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Mathematical analysis for oncolytic virotherapy

Abstract. In this paper, we introduce a mathematical model for cancer
virotherapy. The model simulates the coeffects of tumor cells and CTLs
by considering the time delay of the viral lytic cycle. This delay has been
recently seen in some clinical observations when the tumor size changes
with a time delay after the virus injection. We investigate the stabil-
ity of equilibrium points of the model and the corresponding biological
interpretation. The model simulates some aspects of the phenomenon
which have not been recorded by the former models. For example, a
Hopf bifurcation occurs in the delayed model showing an oscillation in
the size of the tumor. We indicate natural limitations of the therapy
process; for example, the oncolytic virus must be modified such that the
time of the delay of the lytic cycle is less than the Hopf bifurcation value.
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1 - Introduction

The growing spread of cancers has always led researchers to look for new
treatments for this complex disease. Although clinical and theoretical studies
have identified ways to treat or control different cancers, some patients have
not yet received promising therapies. Traditional cancer treatments (surgery,
chemotherapy, and radiation) treat many cancer patients, but in some cases,
these treatments are ineffective or may cause problems for the patient. For
example, in brain tumors, the surgeon may remove a part of healthy brain tissue
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that can be very dangerous for the patient. Moreover, during chemotherapy,
tumor cells become drug-resistant, making it impossible to obtain complete
therapy. Such limitations in cancer treatment have led researchers to look for
new ways to treat cancer.

One of the fascinating and relatively new ideas of cancer treatment is vi-
rotherapy. The strategy in virotherapy is to use specific viruses to infect the
tumor so that the tumor cells die from the infection. After injecting into the
tumor, the viruses multiply and infect more tumor cells. These viruses are
called oncolytic viruses. There are two kinds of oncolytic viruses: wild on-
colytic viruses and gene-modified viruses. Wild oncolytic viruses with natural
oncolytic activity in human tumors, like Myxomaviruses, Bovine herpesvirus 4,
Reovirus, Newcastle disease virus (NDV), Coxsackievirus, Vesicular stomatitis
virus (VSV), and Parvoviruses have shown limited oncolytic efficacy in clinical
trials. Gene-modified viruses such as Adenovirus, Herpes simplex, and Vac-
cinia that are engineered to achieve a selective oncolysis have great potency of
oncolysis. [1,2,3,4]. For history on oncolytic virotherapy, see [1] and [5].

The idea of eliminating the tumors by the viruses was introduced at the
beginning of the twentieth century. (The first reported cancer remission due
to the viral infection was described in 1904 for a woman with myelogenous
leukemia after being infected with influenza). For several years, research in
this field was limited due to technology and virology limitations [6,7,8,9,10].
Over the last 50 years, thanks to rapid growth in genetic engineering and virol-
ogy, this therapeutic method has been studied by researchers, and promising
results are obtained. After decades of research, virotherapy has recently reached
clinical application and uses in combination with other therapeutic methods.
Some studies that confirm the influence of virotherapy in cancer treatment
include [11,12,13,14,15,16].

Although clinical and theoretical studies of virotherapy have shown promis-
ing results, this therapeutic method has not yet yielded the expected results.
Cancer cells, viruses, and the immune system influence the virotherapy, and
each can be very complex. So, it is hard to provide a clear picture of the dynam-
ics of virotherapy. Recently, for a better understanding of virotherapy dynamics
and to see all the possible outcomes, researchers use mathematical modeling
and analysis. The presented models are expressed in terms of ordinary differ-
ential equations [17,18,19,21,22,43], partial differential equations [20,23,24]
and delayed differential equations [25,26,27,28,29,30,31,32,33,34,44].

One of the basic models for cancer virotherapy proposed by Wodarz includes
the dynamics between the tumor, virus, and virus-specific CTLs. Cytotoxic T
Lymphocytes (CTLs) are the immune system elements that can detect the
virus on infected cells and kill the infected cells. So, in virotherapy, the tumor
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cells are destroyed in two ways: Some of the tumor cells die directly from the
infection, and some are identified and removed by the virus-specific CTLs after
the infection. Wodarz presented the following model [35]:




dx

dt
= rx(1− x+ y

K
)− dx− βxv

dy

dt
= βxy + sy(1− x+ y

K
)− ay − pvyzv

dzv
dt

= cvyzv − bzv.

This model consists of three variables: uninfected tumor cells (x), infected
tumor cells (y), and virus-specific CTLs (zv). The tumor grows in a logistic
model at a rate r, and die at a rate d by the immune system. The maximum size
or space that the tumor is allowed to occupy is given by its carrying capacity
K. The virus spreads to tumor cells at a rate of β. Infected tumor cells are
killed by the virus at a rate of a and grow in a logistic fashion at a rate of s.
The virus-specific CTL expands in response to the antigen at a rate of cv and
decays at a rate of b. The CTL kills the infected tumor cells at a rate of pv.

The virus lytic cycle is one of the main factors in virotherapy is ignoring in
most of the presented mathematical models. After injecting into the tumor, the
virus undergoes a process called the viral lytic cycle. First, the virus must enter
the cell through the plasma membrane. After attaching to a receptor on the cell
membrane, the virus releases its genetic materials into the cell. These stages
are called adsorption and penetration. The third stage is integration that the
host cell gene expression is arrested, and viral materials are embedded into the
host cell nucleus. The fourth stage is biosynthesis that the virus uses the cell
machinery to make large amount of viral components, and at the meantime,
destroys the host’s DNA. Then, it enters the last two stages, maturation and
lysis. When many copies of viral components are made, they are assembled into
complete viruses. These stages direct the production of enzymes that break
down the host cell membrane. The cell eventually bursts, and new viruses
come out. The number of newly formed viruses is called the burst size of
the virus which is an important factor in the dynamics of virotherapy [17].
During the lytic cycle, each stage is mediated by a diverse group of proteins
and needs time to complete [21,37,38,39,40]. These stages can differ among
individual viruses and influence their spread rate and oncolytic potential. So,
it is necessary and realistic to incorporate the role of the lytic virus cycle into
mathematical models. Several clinical studies have also confirmed the existence
of such a delay between the virus injection and the tumor volume change. For
example, Oyama et al. [41] studied oncolytic virotherapy for human prostate
cancer by conditionally replicating herpes simplex virus 1 vector G207. For the
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first 2 days after the injection of G207, no significant changes were observed in
the diameter of the tumor. Hsieh et al. [13] researched on the antitumor effect
of Ad5WS2 on subcutaneous and ascites ML-1 tumors and for the first twenty
days after the injection, tumor volume did not have any meaningful change.

Using the Wodarz model and considering the role of the virus lytic cycle,
we propose the following model:




dx

dt
= rx(1− x+ y

K
)− dx− βxv

dy

dt
= βxy + sy(1− x+ y

K
)− pyz − ay(t− τ)

dz

dt
= qyz − ez.

When an oncolytic virus infects a cancer cell, it takes some time to complete
the virus lytic cycle. Then the new viruses are born, and the cancer cell dies.
So, the infected cells die with a delay after the infection. In the above model,
the term ay(t − τ) stands for the time delay caused by the virus lytic cycle.
By incorporating the role of the lytic cycle, we will have a more realistic model
than the original one.

In the rest of this paper, in section 2, we will analyze the positivity of
the solutions, equilibria, and their stability for the original model. In section
3, we will study the positivity of the solutions and investigate the existence
of a Hopf bifurcation for the model. Section 4 is devoted to confirming the
results by providing numerical simulations and analyzing biological aspects of
the mathematical results.

2 - Preliminary results

In this section, we provide some mathematical analyses of the original
model, which will be used in the next section for the delayed model. We deter-
mine the positivity of the solutions, stability of the equilibria, and the existence
of the periodic solutions. First, we change the variable as below:

x = Kx̄, y = Kȳ, z = Kz̄, β̄ = Kβ, p̄ = Kp, q̄ = Kq.
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So, after dropping the overbar notation for simplifying, we have the following
model:

(2.1)




dx

dt
= rx(1− x− y)− dx− βxy

dy

dt
= βxy + sy(1− x− y)− pyz − ay(t− τ)

dz

dt
= qyz − ez.

In the absence of delay (τ = 0),

(2.2)




dx

dt
= rx(1− x− y)− dx− βxy

dy

dt
= βxy + sy(1− x− y)− pyz − ay

dz

dt
= qyz − ez.

Define
Ω+ = {(x, y, z)|x ≥ 0, y ≥ 0, z ≥ 0, 0 ≤ x+ y ≤ 1} ⊂ R3.

The following lemma shows that Ω+ is a positively invariant domain for the
system(2.2). It is also a biologically meaningful range for the variables.

L emma 2.1. Suppose that (x(t), y(t), z(t)) be a solution of system (2.2),
and x(0) > 0, y(0) > 0, z(0) > 0. Then x(t) > 0, y(t) > 0 and z(t) > 0 for all
t ≥ 0. Moreover if 0 < x(0) + y(0) < 1, then 0 ≤ x(t) + y(t) ≤ 1.

P r o o f. It is clear that the coordinate planes yz(x = 0), xz(y = 0) and
xy(z = 0) are invariant sets, so they cannot be reached in a finite time starting
outside them, thanks to the Existence and Uniqueness theorem for ODEs. This
implies that if x(0) > 0, y(0) > 0, z(0) > 0, then the solution (x(t), y(t), z(t))
can not intersect the coordinate planes, so for all t ≥ 0, x(t) > 0, y(t) > 0 and
z(t) > 0.

Furthermore,

x′(t) + y′(t) = rx(1− x− y)− dx− βxy + βxy + sy(1− x− y)− pyz − ay

≤ (rx+ sy)(1− (x+ y) ≤ M(x+ y)(1− (x+ y))

So, x′(t) + y′(t) ≤ M(x + y)(1 − (x + y)), where M = max {s, r}. Since
0 < x(0) + y(0) < 1, so by the comparison theorem, 0 ≤ x(t) + y(t) ≤ 1 for all
t ≥ 0. �
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2.1 - Equilibria analysis

The equilibria of the system (2.2) are

E0 = (0, 0, 0), E1 =
(r − d

r
, 0, 0), E2 = (0,

s− a

s
, 0
)
,

E3 = (0, ŷ, ẑ) =
(
0,

e

q
,
q(s− a)− se

pq

)
,

Ē = (x̄, ȳ, 0) =
(a(r + β)− s(d+ β)

β(r + β − s)
,
r(β − a) + d(s− β)

β(r + β − s)
, 0
)

and
E∗ = (x∗, y∗, z∗) =

(q(r − d)− e(r + β)

qr
,
e

q
,
−aqr + dq(s− β) + β(rq − e(r + β − s))

pqr

)
.

One reasonable assumption in (2.2) is d < r because d ≥ r means that the
immune system can demolish tumor cells, so virotherapy will not be needed.
Throughout this paper, we assume that d < r. Furthermore, we assume that
the infection rate of the tumor is bigger than the rate of growth of infected
cells, i. e β > s.

The equilibrium points are biologically valid if their components are non-
negative and the sum of the first and second components is less than one. Since
we assumed d < r, these conditions satisfy at E0 and E1. If s > a, then E2

exists and is biologically valid. When

qs > qa+ se and pq > q(s− a) + e(p− s),

the component of E3 are positive and biologically meaningful. To have these
conditions at Ē, it is necessary and sufficient that

0 < a− d < β, a(r + β) > s(d+ β) and ds+ rβ > ar + dβ.

Finally, if x∗ > 0 and y∗ > 0, we have 0 < x∗ + y∗ = qr−dq−eβ
qr < 1. So, the

necessary and sufficient conditions to E∗ be biologically valid is

(2.3) qr > dq + e(β + r) and q(ds+ βr) + βes > q(ar + dβ) + βe(r − β).

Now we determine the stability of the equilibrium points by using the varia-
tional matrix of the system(2.2), which is given by




r − 2rx− ry − d− βy −(β + r)x 0

(β − s)y βx+ s− sx− 2sy − pz − a −py

0 qz qy − e


 .
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Stability of E0. The variational matrix at E0 is




r 0 0

b −e 0

0 0 −q


 .

As r > 0, so E0 is an unstable equilibrium point.

Stability of E1. Since for E1 we have r− 2rx− ry− d−βy = −rx, so the
variational matrix at E1 is




d− r 0 0

0 (β − s)( r−d
r ) + s− a 0

0 0 −e


 .

Because of r > d, so E1 is asymptotically stable if (β − s)( r−d
r ) + (s− a) < 0.

Otherwise if (β − s)( r−d
r ) + (s− a) > 0, E1 is a saddle point.

Stability of E2. When s > a, the equilibrium E2 = (0, s−a
s , 0) exists, and

the variational matrix is given by



(r − d)− (β + r)( s−a
s ) 0 0

(β − s)( s−a
s ) a− s p(a−s

s )

0 0 q( s−a
s )− e


 .

The eigenvalues are λ1 = a−s, λ2 = q( s−a
s )−e and λ3 = (r−d)−(β+r)( s−a

s ).
Since λ1 = a−s < 0, so if e

q > s−a
s and r−d < (r+β)( s−a

s ), E2 is asymptotically

stable. If e
q < s−a

s or r − d > (r + β)( s−a
s ), E2 is unstable.

Stability of E3. It is clear that the variational matrix at E3 is



r − d− (β + r)ŷ 0 0

(β − s)ŷ −sŷ −pŷ

0 qẑ 0


 ,

with the characteristic polynomial f̂(λ) = ((r−d)−(β+r)ŷ−λ)(λ2+sŷλ+pqŷẑ).
The roots of λ2 + sŷλ+ pqŷẑ have negative real parts, so the stability of E3 is
determined by the sign of r−d−(β+r)ŷ. If r−d < e(β+r)e

q , E3 is asymptotically

stable, and otherwise if r − d > e(β+r)e
q , E3 is a saddle equilibrium point.

Stability of Ē. The variational matrix at Ē is



−rx̄ −(r + β)x̄ 0

(β − s)ȳ −sȳ −pȳ

0 0 qȳ − e


 .
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So, the characteristic polynomial is ∆(λ) = (qȳ − e − λ)f(λ), where f(λ) =
λ2+(rx̄+sȳ)λ+β(β−s+r)x̄ȳ. Since rx̄+sȳ > 0 and β(β−s+r)x̄ȳ > 0,
so, all roots of f(λ) have negative real parts and the stability of Ē is determined
by the sign of qȳ− e. Therefore, if qȳ− e < 0, then Ē is asymptotically stable,
and otherwise if qȳ − e > 0 the equilibrium point Ē is unstable. In the next
lemma, we investigate the stability of E∗.

L emma 2.2. If the condition (2.3) holds, E∗ is asymptotically stable.

P r o o f. The variational matrix at E∗ is



−rx∗ −(r + β)x∗ 0

(β − s)y∗ −sy∗ −py∗

0 qz∗ 0


 ,

with the characteristic polynomial f(λ) = λ3 + a1λ
2 + a2λ+ a3, by

a1 = rx∗+ sy∗, a2 = rsx∗y∗+ pqy∗z∗+(β+ r)(β− s)x∗y∗, a3 = pqrx∗y∗z∗.

We know that if all roots of the characteristic polynomial have negative real
parts, E∗ is asymptotically stable. On the other hand, by the Routh-Hurwitz
Criterion [45], all roots of f(λ) = 0 have negative real parts if and only if

H1 =
∣∣a1

∣∣ > 0, H2 =

∣∣∣∣
a1 a3
1 a2

∣∣∣∣ > 0, H3 =

∣∣∣∣∣∣
a1 a3 0
1 a2 0
0 a1 a3

∣∣∣∣∣∣
= a3H2 > 0.

Since x∗, y∗, z∗ and the parameters are positive, a1 > 0 and a3 > 0. Therefore,
all roots of the characteristic equation have negative real parts if and only if
H2 = a1a2 − a3 > 0. By a direct calculation (note that β > s.) we get

a1a2 − a3 = βr(β − s+ r)x∗2 + (β − s+ r)βsx∗y∗ + pqsy∗z∗ > 0.

So, H1, H2, H3 > 0, which implies that E∗ is asymptotically stable. �

From a biological point of view, the stability of E0 corresponds to the tumor
removal and the treatment success, but E0 is inherently unstable, so virotherapy
does not lead to complete tumor removal. Since the stability of E1 is equivalent
to the existence of uninfected tumor cells, it is undesirable. The existence of E2

means that all of the tumor cells are infected, but still, tumor cells exist, so its
stability is not desirable. The stability of E3 means that the tumor population
is approaching zero, but there are still virus-infected cancer cells, so the stability
of this equilibrium point is not desirable. The existence of Ē means that there
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are infected and disinfected tumor cells, and its stability leads to treatment
failure. The most critical equilibrium point is E∗ because the existence of
E∗ means that tumor cells, infected tumor cells, and CTLs exist, and these
conditions are more consistent with the clinical observations. Furthermore,
the stability of E∗ means that the tumor size remains in a controlled size, so
we have a chance to get treatment after the virotherapy, using other methods
such as chemotherapy. As we saw in the previous lemma, E∗ is asymptotically
stable, so we expect the tumor size decrease, but as we will see, if we consider
the role of the viral lytic cycle in the model, E∗ can become unstable.

One of our main goals in this paper is to show the superiority of the delayed
model over the original model. As we saw, the stability of E0, E1, E2, E3 and
Ē, depending on the parameter values, can be changed in the original model.
Therefore, studying the stability of these equilibrium points in the delayed
model will not lead to new results. On the other hand, we saw that E∗ is
always asymptotically stable, but incorporating the delay in the model leads to
change the stability of E∗ and achieve different results from the original model.
Therefore, in the next section, we only study the stability of E∗ in the delayed
model.

3 - Stability and Hopf bifurcation in the delayed model

In this section, we analyze the delayed model (2.1) and focus specifically
on the stability and Hopf bifurcation in equilibrium point E∗. By the trans-
formation u1 = x − x∗, u2 = y − y∗, u3 = z − z∗, the system (2.1) is changed
to

dU

dt
= M1U(t) +M2U(t− τ) + f(u1, u2, u3)

where U = (u1, u2, u3)
T ,

M2 =



0 0 0

0 −a 0

0 0 0


 , M1 =



A B 0

C D E

0 F 0


 ,

f(u1,u2,u3) =




−(β + r)u1u2 − ru21
(β − s)u1u2 − su22 − pu2u3

qu2u3




and

A = −rx∗, B = −(β+r)x∗, C = (β−s)y∗, D = −sy∗+a, E = −py∗, F = qz∗.
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The characteristic polynomial corresponding to the linearized system is

∆(λ) = det(λI −M1 −M2e
−λτ ).

So, the characteristic equation can be written as

(3.1) ∆(λ) = λ3 +m1λ
2 +m2λ+m3 + (n1λ

2 + n2λ)e
−λτ = 0,

where

m1 = −(A+D) m2 = AD−BC −EF, m3 = AEF, n1 = a, n2 = −Aa.

Clearly, iω(ω > 0) is a root of ∆(λ) = 0 if and only if

− iω3 −m1ω
2 + im2ω +m3 − n1ω

2 cosωτ

+ in1ω
2 sinωτ + in2ω cosωτ + n2ω sinωτ = 0.

Separating the real and imaginary parts, we get
{

−ω3 +m2ω + n1ω
2 sinωτ + n2ω cosωτ = 0

−m1ω
2 +m3 − n1ω

2 cosωτ + n2ω sinωτ = 0.

By squaring and adding both equations together, we have

(3.2) ω6 + (m2
1 − 2m2 − n2

1)ω
4 + (m2

2 − 2m1m3 − n2
2)ω

2 +m2
3 = 0.

Denote z = ω2, P = m2
1 − 2m2 − n2

1, Q = m2
2 − 2m1m3 − n2

2 and R = m2
3.

So, the equation (3.2) can be written as

(3.3) H(z) = z3 + Pz2 +Qz +R = 0.

Since R = m2
3 > 0 and limz→−∞H(z) = −∞, so it is obvious that H(z) has at

least one negative root. Without loss of generality, we assume that the equation
(3.3) has two positive roots, 0 < z1 < z0. So, the equation (3.2) has two positive
roots ω0 =

√
z0, and ω1 =

√
z1. For k = 0, 1 and j = 0, 1, 2, 3, ..., we define

(3.4) τ jk =
1

ωk
arccos

[(−n1ω
2
k)(m1ω

2
k −m3) + n2ωk(ω

3
k −m2ωk)

(−n1ω2
k)

2 + n2
2ω

2
k

]
+

2πj

ωk
,

and we take τ0 = min
{
τ jk

}j≥0

k=0,1
.

So, ±iωk is a pair of purely imaginary roots of (3.1) with τ = τ jk . At τ = 0,
the equation (3.1) becomes

λ3 +m1λ
2 +m2λ+m3 + (n1λ

2 + n2λ) = 0.



[11] mathematical analysis for oncolytic virotherapy 231

We studied the roots of this equation in the previous section, and we saw that
when in the system (2.2) β > s and r > d, all roots have negative real parts
and E∗ is asymptotically stable. Since R = m2

3 > 0, based on [42] we have the
following lemma.

L emma 3.1. Suppose that in the system (2.1) r > d and β > s.

(i) If ∆ = P 2 − 3Q < 0, then all roots of the Eq. (3.1) have negative real
parts for all τ ≥ 0.

(ii) If z̄ = −P+
√
∆

3 > 0 and H(z̄) < 0, then all roots of Eq. (3.1) have negative
real parts when τ ∈ [0, τ0).

Now we investigate Hopf bifurcation of the model (2.1) at E∗. Suppose that

z̄ = −P+
√
∆

3 > 0 and H(z̄) < 0. As z̄ is local minimum of H(z) and r > 0, so
(3.3) has two positive roots z1 < z0 where H ′(z1) < 0 and H ′(z0) > 0.

Let ω0 =
√
z0, τ0 = minj≥0

{
τ j0

}
( defined in(3.4)), and λ(τ) = α(τ)+iω(τ)

be the root of (3.1) satisfying

(3.5) α(τ0) = 0, ω(τ0) = ω0.

To arise Hopf bifurcation we need to

Ω = sign

{
d(Reλ)

dτ

}

τ=τ0

= sign

{
Re(

dλ

dτ
)−1

}

τ=τ0

> 0.

By differentiating both sides of (3.1) with respect to τ , we have

[
(3λ2 + 2m1λ+m2) + e−λτ (2n1λ+ n2)− τe−λτ (n1λ

2 + n2λ)
](dλ

dτ

)

= λe−λτ (n1λ
2 + n2λ),

which leads to

(dλ
dτ

)−1
=

2λ3 +m1λ
2 −m3

−λ2(λ3 +m1λ2 +m2λ+m3)
+

n1λ
2

λ2(n1λ2 + n2λ)
− τ

λ
.

So,

Ω = sign

{
Re

(dλ
dτ

)−1
}

τ=τ0

=
1

ω2
0

sign
[
Re

{
(m3 +m1ω

2
0) + i(2ω3

0)

(m1ω2
0 −m3) + i(ω3

0 −m2ω0)
+

n1ω
2
0

−n1ω2
0 + in2ω0

}]

=
1

ω2
0

sign
[2ω6

0 + (m2
1 − 2m2 − n2

1)ω
4
0 −m2

3

n2
1ω

4
0 + n2

2ω
2
0

]
.
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We know that

2ω6
0 + (m2

1 − 2m2 − n2
1)ω

4
0 −m2

3 = 2z30 + Pz20 −R > 0.

Because if 2z30 + Pz20 −R ≤ 0, then

H(z0) = z30 + Pz20 +Qz0 +R ≥ z30 + Pz20 +Qz0 + 2z30 + Pz20

= 3z30 + 2Pz20 +Qz0 = z0H
′(z0).

This is contradiction since H(z0) = 0, but z0 > 0, H ′(z0) > 0. So,

Ω = sign

{
Re(

dλ

dτ
)−1

}

τ=τ0

> 0.

Therefore, the transversality condition holds successfully, and the system un-
dergoes Hopf bifurcation at E∗ for bifurcation value τ = τ0.

We state this argument in the next theorem.

Th e o r em 3.2. Suppose that r > d and β > s.

(I) If ∆ = p2 − 3q < 0, then E∗ is asymptotically stable for all τ ≥ 0.

(II) If z̄ = −p+
√
∆

3 > 0 and H(z̄) < 0, then there exist a value τ0, such that
all roots of the Eq. (3.1) have negative real parts for τ ∈ [0, τ0). When
τ = τ0, the system (2.1) undergoes Hopf bifurcation at E∗.

4 - Numerical simulation and conclusion

In this section, to validate the mathematical analysis, we present a numerical
example for parameters, and we determine the stability of the equilibrium point
E∗ in the system (2.1) and (2.2). Based on the lemma (2.2), when r > d and
β > s, E∗ is asymptotically stable equilibrium point of system (2.2). We take
a set of parameter values as below:

(4.1) r = 2, d = 0.5, β = 1.5, s = 1, p = 1, a = 0.1, q = 1.5, e = 0.1.

For these parameter values, the equilibrium point is E∗≈(0.633, 0.066, 1.15).
Figure 1 shows the phase space of the system (2.2), which confirmes the stability
of E∗.

On the other hand, with these parameter values, the delayed model (2.1) is
transformed to:

(4.2)




dx

dt
= 2x(1− x− y)− 0.5x− 1.5xy

dy

dt
= 1.5xy + y(1− x− y)− yz − 0.1y(t− τ)

dz

dt
= 1.5yz − 0.1z
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Fig. 1. E∗ is asymptotically stable equilibrium point of system (2.2).

By a direct calculation, we get

P = 1.21778, Q = −0.353844, R = 0.0212188, z̄ =
−P +

√
∆

3
= 0.125792

and
H(z) = z3 + 1.21778z − 0.353844z + 0.0212188.

H(z) = 0 Has two positive roots z1 = 0.0896911 and z0 = 0.161094. So,
ω0 =

√
z0 = 0.401365 and τ0 ≈ 4.40712. For τ < 4.40712, E∗ is asymptotically

stable, in τ = 4.40712 system undergoes Hopf bifurcation and for τ > 4.40712,
E∗ becomes unstable and system has a periodic solution. We simulate these
changes in Figure 2. We have taken (x0, y0, z0) = (0.652, 0.066, 1.149). For
τ = 1.40 < 4.40712, E∗ is asymptotically stable (Figure 2, A1 and B1). For
τ = 4.40712 system undergoes Hopf bifurcation (Figure 2, A2 and B2). Since it
is not possible to obtain the periodic solution of the system, so Figure 2 (A2 and
B2), shows a solution close to the periodic solution. When τ = 8.40 > 4.40712,
E∗ becomes unstable, and the system has a stable periodic solution that attracts
solutions around (Figure 2, A3 and B3). We have used dde23 by MATLAB,
version R2017a.

As we saw in the mathematical analysis of the original model, E∗ is always
stable, which means that if we follow the treatment process based on the model
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Fig. 2. Hopf bifurcation at E∗. ( In the left panels , the orange, blue and red curves are
z, x and y respectively).

(2.2), we hope to have a comparative treatment, but this can be misleading. By
considering the role of the lytic cycle and simulating a delay in the model, we
concluded that Hopf bifurcation could occur, and contrary to our expectations,
E∗ can become unstable. The presence of the Hopf cycle is not desirable, as
it means oscillation in the size of the tumor. Being aware of the possibility of
Hopf bifurcation leads to paying more attention to the patient’s condition. As
a clinical application, the oncolytic virus can genetically be modified in such
a way that the time of the lytic cycle is not close to the bifurcation value to
maintain the stability of E∗.
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