for any b € B, we have

GL(bn) = Gr(pa(b,nse,... €))

= pa(GL(D),n,e,...,¢) +pu(b,L(n),e,... €)

= [GL(0),n] + [b,L(n)]

= G{(b)n + bL(n).
In the similar way Gf (na) = G (n)a+nL(a). For any x = a1 +mi+n1+b1,y =
as + mo + no + by € B, we find that

Gl(x+vy) = Gl(a1+mi+ny+ by +az+ma+ng+bs)
= G (a1 + a2) + Gp(m1 +m2) + G, (n1 + n2) + G, (b1 + b2)

a1) + Gp,(m1) + G1,(n1) + GL,(b1)
az) + GL,(ma2) + GL,(n2) + GL(b2)
a1 + mq + ni + b1) + G (az + ma + ng + ba)

(
(
(
(
(
() + GL(y)-

I
)
E3

This implies that G} is additive.
Now set T = GJ |n. From above observations, we conclude that

(35 ot([n 5 ]) =170 win |

foralla € A,m € M,n € N,b € B and satisfies following conditions:

(1) U is a generalized derivation on A, V(am) = U(a)m~+aV(m) and T (na) =
T(n)a +nld(a),

(7i) W is a generalized derivation on B, V(mb) = U(m)b + mW(m) and
T(bn) = T (b)n + bW (n).

Let us assume ¢ = ¢1 + ¢ and Gf = Gy, — ¢. For any n € N, we have
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GL(pa(m,n,ma, f,.... f))
= Gr(pa(m,n,mi, f,..., ) — o(pa(m,n,my, f,.... f))
= pu(GL(m),n,my, fy..., f) +pa(m,L(n),mq, f,..., f)
+pa(m, n,L(m1), f,..., f) = ¢(pa(m,n,my, f, ..., f))
= [[GL.(m),n] + [m,L(n)], ma] + [[m, n], L(m)]
—¢(pa(m,n,ma, f,..., f)).

On the other hand, by (3.8)

Gl (pa(m,n,my1, f,..., ) = [G](mn —nm),mi]+ [mn —nm,L(my)]
[GT.(mn) — GI(nm), m1] + [[m, n], L(m1)].

Now from the above two relations, we obtain that
[GL,(mn) — G{,(nm) — [G{,(m), n] — [m, L(n)], m1] € 3(&).

This implies that [G} (mn) — G{ (nm) — [G] (m),n] — [m,L(n)],mi] = 0, and
hence G (mn) — Gy (nm)—[G{.(m),n]—[m,L(n)] € 3(6). Now multiplying this
expression by e on both sides, we obtain that G} (mn) — G (m)n — mL(n) €
3(A). Now without loss of generality, we assume that x(m,n) = Gy (mn) —
G{ (m)n —mL(n). Then we have
k(m,na) = G (mna)— Gf(m)na —mL(na)

L(mn)a +mnL(a) — G{ (m)na — mL(n)a — mL(na)
{(mn)a — G{ (m)na — mL(n)a

= k(m,n)a.

Since k(m,n)A is a central ideal of A, we arrive at x(m,n) = 0. This leads to
G (mn) = G{ (m)n+mL(n) for all m € M, n € N. In the similar manner, we can
show that GY (nm) = GY (n)m + nL(m). Set G = 6. Now it can be easily seen
that d is an additive generalized derivation on &. and ¢(pp(x1,Zg,...,2s)) =0
for all z1,x9,...,2, € &.

From above observations, we can conclude that if Gy, : & — & is a multi-
plicative generalized Lie n-derivation, then there exists an additive generalized
derivation § of & and a map ¢ : & — 3(®) vanishing at p,(z1,22,...,2n) for
all z1,s,...,zy € & such that G, = + ¢. O
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4 - Applications

As a direct consequence of Theorem 3.1, we have the following results:

Corollary 4.1. Let & be a (n-1)—torsion free generalized matriz algebra
such that

1. 3(A) =7a(3(8)) and 3(B) = m(3(8)),
2. A or B does not contain nonzero central ideals.

If G, : & — & is a multiplicative generalized Lie derivation, then there exists
an additive generalized derivation 6 of & and a map ¢ : & — 3(&) vanishing
at [x1,xg) for all x1,x2 € & such that Gy, = 0 + ¢.

Corollary 4.2. Let 2 be a (n-1)-torsion free unital algebra and 9, (2A)
be full matriz algebra with r > 3. If Gr, : M, (A) — M, (A) is a multiplicative
generalized Lie n-derivation, then there exists an additive generalized derivation
5 of M, (A) and a map ¢ : M, (A) — 3(M,(A)) vanishing at pp(zs, T2, ..., Ty)
forall xy,xa, ... x, € M.(A) such that Gy, = § + ¢.

Proof. One can directly check that 9, (2() satisfies all conditions of The-
orem 3.1. Therefore, every multiplicative generalized Lie n-derivation can be
expressed as a sum of additive generalized derivation and a map vanishing at
(n-1)-th commutator on full matrix algebras. O
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