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1 - Introduction

Let (Ω1,Ω2) be a pair of nonempty subsets of Banach Algebra X and A,B
and C are nonlinear operators of X. Our main goal in this work is to take up
the approximation problem of the form:

(PP)

{
find (x, y) ∈ Ω1 × Ω2 such that

x = A(x).B(y) + C(x) and ‖x− y‖ = dist(Ω1,Ω2),

where dist(Ω1,Ω2) = inf{‖x − y‖ : x ∈ Ω1, y ∈ Ω2}. Note that when Ω1 =
Ω2 this problem is already studied in the literature by several authors, see
[4,5,7,10,12,18,19]. And, when A ≡ 1 we find the Krasnosel’skii-type problem
see [15,25] for more details.

On the other hand, under suitable conditions on A,B and C we define

the operator T :=
(
I−C
A

)−1 ◦ B : Ω1 ∪ Ω2 → Ω1 ∪ Ω2 such that T (Ω1) ⊂ Ω2

and T (Ω2) ⊂ Ω1. In contrast to the results of [10,15,25] where Ω1 = Ω2, the
interested case here is when Ω1∩Ω2 = ∅. In the event that Ω1∩Ω2 is nonempty,
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then the mapping T restricted to Ω1 ∩ Ω2 is a self mapping and a solution of
equation (PP) is a fixed point of T . However, if T is a non-self mapping, it is
contemplated to explore to find an x∗ ∈ Ω1 satisfying

‖x∗ − T (x∗)‖ = dist(Ω1,Ω2).

This point x∗ ∈ Ω1 is said to be a best proximity point of T . Recall that a
mapping T : Ω1 ∪ Ω2 → Ω1 ∪ Ω2 is called relatively nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖,

for all x ∈ Ω1 and y ∈ Ω2.

In [22], Eldred et al. using the proximinal normal structure, they proved
the existence of best proximity points for relatively nonexpansive mappings in
Banach spaces. This class of mappings is much larger than nonexpansive map-
pings. The work of the fore-mentioned authors generalizes the notion of normal
structure introduced by Brodskii and Milman [14]. Furthermore, Sankar and
Veeramani in [29] have used convergence theorems to prove the existence of a
best proximity point. For more, the interested reader can consult [1,9,16,23]
and the references therein.

In the present paper we generalize the cornerstone of [11], namely Lemma
3.1, and we prove some best proximity point theorems where the involving
operators are weakly sequentially continuous. Our results solve the problem
(PP) for two and three operators. An example is given to support the usability
of our results. Many recent results in this area have been improved.

2 - Preliminaries

Let X be a Banach space endowed with the norm ‖.‖ and with the zero
element θ. We denote by Br(x) the closed ball centered at x with radius r. For
a subset Y of X, we write Y , Y

w
, convY , and convY , to denote the closure,

the weak closure, the convex hull and the closed convex hull of the subset Y ,
respectively. If Y

w
is weakly compact, the set Y is said to be relatively weakly

compact. Moreover, we write xn → x and xn ⇀ x to denote, respectively, the
strong convergence (with respect to the norm of X) and the weak convergence
(with respect to the weak topology of X) of a sequence (xn)n to x.

Recall that an algebra X is a vector space endowed with an internal com-
position law noted by ”.” i.e.,

{
. : X ×X → X
(x, y) → x.y
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which is associative and bilinear. A normed algebra is an algebra endowed
with a norm satisfying for all x, y ∈ X; ‖x.y‖ ≤ ‖x‖‖y‖. A complete normed
algebra is called a Banach algebra. In general, the product of two weakly
sequentially continuous mappings on a Banach algebra X is not necessarily
weakly sequentially continuous, to overcome this obstacle, the authors in [10]
introduced new class of Banach algebras:

D e f i n i t i o n 2.1 ( [10]). We will say that the Banach algebra X satisfies
condition (P) if for any sequence (xn)n≥0 and (yn)n≥0 in X such that xn ⇀ x
and yn ⇀ y, then xn.yn ⇀ x.y

In addition, the authors in [10] showed that every finite dimensional Banach
algebra satisfies condition (P). And, if E satisfies condition (P) then C(K,E) is
also a Banach algebra satisfying condition (P), where K is a compact Hausdorff
space.

T h e o r em 2.2 ( [20]). Let S be a Hausdorff compact space and E be a
Banach space. A bounded sequence (fn)n ⊆ C(S,E) converges weakly to f ∈
C(S,E) if and only if, for every t ∈ S, the sequence (fn(t))n converges weakly
(in E) to f(t).

On the other hand, the theory of condensing operators start with the result
of Sadovskii [28]. Before we define condensing mappings, we need to present the
concept of weak measure of noncompactness. Let Pbd(X) denote the collection
of all nonempty bounded subsets of X. We recall that a function η : Pbd(X) →
R+ is said to be a measure of weak non-compactness (MWNC, for short) on
X, if it satisfies the following four properties:

(i) η(conv(Y )) = η(Y ), for all bounded subsets Y ⊂ X,

(ii) Monotonocity: For any bounded subsets Y1,Y2 of X we have

Y1 ⊂ Y2 ⇒ η(Y1) ≤ η(Y2).

(iii) Non-singularity: η(Y ∪ {a}) = η(Y ) for all a ∈ X, Y bounded set of X.

(iv) η(Y ) = 0 if and only if Y is relatively weakly compact in X.

The MWNC η is said to be positive homogeneous provided

η(λY ) = λη(Y ), for all λ > 0 and Y ∈ Pbd(X).

The MWNC η is said to be sub-additive, if
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η(Y1 + Y2) ≤ η(Y1) + η(Y2), for all Y1, Y2 ∈ Pbd(X).

The above notion is a generalization of the De Blasi measure of weak non-
compactness ω (see [17]) defined on each bounded set Y of X by

ω(Y ) = inf{ε > 0, there exists a weakly compact set D

such that Y ⊂ D +Bε(θ)}.

It is well known that ω is homogeneous, sub-additive and satisfies the set
additivity property

ω(Y1 ∪ Y2) = max{ω(Y1), ω(Y2)}, Y1, Y2 ∈ Pbd(X).

Note that ω is the counterpart for the weak topology of the classical Haus-
dorff measure of non-compactness. For more examples and properties of mea-
sures of weak non-compactness, we refer the reader to [3,5,6,26,27].

Let Ω be a subset of a Banach space X and ω be a measure of weak non-
compactness, and k ∈ [0, 1). An operator T : Ω → X is called

1. k−Lipschitzian, if ‖T (x)− T (y)‖ ≤ k‖x− y‖ with k ≥ 0 and (x, y) ∈ Ω2.
If k = 1, T is called nonexpansive and if k ∈ [0, 1), T is called a contrac-
tion.

2. D-Lipschitz if there exists a continuous nondecreasing function ΦT :
R+ → R+ satisfying

‖Tx− Ty‖ ≤ ΦT (‖x− y‖)

for all x, y ∈ X with ΦT (0) = 0;

3. ω−condensing, if ω(T (A)) < ω(A) for any bounded set A ⊂ Ω with
ω(A) > 0;

Recall that a mapping mapping T : Ω1 ∪ Ω2 → Ω1 ∪ Ω1 where (Ω1,Ω2)
is a pair of subset of a Banach space X is called cyclic if T (Ω1) ⊂ Ω2 and
T (Ω2) ⊂ Ω1. In the sequel, we shall consider the following condition: Let
T : Ω → X be a mapping.

(H) If (xn)n≥0 is a weakly convergent sequence in Ω, then (Txn)n≥0 has a
weakly convergent subsequence in X.

T h e o r em 2.3 ( [2]). Let T be a D-Lipschitz mapping defined on a Banach
space X with a D- function ϕ. If, in addition, T satisfies (H), then, for each
bounded subset M of X we have ω(TM) ≤ ϕ(ω(M)), where ω stands for the
De Blasi measure of weak noncompactness.
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One of the advantages of the weak topology of a Banach space X is the fact
that if a set Ω is weakly compact, then every sequentially weakly continuous
mapping F : Ω → X is weakly continuous. This is an immediate consequence
of the Eberlein-Smulian theorem (see [21, Theorem 8.12.4, p. 549]).

T h e o r em 2.4 ( [24]). Let K be a convex closed set of a Banach space X
and let T : K → K be a single-valued mapping with T (K) is bounded. If T is
weakly sequentially continuous and weakly condensing, then T has a fixed point.

L emma 2.5 ( [8]). Let X be a Banach algebra with a condition (P). Then
for any bounded subset D of X and weakly compact subset K of X, we have
ω(D.K) ≤ ‖K‖ω(D), where ‖K‖ = sup{‖x‖ , x ∈ K}.

To deduce our main result we will need to recall the notion of proximal
normal structure. Throughout this paper, (Ωo

1,Ω
o
2) denote the proximal pair

obtained from (Ω1,Ω2) upon setting

Ωo
1 = {x ∈ Ω1 : ‖x− y‖ = dist(Ω1,Ω2) for some y ∈ Ω2}

Ωo
2 = {y ∈ Ω2 : ‖x− y‖ = dist(Ω1,Ω2) for some x ∈ Ω1}.

A pair (Ω1,Ω2) in a space X is said to satisfy a property if both Ω1 and Ω2

satisfy that property. For instance, (Ω1,Ω2) is closed (resp. convex, bounded)
if and only if Ω1 and Ω2 are closed (resp. convex, bounded). The pair (Ω1,Ω2)
is not reduced to one point means that Ω1 and Ω2 are not singletons.

D e f i n i t i o n 2.6. A pair (K1,K2) of subsets (Ω1,Ω2) of a normed linear
space is said to be a proximal pair if for each (x, y) ∈ K1 × K2 there exists
(x′, y′) ∈ K1 ×K2 such that

‖x− y′‖ = ‖x′ − y‖ = dist(Ω1,Ω2).

De f i n i t i o n 2.7 (Proximal normal structure [22]). A convex pair (Ω1,Ω2)
in a Banach space is said to have proximal normal structure if for any closed,
bounded, convex proximal pair (K1,K2) ⊂ (Ω1,Ω2) for which dist(K1,K2) =
dist(Ω1,Ω2) and δ(K1,K2) > dist(K1,K2), there exists (x1, x2) ∈ K1 × K2

such that δ(x1,K2) < δ(K1,K2), δ(x2,K1) < δ(K1,K2), where δ(K1,K2) =
sup{‖k1 − k2‖ : k1 ∈ K1 , k2 ∈ K2}.

P r o p o s i t i o n 2.8 ( [22, Proposition 2.2]). Every compact convex pair (Ω1,
Ω2) in a Banach space has proximal normal structure.

Using the concept of proximal normal structure, Eldred et. al [22] proved
the existence of best proximity points for relatively nonexpansive mappings.
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T h e o r em 2.9 ( [22, Theorem 1.2]). Let (Ω1,Ω2) be a nonempty, weakly
compact convex pair in a Banach space (X, ‖.‖), and suppose (Ω1,Ω2) has
proximal normal structure. Let T : Ω1 ∪ Ω2 → Ω1 ∪ Ω2 be a cyclic rela-
tively nonexpansive mapping. Then, there exists (x, y) ∈ Ω1 × Ω2 such that
‖x− Tx‖ = ‖Ty − y‖ = dist(Ω1,Ω2).

For the sake of completeness we state the next lemma which is, Lemma 3.1
in [11].

L emma 2.10 ([11]). Let Ω be a nonempty closed convex subset of a Banach
space X, ω is a MWNC on X and let T : Ω → Ω be a ω−condensing mapping
with bounded range. Assume T maps weakly compact sets into relatively weakly
compact sets, then there is a convex relatively weakly compact subset K of Ω
such that T (K) ⊂ K.

3 - Main results

We start this section by generalizing the Lemma 2.10 above (see [11, Lemma
3.1]) where T maps weakly compact sets into relatively weakly compact sets
and it is cyclic ω−condensing.

T h e o r em 3.1. Let (Ω1,Ω2) be a nonempty closed convex pair of a Banach
space X, ω is a MWNC on X and let T : Ω1 ∪ Ω2 → Ω1 ∪ Ω2 be a cyclic
and ω−condensing mapping with bounded range. We assume T maps weakly
compact sets into relatively weakly compact sets and Ωo

1 is nonempty. Then,
there is a convex relatively weakly compact pair (H,K) ⊂ (Ω1,Ω2) such that
T (H) ⊂ K, T (K) ⊂ H and dist(H,K) = dist(Ω1,Ω2).

P r o o f. As Ωo
1 is nonempty, there exists (xo, yo) ∈ Ω1 × Ω2 such that

dist(Ω1,Ω2) = ‖xo − yo‖. We consider the family F of all bounded convex pair
(E,F ) ⊂ (Ω1,Ω2) such that (xo, yo) ∈ E × F and T (E) ⊂ F , T (F ) ⊂ E.

F is nonempty, indeed conv(T (Ω1)∪{yo}) ⊂ Ω2, so T (conv(T (Ω1) ∪ {yo}))
⊂ T (Ω2) ∪ {xo}. Therefore,

T (conv(T (Ω1) ∪ {yo})) ⊂ conv (T (conv(T (Ω1) ∪ {yo}))) ⊂ conv(T (Ω2)∪{xo}).

Similarly, we have T (conv(T (Ω2) ∪ {xo})) ⊂ conv(T (Ω1) ∪ {yo}). Hence,

(conv(T (Ω2) ∪ {xo}), conv(T (Ω1) ∪ {yo})) ∈ F .

Let H =
⋂

E∈F1
E, K =

⋂
F∈F2

F , where

F1 = {E ⊂ Ω1 : there exists F ⊂ Ω2 such that (E,F ) ∈ F}
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and

F2 = {F ⊂ Ω2 : there exists E ⊂ Ω1 such that (E,F ) ∈ F}.

Note that the pair (H,K) is convex and (xo, yo) ∈ H ×K. We have T (H) =
T (

⋂
E∈F1

E) ⊂
⋂

E∈F1
(T (E)) ⊂

⋂
F∈F2

F = K. Similarly, T (K) ⊂ H. Hence,
(H,K) ∈ F .

We now show (H,K) is relatively weakly compact. Let H∗ = conv(T (K) ∪
{xo}) and K∗ = conv(T (H) ∪ {yo}). We have (H∗,K∗) ⊂ (H,K), so
(T (H∗), T (K∗)) ⊂ (T (H), T (K)) ⊂ (K∗, H∗), therefore (H∗,K∗) ∈ F and
(H∗,K∗) = (H,K). Hence,

H = conv(T (K) ∪ {xo}) and K = conv(T (H) ∪ {yo}).

We put a = sup{ω(C) : C is subset of H} and b = sup{ω(D) : D is subset
of K}. There exist two sequences (Cn)n≥1 and (Dn)n≥1 of subsets of H and K
respectively such that lim

n→+∞
ω(Cn) = a and lim

n→+∞
ω(Dn) = b. Let C = ∪n≥1Cn

and D = ∪n≥1Dn. We have ω(Cn) ≤ ω(C) ≤ a and ω(Dn) ≤ ω(D) ≤ b, for all
n ∈ N \ {0}. Taking n → +∞, we obtain ω(C) = a and ω(D) = b.

Assume that b ≤ a. Let x ∈ C. There exists px ∈ N \ {0} and z1, · · · , zpx ∈

T (K)∪{xo} such that x =

px∑
k=1

λk.zk, where λk ≥ 0, for all k ∈ {1, · · · , px}, and

px∑
k=1

λk = 1. Let Ix = {i ∈ {1, · · · , px} : zi = xo}. For every k ∈ {1, · · · , px} \

Ix, there exists uk ∈ K such that zk = T (uk). We put Px = {uk : k ∈
{1, · · · , px}\Ix}, and P = ∪x∈CPx. Since x = (

∑
i∈Ix

λi).xo +
∑

k∈{1,··· ,px}\Ix

λk.T (uk)

∈ conv(T (P ) ∪ {xo}), so C ⊂ conv(T (P ) ∪ {xo}). We have, T (Ω1 ∪ Ω2) is
bounded, so also are H, K, C and P . If ω(P ) > 0, then ω(C) ≤ ω(T (P )) <
ω(P ) ≤ b, because T is ω−condensing. We obtain a < b, a contradiction.

Hence, ω(P ) = 0, so P
ω

is weakly compact. By hypothesis, T (P
ω
) is

relatively weakly compact. Therefore,

ω(C) ≤ ω(T (P )) ≤ ω(T (P
ω
)) = 0.

Thus, ω(C) = 0 i.e. a = 0 = b.

Let (xn)n≥1 be a sequence of H, so ω({xn : n ∈ N\{0}) ≤ a = 0. Thus, H is
relatively weakly sequentially compact and now the Eberlein-Smulian theorem
guarantees that H is relatively weakly compact. Similarly, ω(D) = 0, so K is
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relatively weakly compact. As (xo, yo) ∈ H ×K and ‖xo − yo‖ = dist(Ω1,Ω2),
then

‖xo − yo‖ = dist(H,K).

�

De f i n i t i o n 3.2. Let (α, β) ∈ (R+)
2 and φ, ψ : R+ → R+ two mappings.

We say that the pair (φ, ψ) has the property (α, β)-monotone if

(i) φ(0) = 0 = ψ(0),

(ii) I−α.φ−β.ψ is nondecreasing on R+ and lim
r→+∞

(r − αφ(r)− βψ(r)) = +∞
where I stands for the identity mapping.

R ema r k 3.3. If (φ, ψ) has the property (α, β)-monotone and φ, ψ are con-
tinuous, then the mapping I − α.φ− β.ψ : R+ → R+ is invertible.

E x amp l e 3.4. Let φ, ψ : R+ → R+ be the mappings defined by :

φ(r) = log(r + 1) and ψ(r) =
r

3
, for all r ∈ R+.

So, the mapping I − 1
2φ− ψ : R+ → R+ has the property (12 , 1)-monotone.

Recall that an operator A from a Banach algebra X is said to be regular
on X if A maps X into the set of all invertible elements of X.

T h e o r em 3.5. Let (Ω1,Ω2) be a nonempty closed convex bounded pair of
a Banach algebra X satisfying condition (P). Suppose (Ω1,Ω2) has proximal
normal structure and Ωo

1 is nonempty set. Let A,C : X −→ X and B : Ω1 ∪
Ω2 −→ X be three weakly sequentially continuous operators which satisfy the
following conditions:

(i) A is regular on X, A(Ω1 ∪Ω2) is relatively weakly compact and ‖A‖ < 1.

(ii) A and C are D-Lipschitz with the D-functions ΦA and ΦC respectively,
B(Ω1 ∪ Ω2) is bounded with bound M , MΦA(r) + ΦC(r) ≤ (1 − ‖A‖)r,
for all r > 0, and I −MΦA − ΦC , is nondecreasing,

(iii) B is cyclic relatively nonexpansive and ω−condensing on Ω1 ∪ Ω2,

(iv) x = A(x).B(y) + C(x), y ∈ Ωi ⇒ x ∈ Ωj, ∀i, j ∈ {1, 2} with i �= j.

Then, there exists (x, y) ∈ Ω1 × Ω2 such that
∥∥∥∥
x−A(x).B(x)− C(x)

A(x)

∥∥∥∥ = dist(Ω1,Ω2) =

∥∥∥∥
y −A(y).B(y)− C(y)

A(y)

∥∥∥∥ .
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P r o o f.

• Let y be fixed in Ω1 ∪ Ω2 and let us define the mapping Fy on X by

Fy(x) = A(x).B(y) + C(x), for all x ∈ X.

Let x1, x2 ∈ X. The use of assumption (ii) leads to

‖Fy(x1)− Fy(x2)‖ ≤ ‖A(x1).B(y)−A(x2).B(y)‖+ ‖C(x1)− C(x2)‖

≤ ‖A(x1)−A(x2)‖ ‖B(y)‖+ ‖C(x1)− C(x2)‖

≤ MΦA(‖x1 − x2‖) + ΦC(‖x1 − x2‖).

Now an application of Banach contraction leads to the existence of a
unique point xy ∈ X such that Fy(xy) = xy. Hence, the operator

T :=
(
I−C
A

)−1
B : Ω1 ∪ Ω2 → X is well defined.

• Moreover, assumption (iv) implies that T (Ω1) ⊂ Ω2 and T (Ω2) ⊂ Ω1.
Indeed, let x ∈ Ω1 and y ∈ X such that y = A(y).B(x) + C(y), so

T (x) =
(
I−C
A

)−1
B(x) = y ∈ Ω2. Similarly, for all y ∈ Ω2, T (y) ∈ Ω1.

Hence, T is cyclic on Ω1 ∪ Ω2.

• The operator T : Ω1∪Ω2 → Ω1∪Ω2 is weakly sequentially continuous and
ω-condensing w.r.t. the measure of weak noncompactness of De Blasi. In-
deed, consider (xn)n≥0 as a sequence in Ω1∪Ω2 that is weakly convergent
to x. In this case, the set {xn : n ∈ N} is relatively weakly compact, and
since B is weakly sequentially continuous, then {B(xn) : n ∈ N} is also
relatively weakly compact. Using the following equality

(3.1) T (x) = A(T (x)).B(x) + C(T (x)) for all x ∈ Ω1 ∪ Ω2,

combined with the fact that A(Ω1 ∪ Ω2) is relatively weakly compact, C
is D-Lipschitz and ΦC(r) < r, for all r > 0, we obtain if ω({T (xn) : n ∈
N}) > 0,

ω({T (xn) : n ∈ N}) ≤ ω({A(T (xn)).B(xn) :n ∈ N})
+ ω({C(T (xn)) :n ∈ N})

≤ ‖A‖ω({B(xn) : n ∈ N}) + ΦC({ω(T (xn)) :n ∈ N})

≤ ΦC({ω(T (xn)) :n ∈ N})

< ω({T (xn) :n ∈ N}),
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which is in contradiction. Hence, {T (xn) : n ∈ N} is relatively weakly
compact. Consequently, there exists a subsequence (xnk

)k≥0 of (xn)n≥0

such that (T (xnk
)k≥0 is weakly convergent to y ∈ Ω1 ∪ Ω2. We put

ynk
=

(
I−C
A

)−1
B(xnk

), for all k ∈ N. However the subsequence (ynk
)k≥0

satisfies
ynk

− C(ynk
) = A(ynk

).B(xnk
).

Therefore, from assumption (iii) and in view of condition (P), we deduce
that y satisfies

y − C(y) = A(y).B(x),

or, equivalently

y =

(
I − C

A

)−1

B(x) = T (x).

Next we claim that the whole sequence (xn)n≥0 satisfies

T (xn) =

(
I − C

A

)−1

B(xn) ⇀ T (x).

Assume that there exists a subsequence (xσ(n))n≥0 of (xn)n≥0 and a weak
neighborhood V w of T (x) such that T (xσ(n)) �∈ V w, for all n ∈ N.
Since (xσ(n))n≥0 converge weakly to x, we may extract a subsequence
(xσ◦ψ(n))n≥0 of (xσ(n))n≥0 such that T (xσ◦ψ(n)) ⇀ Tx and T (xσ◦ψ(n)) �∈
V w, a contradiction. Hence, T (xn) ⇀ T (x); it follows that T is weakly
sequentially continuous.
T is ω−condensing. Indeed, let N be a subset of Ω1 ∪Ω2 with ω(N) > 0.
We have T (N) ⊂ A(T (N)).B(N) + C(T (N)), so

ω(T (N)) ≤ ω(A(T (N)).B(N)) + ω(C(T (N)))

≤ ‖A‖ ω(B(N)) + ΦC(ω(T (N)))

(I − ΦC)(ω(T (N))) ≤ ‖A‖ω(B(N)).

By hypothesis (ii), I−ΦC is nondecreasing (since r �→ (I−MΦA−ΦC)(r)
is nondecreasing), continuous, (I − φC)(0) = 0 and lim

r→+∞
(I − ΦC)(r) =

+∞, then I − ΦC : R+ → R+ is invertible. We have also

ΦC(r) ≤ (1− ‖A‖)r ⇔ ‖A‖r ≤ (I − ΦC)(r) ⇔ (I − ΦC)
−1(‖A‖r) ≤ r,

for all r ≥ 0, as B is ω-condensing, we get

ω(T (N)) ≤ (I − ΦC)
−1(‖A‖ω(B(N))) ≤ ω(B(N)) < ω(N).

Thus, T is ω-condensing.
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• By Theorem 3.1, there is a convex relatively weakly compact pair (H,K) ⊂
(Ω1,Ω2) such that T (H) ⊂ K, T (K) ⊂ H, and dist(H,K) = dist(Ω1,Ω2).

Let (H ′,K ′) ⊂ (H,K) be a closed, bounded, convex proximal pair for
which dist(H ′,K ′) = dist(H,K) and δ(H ′,K ′) > dist(H ′,K ′). As,
dist(H ′,K ′) = dist(H,K) = dist(Ω1,Ω2) and (Ω1,Ω2) have proximal nor-
mal structure, there exists (x, y) ∈ H ′×K ′ such that δ(x,K ′) < δ(H ′,K ′),
δ(y,H ′) < δ(H ′,K ′), where δ(H ′,K ′) = sup{‖a − b‖ : a ∈ H ′ , b ∈ K ′}.
Thus, (H,K) have proximal normal structure.

The mapping T : H ∪K → H ∪K is cyclic and relatively nonexpansive.
Indeed, let (x, y) ∈ H ×K, The use of assumptions (ii) and (iii) leads to

‖T (x)− T (y)‖ ≤ ‖A(T (x)).B(x)−A(T (y)).B(y)‖+ ‖C(T (x)− C(T (y)‖

≤ ‖A(T (x))−A(T (y))‖ ‖B‖+ ‖B(x)−B(y)‖ ‖A‖
+ ‖C(T (x)− C(T (y)‖

≤ ‖A‖‖x− y‖+MΦA(‖T (x)− T (y)‖)
+ ΦC(‖T (x)− T (y)‖).

Since, (ΦA,ΦC) has the property (M, 1)-monotone and ΦA,ΦC are con-
tinuous, then I −MφA − ΦC is invertible, so

‖T (x)− T (y)‖ ≤ (I −MΦA − ΦC)
−1(‖A‖‖x− y‖).

We have alsoMΦA(r)+ΦC(r) ≤ (1−‖A‖)r, so (I−MΦA−ΦC)
−1(‖A‖r) ≤

r, ∀r > 0. Hence,

‖T (x)− T (y)‖ ≤ ‖x− y‖.

Thus, by Theorem 2.9 there exists (x, y) ∈ H×K such that ‖x−T (x)‖ =
dist(H,K) = ‖y − T (y)‖. And since dist(H,K) = dist(Ω1,Ω2), then

‖x−
(
I−C
A

)−1
B(x)‖ = dist(Ω1,Ω2) = ‖y −

(
I−C
A

)−1
B(y)‖.

Let z =
(
I−C
A

)−1
B(x). So

(
I−C
A

)
(z) = B(x) ∈ Ω2 and z ∈ Ω2. By (iii),

B is cyclic relatively nonexpansive on Ω1 ∪ Ω2, so

dist(Ω1,Ω2) ≤
∥∥∥∥
z −A(z).B(z)− C(z)

A(z)

∥∥∥∥ =

∥∥∥∥
(
I − C

A

)
(z)−B(z)

∥∥∥∥
≤ ‖B(x)−B(z)‖
≤ ‖x− z‖

≤

∥∥∥∥∥x−
(
I − C

A

)−1

(B(x))

∥∥∥∥∥
= dist(Ω1,Ω2).
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Similarly we obtain

∥∥∥∥
y −A(y).B(y)− C(y)

A(y)

∥∥∥∥ = dist(Ω1,Ω2).

�

Rema r k 3.6. Note that the hypothesis A,B and C are weakly sequentially
continuous in Theorem 3.5 can be replaced by one of the following conditions:

1. B and
(
I−C
A

)
are weakly sequentially continuous, without Banach algebra

X satisfying the condition (P).

2. The operators A,B and C have to satisfy the condition (H).

R ema r k 3.7. Recall that, every Lipschitz mapping is D-Lipschitz, so if
we replace condition (ii) in Theorem 3.5 by

(ii’) the operators A and C are Lipschitzian mappings with constants kA and
kC , respectively, B(Ω1∪Ω2) is bounded with bound M , and MkA+kC ≤
1− ‖A‖,

we get the same conclusion as Theorem 3.5.

R ema r k 3.8. We can drop the assumptions A(Ω1∪Ω2) is relatively weakly
compact and the operators A,B and C are weakly sequentially continuous from
Theorem 3.5 and replace them by the pair (Ω1,Ω2) is weakly compact. On
the other hand, since every closed convex subset of a reflexive Banach space
is weakly compact we can get the same result when the Banach algebra is
uniformly convex.

E x amp l e 3.9. Consider the Banach algebra X = C(J,R) of all continuous
real-valued functions on J = [0, 1], endowed with the sup-norm ‖.‖∞, defined by

‖x‖∞ = sup{|x(t)| ; t ∈ J},

for each x ∈ X. Let (Ω1,Ω2) be the pair of the nonempty sets of X defined by:

Ω1 = {x̃ : t →
∫ t

0
x(s) ds : x ∈ X and ∀t ∈ J,

t

6
≤ x(t) ≤ t

4
}

and

Ω2 = {ỹ : t →
∫ t

0
y(s) ds : y ∈ X and ∀t ∈ J,

3t

8
≤ y(t) ≤ t}.
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• For each x̃ ∈ Ω1 and t ∈ J ,

|x̃(t)| ≤
∫ t

0
|x(s)| ds ≤ t2

8
,

so ‖x̃‖∞ ≤ 1
8 . Similarly, for all ỹ ∈ Ω2, ‖ỹ‖∞ ≤ 1

2 . Thus, (Ω1,Ω1) is
bounded.

• Let x̃1, x̃2 ∈ Ω1 and λ ∈ J , we have, for all t ∈ J ,

(λx̃1 + (1− λ)x̃2)(t) =

∫ t

0
(λx1 + (1− λ)x2)(s) ds,

then
t

6
≤ (λx1 + (1− λ)x2)(t) ≤

t

4
.

Thus, λx̃1 + (1− λ)x̃2 ∈ Ω1. Similarly, Ω2 is convex.

• Let x̃ ∈ Ω1 and t, t′ ∈ J such that t < t′,

|x̃(t)− x̃(t′)| ≤
∫ t′

t
|x(s)| ds ≤ 1

4
|t− t′|.

Hence, Ω1 is a family of equicontinuous functions and as it is is uniformly
bounded, by Arzela-Ascoli’s theorem, Ω1 lies in a compact subset of X,
and since it is closed it is compact. Similarly, Ω2 is compact in X. Con-
sequently, (Ω1,Ω2) has proximal normal structure and Ωo

1 is nonempty set
(see Proposition 2.8).

• For each (x̃, ỹ) ∈ Ω1 × Ω2 and t ∈ J ,

|x̃(t)− ỹ(t)| =
∫ t

0
(y(s)− x(s)) ds ≥

∫ t

0
(
3s

8
− s

4
) ds =

t2

16
,

so

‖x̃− ỹ‖∞ = sup
t∈J

|x̃(t)− ỹ(t)| ≥ sup
t∈J

(∫ t

0
(
3s

8
− s

4
) ds

)
=

1

16
.

Thus, dist(Ω1,Ω2) =
1
16 .

• Let B be the function defined on Ω1 ∪ Ω2 by

B(x̃) =

{
x̃1 if x̃ ∈ Ω1

ỹ1 if x̃ ∈ Ω2

,
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where x̃1 : t →
∫ t
0

3s
8 ds and ỹ1 : t →

∫ t
0

s
4ds. Let (x̃, ỹ) ∈ Ω1×Ω2, we have

‖x̃− ỹ‖∞ ≥ 1

16
,

so

‖B(x̃)−B(ỹ)‖∞ = ‖x̃1 − ỹ1‖∞ =
1

16
≤ ‖x̃− ỹ‖∞.

Thus, B is cyclic relatively nonexpansive on Ω1∪Ω2 and M = sup{‖B(x)‖ :
x ∈ Ω1∪Ω2} = ‖ỹ1‖∞. Let N be a subset of Ω1∪Ω2 such that ω(N) > 0.

ω(B(N)) = ω({B(x̃) : x̃ ∈ N})
≤ ω({x̃1, ỹ1}) = 0, since {x̃1, ỹ1} is weakly relatively compact.

Thus, B is ω−condensing on Ω1 ∪ Ω2.

• Let A be the function defined on X by A(x) = a, where a(t) = 1
6 for all

t ∈ J . The function A is D-Lipschitz with the D-function ΦA = 0, and
‖A‖ = supx∈E ‖A(x)‖∞ = 1

6 .

• Let C be the function defined on X by C(x) = 5
6x. For each (x, y) ∈ E2,

‖C(x)− C(y)‖∞ ≤ 5

6
‖x− y‖∞.

Then C is D-Lipschitz with the D-function ΦC(r) =
5
6 .r for all r ≥ 0. In

addition,

(I −MΦA − ΦC)(r) = (I − ΦC)(r) =
1

6
r

so the function I −MΦA − ΦC is nondecreasing, and for all r > 0,

(MΦA +ΦC)(r) =
5

6
r ≤ (1− ‖A‖)r.

• Let x ∈ X and ỹ ∈ Ω2. Suppose x = A(x).B(ỹ) + C(x). For each t ∈ J ,

x(t) = Ax(t).Bỹ(t) + Cx(t) = (
1

6
).(

t2

8
) +

5x(t)

6
=

t2

48
+

5x(t)

6
,

so x(t) = t2

8 =
∫ t
0

s
4ds. Thus, x ∈ Ω1.

Let y ∈ X and x̃ ∈ Ω2. Suppose y = A(y).B(x̃) + C(y). For each t ∈ J ,

y(t) = Ay(t).Bx̃(t) + Cy(t) = (
1

6
).(

3t2

16
) +

5y(t)

6
=

t2

32
+

5y(t)

6
,

so y(t) = 3t2

16 =
∫ t
0

3s
8 ds. Thus, y ∈ Ω2.
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• – The mapping A is constant on X, so A is weakly sequentially con-
tinuous on X.

– The mapping B is weakly sequentially continuous on Ω1 and Ω2 since
it is constant on each part, as the pair (Ω1,Ω2) is closed and Ω1 ∩
Ω2 = ∅ so B is weakly sequentially continuous on Ω1 ∪ Ω2.

– Now, we show that C is weakly sequentially continuous on X; for
this, let (xn)n≥0 in X such that xn ⇀ x ∈ X, then (xn)n≥0 is
bounded on X; from Dobrakov’s theorem (see Theorem 2.2), we get
for all t ∈ J , xn(t) ⇀ x(t).

Put Cx(t) = K(t, x(t)) for each t ∈ J and x ∈ X. For all t ∈ J , the
function K(t, .) : R+ → R+ defined by K(t, u) = 5u

6 is continuous, so
is weakly sequentially continuous, so for all t ∈ J , we have Cxn(t) ⇀
Cx(t). Again, from Dobrakov’s theorem, we deduce that C(xn) ⇀
C(x), then C is weakly sequentially continuous on X.

Hence by Theorem 3.5, there exists (x, y) ∈ Ω1 × Ω2 such that
∥∥∥∥
x−A(x).B(x)− C(x)

A(x)

∥∥∥∥
∞

= dist(Ω1,Ω2) =

∥∥∥∥
y −A(y).B(y)− C(y)

A(y)

∥∥∥∥
∞
.

That is

sup
t∈J

|x(t)− x̃1(t)| =
1

16
= sup |y(t)− ỹ1(t)|.

Hence, (x, y) = (ỹ1, x̃1).

P r o p o s i t i o n 3.10. Let (Ω1,Ω2) be a nonempty weakly compact convex
pair in a Banach algebra X. Suppose (Ω1,Ω2) has proximal normal structure.
Let A,C : X −→ X and B : Ω1 ∪Ω2 −→ X be three operators which satisfy the
following conditions:

(i) A is regular on X and ‖A‖ < 1,

(ii) A and C are D-Lipschitz with the D-functions ΦA and ΦC respectively,
B(Ω1∪Ω2) is bounded with bound M , and MΦA(r)+ΦC(r) ≤ (1−‖A‖)r
for all r > 0, and I −MΦA − ΦC , is nondecreasing,

(iii) B is cyclic relatively nonexpansive and ω−condensing on Ω1 ∪ Ω2,

(iv) x = A(x).B(y) + C(x), y ∈ Ωi ⇒ x ∈ Ωj, ∀i, j ∈ {1, 2} with i �= j.

Then, there exists (x, y) ∈ Ω1 × Ω2 such that
∥∥∥∥
x−A(x).B(x)− C(x)

A(x)

∥∥∥∥ = dist(Ω1,Ω2) =

∥∥∥∥
y −A(y).B(y)− C(y)

A(y)

∥∥∥∥ .
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P r o o f. As the proof of the previous theorem; by (i) and (ii), we show
that T := ( I−C

A )−1 ◦ B : Ω1 ∪ Ω2 → X is well defined. Moreover, the use of
assumption (iv), T is cyclic on Ω1 ∪ Ω2.

By assumptions (ii), (iii) the mapping T : Ω1 ∪ Ω2 → Ω1 ∪ Ω2 is relatively
nonexpansive.

Thus, by Theorem 2.9 there exists (x, y) ∈ Ω1 × Ω2 such that

∥∥∥∥
x−A(x).B(x)− C(x)

A(x)

∥∥∥∥ = dist(Ω1,Ω2) =

∥∥∥∥
y −A(y).B(y)− C(y)

A(y)

∥∥∥∥ .

�

In the same vein of the above theorem for two operators we have the next
result, the proof follows the same steps as in the proof of Theorem 3.5. For
sake of completeness we give the complete proof. Note that the Banach algebra
does not need to satisfy condition (P).

T h e o r em 3.11. Let (Ω1,Ω2) be a nonempty closed convex bounded pair of
a Banach algebra X. Suppose (Ω1,Ω2) has proximal normal structure and Ωo

1

is nonempty set. Let C : X −→ X and B : Ω1 ∪ Ω2 −→ X be two operators
which satisfy the following conditions:

(i) C is D-Lipschitz with the D-function ΦC , ΦC(r) < r, for all r > 0,

(ii) C is weakly sequentially continuous on X and B is weakly sequentially
continuous on Ω1 ∪ Ω2,

(iii) B is cyclic relatively nonexpansive and ω−condensing on Ω1 ∪ Ω2,

(iv) (I − C)−1 is nonexpansive on Ω1 ∪ Ω2,

(v) x = B(y) + C(x), y ∈ Ωi ⇒ x ∈ Ωj, ∀i, j ∈ {1, 2} with i �= j.

Then, there exists (x, y) ∈ Ω1 × Ω2 such that

‖x−B(x)− C(x)‖ = dist(Ω1,Ω2) = ‖y −B(y)− C(y)‖.

P r o o f.

• Let y be fixed in Ω1 ∪ Ω2 and let define the mapping Gy on X by

Gy(x) = B(y) + C(x), for all x ∈ X.
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Let x1, x2 ∈ X. The use of assumption (ii) leads to

‖Gy(x1)−Gy(x2)‖ ≤ ‖C(x1)− C(x2)‖

≤ ‖C(x1)− C(x2)‖

≤ ΦC(‖x1 − x2‖).

Now, an application of Boyd and Wong’s fixed point theorem [13, The-
orem 1] leads to the existence of a unique point xy ∈ X such that
Gy(xy) = xy. Hence, the operator T := (I − C)−1 ◦ B : Ω1 ∪ Ω2 → X is
well defined.

• By assumption (v) we have T (Ω1) ⊂ Ω2 and T (Ω2) ⊂ Ω1. Indeed, let
x ∈ Ω1 and y ∈ X such that y = B(x) +C(y), so Tx = (I −C)−1B(x) =
y ∈ Ω2. Similarly, for all y ∈ Ω2, T (y) ∈ Ω1. Hence, T is cyclic on Ω1∪Ω2.

• The operator T : Ω1 ∪ Ω2 → Ω1 ∪ Ω2 is weakly sequentially continuous.
Indeed, consider (xn)n≥0 as a sequence in Ω1 ∪Ω2 that is weakly conver-
gent to x. In this case, the set {xn : n ∈ N} is relatively weakly compact,
and since B is weakly sequentially continuous, then {B(xn) : n ∈ N} is
also relatively weakly compact. Using the following equality

(3.2) T (x) = B(x) + C(T (x)) for all x ∈ Ω1 ∪ Ω2,

combined with the fact that C is D-Lipschitz and ΦC(r) < r, for all r > 0,
we obtain if ω({T (xn) : n ∈ N}) > 0,

ω({T (xn) : n ∈ N}) ≤ ω({B(xn) : n ∈ N}) + ω({C(T (xn)) : n ∈ N})

≤ ω({B(xn) : n ∈ N}) + ΦC({ω(T (xn)) : n ∈ N})

≤ ΦC({ω(T (xn)) : n ∈ N})

< ω({T (xn) : n ∈ N}),

which is in contradiction. Hence, {T (xn) : n ∈ N} is relatively weakly
compact. Consequently, there exists a subsequence (xnk

)k≥0 of (xn)n≥0

such that (T (xnk
)k≥0 is weakly convergent to y ∈ Ω1 ∪ Ω2. We put

ynk
= (I −C)−1B(xnk

), for all k ∈ N. However the subsequence (ynk
)k≥0

satisfies

ynk
− C(ynk

) = B(xnk
).

Therefore, from assumption (iii), we deduce that y satisfies

y − C(y) = B(x),
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or, equivalently
y = (I − C)−1B(x) = T (x).

Next we claim that the whole sequence (xn)n≥0 satisfies

T (xn) = (I − C)−1B(xn) ⇀ T (x).

As the proof of Theorem 3.5, we obtain T (xn) ⇀ T (x); it follows that T
is weakly sequentially continuous.

• T is ω−condensing. Indeed, let N be a subset of Ω1 ∪Ω2 with ω(N) > 0.
As (I − C)−1 is 1−Lipschitzian and B is ω−condensing on Ω1 ∪ Ω2, we
have,

ω(T (N)) = ω((I − C)−1B(N)) ≤ ω(B(N)) < ω(N).

Thus, T is ω-condensing.

• By Theorem 3.1, there is a convex relatively weakly compact pair (H,K) ⊂
(Ω1,Ω2) such that T (H) ⊂ K, T (K) ⊂ H, and dist(H,K) = dist(Ω1,Ω2).
Moreover, (H,K) have proximal normal structure. The mapping TH,K :
H ∪K → H ∪K defined by TH,K(x) = T (x), is relatively nonexpansive.
Indeed, let (x, y) ∈ H ×K, The use of assumptions (ii) and (iv) leads to

‖T (x)− T (y)‖ = ‖(I − C)−1B(x)− (I − C)−1B(y)‖ ≤ ‖B(x)−B(y)‖
≤ ‖x− y‖.

Thus, By Theorem 2.9, there exists (x, y) ∈ H×K such that ‖x−T (x)‖ =
dist(H,K) = ‖y − T (y)‖. And since dist(H,K) = dist(Ω1,Ω2), then
‖x−B(x)− C(x)‖ = dist(Ω1,Ω2) = ‖y −B(y)− C(y)‖.

�

The following theorem deals with the classical result for one operator, i.e.
when does it exists an x ∈ X such that ‖x−T (x)‖ = dist(Ω1,Ω2). Note that in
our framework, the Banach algebra is not necessarily reflexive, so the normal
structure assumption is not sufficient to get best proximity point, that’s why
we need additional conditions.

T h e o r em 3.12. Let (Ω1,Ω2) be a nonempty closed convex bounded pair of
a Banach algebra X. Suppose (Ω1,Ω2) has proximal normal structure and Ωo

1

is nonempty set. Let B : Ω1 ∪ Ω2 −→ X be an operator such that:

(i) B is weakly sequentially continuous on Ω1 ∪ Ω2,

(ii) B is ω-condensing,
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(iii) B is cyclic relatively nonexpansive on Ω1 ∪ Ω2.

Then, there exists (x, y) ∈ Ω1 × Ω2 such that

‖x−B(x)‖ = dist(Ω1,Ω2) = ‖y −B(y)‖.

P r o o f. Using Theorem 3.1 and taking T := B, the proof follows same
steps as the above proofs. �

We conclude this paper with a fixed point result, note that this result needs
neither the normal structure nor the nonexpansiveness of the mapping B.

T h e o r em 3.13. Let (Ω1,Ω2) be a nonempty closed convex bounded pair
of a Banach algebra X satisfying condition (P). Let A,C : X −→ X and
B : Ω1 ∪ Ω2 −→ X be three operators which satisfy the following conditions:

(i) A is regular on X, A(Ω1 ∪Ω2) is relatively weakly compact and ‖A‖ < 1.

(ii) A and C are D-Lipschitz with the D-functions ΦA and ΦC respectively,
B(Ω1∪Ω2) is bounded with bound M , and MΦA(r)+ΦC(r) ≤ (1−‖A‖)r
for all r > 0, and I − ΦC , is nondecreasing,

(iii) B is weakly sequentially continuous on Ω1 ∪ Ω2 and A, C are weakly
sequentially continuous on X,

(iv) B is ω−condensing on Ω1 ∪ Ω2,

(v) x = A(x).B(y) + C(x), y ∈ Ωi ⇒ x ∈ Ωj, ∀i, j ∈ {1, 2} with i �= j.

Then, if Ω1∩Ω2 is nonempty, there exists x ∈ Ω1∩Ω2 such that x = A(x).B(x)+
C(x).

P r o o f. By (ii), we show that T = ( I−C
A )−1 ◦ B : Ω1 ∪ Ω2 → X is well

defined. Moreover, the use of assumption (v), T is cyclic on Ω1 ∪ Ω2.

The set Ω1 ∩ Ω2 is empty set convex bounded pair of a Banach algebra
X. Furthermore, T (Ω1 ∩ Ω2) ⊂ Ω1 ∩ Ω2. We consider the operator TΩ1∩Ω2 :
Ω1 ∩ Ω2 → Ω1 ∩ Ω2 defined by, for all x ∈ Ω1 ∩ Ω2, TΩ1∩Ω2(x) = T (x).

The use of assumption (i), (ii), (iii) and (iv) leads to, the map. TΩ1∩Ω2 is
weakly sequentially continuous and ω−condensing. Since TΩ1∩Ω2(Ω1 ∩ Ω2) is
bounded, according to Theorem 2.4, TΩ1∩Ω2 has a fixed point. There exists
x ∈ Ω1 ∩ Ω2 such that x = A(x).B(x) + C(x). �
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