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Abstract. Recently, fixed point results on bicomplex valued metric
spaces have had many applications in functional analysis, graph the-
ory, probability theory and other areas. Very recently, Fuli He et al.
(J. Funct. Spaces, 2020, Art. ID 4070324) introduced fixed point theo-
rems for Mizoguchi-Takahashi type contraction in bicomplex-valued met-
ric spaces and applications. In this direction of research, we demonstrate
some fixed point theorems in ordered bicomplex valued metric spaces for
type contraction mappings with illustrative examples. The reported re-
sults here along with those stated in earlier papers were also specified.
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1 - Introduction

In recent decades, fixed point theories are very important tools in the
different areas of mathematical analysis, applied mathematics and other science,
which have engaged many researchers (see, e.g., [1,2,4,5,6,7,11]). Nowadays,
there have been a number of generalizations of metric spaces and some fixed
point results. In particular, Azam et al. [9] proved some fixed point results in
complex-valued metric spaces. The extension of this work established recently
in [17].

Later on, results on bicomplex functional analysis and their applications
have been presented and discussed by many authors (see, for example, [3,13,
14]).
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In [10], Choi et al. introduced the notion of bicomplex-valued metric space
which is a generalization of complex-valued metric space and proved some var-
ious fixed point results. Also, see, [15].

Very recently, some new fixed point theorems for contractive maps that
satisfied Mizoguchi-Takahashi type condition in the setting of bicomplex-valued
metric spaces are studied by [12].

Motivated essentially by the above-mentioned results. In this manuscript,
we demonstrate a unique common fixed point theorem for contractive mappings
satisfying the notion of weak compatibility. To substantiate the authenticity
of our results, some illustrative examples are also outlined. Furthermore, some
special cases and consequences of our main results are presented.

2 - Preliminaries

In this section, we recall some definitions and terminologies which will
be used to prove the main results.

2.1 - Bicomplex numbers

The set of bicomplex numbers denoted by BC is the first setting in an
infinite sequence of multicomplex sets which are generalizations of the set of
complex numbers C. Here we recall the set of bicomplex numbers BC (see, for
example, [13,16]):

BC = {w = x0 + i1x1 + i2x2 + i1i2x3; xk ∈ R, (k = 0, 1, 2, 3)}.

Since each element w in BC can be written as w = x0 + i1x1 + i2(x2 + i1x3) or
w = z1 + i2z2; (z1, z2 ∈ C) we can also express BC as

BC := {w = z1 + i2z2, z1, z2 ∈ C},(2.1)

where z1 = x0+ i1x1, z2 = x2+ i1x3 and i1, i2 are independent imaginary units
such that i21 = −1 = i22. The product of i1 and i2 defines a hyperbolic unit j
such that j2 = 1. The product of units is commutative and is defined as

i1i2 = j, i1j = −i2, i2j = −i1.

With the addition and multiplication of two bicomplex numbers defined in
the obvious way, the set BC makes up a commutative ring. Three important
subsets of BC can be specified as

C(ik) := {x+ yik; x, y ∈ R}, for k = 1, 2.(2.2)
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D := {x+ yj; x, y ∈ R}.(2.3)

Each of the sets C(ik) is isomorphic to the field of complex numbers, while D
is the set of the so-called hyperbolic numbers.

2.2 - Conjugation and moduli

Three kinds of conjugation can be defined on bicomplex numbers. With
w specified as in (2.1) and the bar ·̄ denoting complex conjugation in C, we
define

w†1 := z1 + z2 i2, w†2 := z1 − z2 i2, w†3 := z1 − z2 i2.(2.4)

It is easy to check that each conjugation has the following properties

(u+ v)†k = u†k + v†k , (u†k)†k = u, (u.v)†k = u†k .v†k .(2.5)

here u, v ∈ BC and k = 1, 2, 3. With each kind of conjugation, one can define
a specific bicomplex modulus as

|w|2i1 :=w.w†2 = z21 + z22 ∈ C(i1),
|w|2i2 :=w.w†1 = (|z1|2 − |z2|2) + 2Re(z1z2)i2 ∈ C(i2),
|w|2j :=w.w†3 = (|z1|2 + |z2|2)− 2Im(z1z2)j ∈ D.

It can be shown that |u.v|2s = |u|2s.|v|2s, where s = i1, i2 or j.
A norm of a bicomplex number w = z1 + i2z2 denoted by ‖w‖ is defined by

‖w‖ = ‖z1 + i2z2‖ = (|z1|2 + |z2|2)
1
2 ,

which, upon choosing w = x0 + i1x1 + i2x2 + i1i2x3, (xk ∈ R, k = 0, 1, 2, 3),
gives

‖w‖ = (x20 + x21 + x22 + x23)
1
2 .

For any two bicomplex numbers u, v ∈ BC, one can easily verify that ‖u+v‖ ≤
‖u‖+‖v‖, ‖αu‖ = α‖u‖, where α is nonnegative real number. Further, for any
two bicomplex numbers u, v ∈ BC, ‖uv‖ ≤

√
2‖u‖‖v‖ holds.

Next, we recall some necessary definitions and lemmas.
First, define a partial order relation ≺i1 on C as u1 ∈ C, u1 ≺i1 v1 if and

only if Re(u1) < Re(v1) and Im(u1) < Im(v1). Let u = u1 + i2u2 ∈ BC and
v = v1+ i2v2 ∈ BC, then we define a partial order relation �i2 on BC as follows

u �i2 v ⇐⇒ u1 �i1 v1 and u2 �i1 v2,
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where ≺i1 is a partial order relation on C and �i1 is the reflexive closure of ≺i .

It is easy to verify 0 ≺i2 u ≺i2 v =⇒ ‖u‖ ≤ ‖v‖.
The definition of the complex metric space is introduced in [9], we extend

this definition to Bicomplex analysis as follows.

D e f i n i t i o n 2.1. Let X be a nonempty set. A function dBC : X ×X −→
BC is called a bicomplex-valued metric on X if for x, y, z ∈ X the following
conditions are satisfied:

(m1) 0 �i2 dBC(x, y),

(m2) dBC(x, y) = 0 if and only if x = y,

(m3) dBC(x, y) = dBC(y, x),

(m4) dBC(x, y) �i2 dBC(x, z) + dBC(z, y).

Then (X, dBC) is called a bicomplex-valued metric space.

Some known examples of bicomplex-valued metric, which show that a
bicomplex-valued metric, are the following.

E x amp l e 2.2. On set of real numbers together consider the functionals

d1BC(x, y) = (1 + i1 + i2 + i1i2)|x− y|

d2BC(x, y) = i1i2|x− y|

for all x, y ∈ R where |.| is the usual real modulus. One can easily check that
(X, d1BC), (X, d2BC) are a bicomplex-valued metric spaces.

A bicomplex-valued metric space (X, dBC) together with a partial order
relation �i2 on X is called partially ordered bicomplex-valued metric space.

D e f i n i t i o n 2.3. [12] Let (xn) be a sequence in a bicomplex-valued metric
space (X, dBC). The sequence (xn) is said to converge to x ∈ X if and only if for
any 0 ≺i2 ε ∈ BC, there exists N ∈ N depending on ε such that dBC(xn, x) ≺i2 ε
for all n > N . It is denoted by xn → x as n → +∞ or lim

n→+∞
xn = x.

D e f i n i t i o n 2.4. [12] A sequence (xn) in a bicomplex-valued metric space
(X, dBC) is said to be a Cauchy sequence if and only if for any 0 ≺i2 ε ∈ BC,
there exists N ∈ N depending on ε such that dBC(xn, xm) ≺i2 ε for all n,m > N

De f i n i t i o n 2.5. [12] A bicomplex-valued metric space (X, dBC) is said to
be complete if and only if every Cauchy sequence in X converges in X.
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L emma 2.6 ([10]). Let (X, dBC) be a bicomplex-valued metric space and
(xn) be a sequence in X. Then (xn) converges to x ∈ X if and only if
‖dBC(xn, x)‖ → 0 as n → +∞.

L emma 2.7 ([10]). Let (X, dBC) be a bicomplex-valued metric space and
(xn) be a sequence in X such that lim

n→+∞
xn = x. Then for any a ∈ X,

lim
n→+∞

‖dBC(xn, a)‖ = ‖dBC(x, a)‖.

Let (X, d) be a metric space and T, S : X → X be two mappings. A point
x ∈ X is said to be a coincidence point of T and S if and only if Sx = Tx and
a point y ∈ X is said to be a common fixed point of T and S if and only if
Sx = Tx = x.

D e f i n i t i o n 2.8 ([1,15]). The mappings T, S : X → X are called com-
muting if TSx = STx for all x ∈ X, compatible if lim

n→+∞
d(TSxn, STxn) = 0

whenever (xn) is a sequence such that lim
n→+∞

Txn = lim
n→+∞

Sxn = t for some t

in X, weakly compatible if they commute at their coincidence points, that is,
if STx = TSx whenever Sx = Tx.

R ema r k 2.9. For the partially order set (X,�), we say that S is non-
decreasing if for x, y ∈ X, x � y, we have Sx � Sy. Similarly, we say that S
is non-increasing if for x, y ∈ X, x � y, we have Sx � Sy and we say that T
is S−non-decreasing if for x, y ∈ X, Sx � Sy, we have Tx � Ty. Note that if
S is the identity mapping, then T is S−non-decreasing means T is monotone
nondecreasing.

A subset Y of a partially ordered set X is said to be well-ordered if every
two elements of Y are comparable.

3 - Statement of Results

In this section, we will present some fixed point theorems in ordered
bicomplex-valued metric spaces for generalized rational type contraction map-
pings. Furthermore, we will give examples and applications to our main results.
The first result in this work is the following theorem.

Th e o r em 3.1. Let (X,�, dBC) be a partially ordered complete bicomplex-
valued metric space. Suppose that T and S are continuous self mappings on X,
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T (X) ⊆ S(X), T is a S− non-decreasing mapping and

dBC(Tx, Ty) �i2 α
(dBC(Sx, Tx)dBC(Sy, Ty)

dBC(Sx, Sy)

)
+ βd(Sx, Sy)

+ γ
[
dBC(Sx, Tx) + dBC(Sy, Ty)

]

+ δ
[
dBC(Sx, Ty) + dBC(Sy, Tx)

]
,

for all x, y ∈ X with Sx � Sy, Sx �= Sy and for some α, β, γ, δ ∈ [0, 1) with
α + 2β + 2γ + 2δ < 1. If there exists x0 ∈ X such that Sx0 � Tx0, T and S
are compatible, then T and S have a coincidence point.

P r o o f. By the condition of the theorem there exists x0 ∈ X such that
Sx0 � Tx0. Since T (X) ⊆ S(X), we can find a point x1 ∈ X such that
Sx1 = Tx0, then Sx0 � Tx0 = Sx1. Since T is S−non-decreasing, we have
Sx1 = Tx0 � Tx1. In this way, we construct the sequence (xn) recursively as

Txn = Sxn+1 for all n ≥ 1,

for which

Sx0 � Tx0 = Sx1 � Tx1 = Sx2 � Tx2 � ...

� Txn−1 = Sxn � Txn = Sxn+1 � ... .

We suppose that dBC(Txn, Txn+1) �i2 0 for all n. If not, then Txn+1 = Txn
for some n, Txn+1 = Sxn+1, i.e., T and S have a coincidence point xn+1, and
thus, we have the result. Consider

dBC(Txn+1, Txn)

�i2α
(dBC(Sxn+1, Txn+1)dBC(Sxn, Txn)

dBC(Sxn+1, fxn)

)
+ βdBC(Sxn+1, Sxn)

+ γ
[
dBC(Sxn+1, Txn+1) + dBC(Sxn, Txn)

]

+ δ
[
dBC(Sxn+1, Txn) + dBC(Sxn, Txn+1)

]

=α
(dBC(Sxn+1, Sxn+2)dBC(Sxn, Sxn+1)

dBC(Sxn+1, Sxn)

)
+ βdBC(Sxn+1, Sxn)

+ γ
[
dBC(Sxn+1, Sxn+2) + dBC(Sxn, Sxn+1)

]

+ δ
[
dBC(Sxn+1, Sxn+1) + dBC(Sxn, Sxn+2)

]

�i2αdBC(Sxn+1, Sxn+2) + βdBC(Sxn+1, Sxn)

+ γ
[
dBC(Sxn+1, Sxn+2) + dBC(Sxn, Sxn+1)

]

+ δ
[
dBC(Sxn, Sxn+1) + dBC(Sxn+1, Sxn+2)

]
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=(α+ γ + δ)dBC(Sxn+1, Sxn+2) + (β + γ + δ)dBC(Sxn, Sxn+1)

=(α+ γ + δ)dBC(Txn, Txn+1) + (β + γ + δ)dBC(Txn−1, Txn),

which implies that

dBC(Txn+1, Txn) �i2

(β + γ + δ)

1− (α+ γ + δ)
dBC(Txn, Txn−1).

Using mathematical induction we have

dBC(Txn+1, Txn) �i2

( β + γ + δ

1− (α+ γ + δ)

)n
dBC(Tx1, Tx0).

Put h = (β+γ+δ)
1−(α+γ+δ) , since α+β+2γ+2δ < 1, then 0 ≤ h < 1 and consequently

for all n > 0,

dBC(Txn+1, Txn+2) �i2hdBC(Txn, Txn+1) �i2 h2dBC(Txn−1, Txn)

�i2 . . . �i2 hn+1dBC(Tx0, Tx1).

Now, for m > n, we have

dBC(Txn,Txm)

�i2dBC(Txn, Txn+1) + dBC(Txn+1, Txn+2) + . . .+ dBC(Txm−1, Txm)

�i2(h
n + hn+1 + hn+2 + . . .+ hm−1)dBC(Tx0, Tx1)

�i2

hn

1− h
dBC(Tx0, Tx1).

That is,

‖ dBC(Txn, Txm) ‖≤ hn

1− h
‖ dBC(Tx0, Tx1) ‖ .

Taking limit as n → +∞, we obtain ‖ dBC(Txn, Txm) ‖→ 0, that is
dBC(Txn, Txm) → 0 as n → +∞. Therefore, (Txn) is a Cauchy sequence in the
complete bicomplex-valued metric space. Then, there exists u ∈ X such that

lim
n→+∞

dBC(Txn, u) = 0.

By the continuity of T , we have

lim
n→+∞

dBC(T (Txn), Tu) = 0.

Since Sxn+1 = Txn → u and the pair (T, S) is compatible, we have

lim
n→+∞

dBC(S(Txn), T (Sxn)) = 0.
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Then, since Txn → u as n → +∞ in (X, dBC), and S is continuous, we get
STxn → Su as n → +∞ in (X, dBC). Therefore, we get,

dBC(Tu, Su) �i2 dBC(Tu, T (Sxn)) + dBC(T (Sxn), fu)

�i2 dBC(Tu, T (Sxn)) + dBC(TSxn, STxn) + dBC(STxn, Su),

that is,

‖ dBC(Tu, Su) ‖ �i2 ‖ dBC(Tu, T (Sxn)) ‖ + ‖ dBC(T (Sxn), Su) ‖

�i2 ‖ dBC(Tu, T (Sxn)) ‖ + ‖ dBC(TSxn, STxn) ‖

+ ‖ dBC(STxn, Su) ‖ .

Letting n → +∞ in the above inequality, we get that ‖ dBC(Tu, Su) ‖= 0. i.e,
Tu = Su and u is a coincidence point of T and S. �

Ex amp l e 3.2. Let X = {1, 2, 3} reendowed with the partial order � is
defined as {(1, 1), (2, 2), (3, 3), (3, 1)}. Let a mapping dBC : X × X → BC be
defined by dBC(x, y) = (1+i1+i2+i1i2)|x−y|, (∀x, y ∈ X), where |.| is the usual
real modulus. One can easily check that (X, dBC) is a complete bicomplex-valued
metric on C.

Define T (1) = 1, T (2) = 2 and T (3) = 1 and S(1) = 1, S(2) = 2 and
S(3) = 3. Then, for x = 3, y = 1, we have d(Tx, Ty) = 0 and

dBC(T (3), T (1)) = 0 �i2 α
(dBC(S3, T3)dBC(S1, T1)

dBC(S3, S1)

)
+ βdBC(S3, S1)

+ γ
[
dBC(S3, T3) + dBC(S1, T1)

]

+ δ
[
dBC(S3, T1) + dBC(S1, T3)

]

= 2(β + γ + δ)(1 + i1 + i2 + i1i2).

Hence the inequality holds. On the other hand, it is obvious that T is S−non
decreasing mapping and there exists x0 = 3 such that Sx0 � Tx0 and 1 is a
unique common fixed point of S and T .

Ex amp l e 3.3. Let X = {0, 1, 3} reendowed with the partial order � is
defined as {(0, 0), (1, 1), (3, 3), (0, 1), (0, 3), (3, 1)}. Let a mapping d : X ×X →
BC be defined by dBC(x, y) = (i1i2)|x − y|, (∀x, y ∈ X), where |.| is the usual
real modulus.

Define Tx = 1, for all x ∈ X and S(0) = 3, S(1) = 1 and S(3) = 1. Then,
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for x = 0, y = 1, we have dBC(Tx, Ty) = 0 and

dBC(T0, T1) = 0 �i2 α
(dBC(S0, T0)dBC(S1, T1)

dBC(S0, S1)

)

+βdBC(S0, S1) + γ
[
dBC(S0, T0) + dBC(S1, T1)

]

+ δ
[
dBC(S0, T1) + dBC(S1, T0)

]

=i2 (β + γ + δ)d(3, 1)

=i2 2(β + γ + δ)(i1i2).

In the same way, for x = 0, y = 3, we have dBC(Tx, Ty) = 0 and

dBC(T0, T3) = 0 �i2 α
(dBC(S0, T0)dBC(S3, T3)

dBC(S0, S3)

)

+βdBC(S0, S3) + γ
[
dBC(S0, T0) + dBC(S3, T3)

]

+ δ
[
dBC(S0, T3) + dBC(S3, T0)

]

=i2 (β + γ + δ)dBC(3, 1)

=i2 2(β + γ + δ)(i1i2).

Hence the inequality holds. On the other hand, it is obvious that T is
S−non-decreasing mapping with respect to � and there exists x0 = 3 such
that Sx0 � Tx0, 1 is a common fixed point of S and T and 3 is a coincidence
fixed point of S and T .

As a consequence of Theorem 3.1, we have the following corollaries.

If S = I (the identity mapping) in Theorem 3.1, we have the following
result:

C o r o l l a r y 3.4. Let (X,�, dBC) be a partially ordered complete bicomplex-
valued metric space. Suppose that T is continuous self mapping on X, T is a
monotone non-decreasing mapping and

dBC(Tx, Ty) �i2 α
(dBC(x, Tx)d(y, Ty)

d(x, y)

)

+βdBC(x, y) + γ
[
dBC(x, Tx) + dBC(y, Ty)

]

+ δ
[
dBC(x, Ty) + dBC(y, Tx)

]
,

for all x, y ∈ X with x � y, x �= y and for some α, β, γ, δ ∈ [0, 1) with
α + β + 2γ + 2δ < 1. If there exists x0 ∈ X such that x0 � Tx0, then T
has a fixed point.
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If γ = δ = 0 in Theorem 3.1, we have the following result:

C o r o l l a r y 3.5. Let (X,�, dBC) be a partially ordered complete bicomplex-
valued metric space. T and S are continuous self mappings on X, T (X) ⊆
S(X), T is a f non-decreasing mapping and

dBC(Tx, Ty) �i2 α
(dBC(Sx, Tx)dBC(Sy, Ty)

dBC(fx, fy)

)
+ βdBC(Sx, Sy),

for all x, y ∈ X with Sx � Sy, Sx �= Sy and for some α, β ∈ [0, 1) with
α+β < 1. If there exists x0 ∈ X such that Sx0 � Tx0, T and S are compatible,
then T and S have a coincidence point.

Rema r k 3.6. Corollary 3.5 extends Theorem 2.1 of [8] from metric spaces
to bicomplex-valued metric spaces.

If β = 0 in Corollary 3.5 we have the following result:

C o r o l l a r y 3.7. Let (X,�, dBC) be a partially ordered complete bicomplex-
valued metric. T and S are continuous self mappings on X, T (X) ⊆ S(X), T
is a S non-decreasing mapping and

dBC(Tx, Ty) �i2 α
(d(Sx, Tx)dBC(Sy, Ty)

dBC(Sx, Sy)

)
,

for all x, y ∈ X with Sx � Sy, Sx �= Sy and for some α ∈ [0, 1) with
α < 1. If there exists x0 ∈ X such that Sx0 � Tx0, T and S are compati-
ble, then T and S have a coincidence point.

Rema r k 3.8. Corollary 3.7 extends Corollary 2.2 of [8] from metric spaces
to bicomplex-valued metric spaces.

In what follows, we prove that Theorem 3.1 is still valid for T not necessarily
continuous, assuming the following hypothesis in X :

if (xn) is a nondecreasing sequence in X such that
xn → x, then xn � x for all n ∈ N,

Th e o r em 3.9. Let (X,�, dBC) be a partially ordered complete bicomplex-
valued. Suppose that T and S are self mappings on X, T (X) ⊆ S(X), T is a
S-monotone non-decreasing mapping and

dBC(Tx, Ty) �i2 α
(dBC(Sx, Tx)dBC(Sy, Ty)

dBC(Sx, Sy)

)
+ βdBC(Sx, Sy)

+ γ
[
dBC(Sx, Tx) + d(Sy, Ty)

]

+ δ
[
dBC(Sx, Ty) + dBC(Sy, Tx)

]
,
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for all x, y ∈ X with Sx � Sy, Sx �= Sy and for some α, β, γ, δ ∈ [0, 1) with
α+ β + 2γ + 2δ < 1.

Also assume that S(X) is closed and for any non-decreasing sequence (xn)
in X which converges to x we have xn � x for all n. If there exists x0 ∈ X
such that Sx0 � Tx0, then T and f have a coincidence point.

Further, if T and S are weakly compatible, then T and S have a common
fixed point. Moreover, the set of common fixed points of T and S is well ordered
if and only if T and S have one and only one common fixed point.

P r o o f. Following the proof of Theorem 3.1, we have (Txn) is a Cauchy
sequence and so is (Sxn). Since S(X) is closed and X is complete,

lim
n→+∞

Txn = lim
n→+∞

Sxn = Su, for some u ∈ X.

Notice that the sequences (Txn) and (Sxn) are non-decreasing, then from our
assumptions we have

Txn � Su, and Sxn � Su, ∀n ∈ N.

Keeping in mind that T is S-monotone non-decreasing we get Txn � Tu for
all n, let n → +∞, we obtain Su � Tu. Suppose Su ≺ Tu (otherwise we
are done), construct a sequence (un) as u0 = u and Sun+1 = Tun for all n, a
similar argument as in the proof of Theorem 3.1 yields (Sun) is a non-decreasing
sequence and

lim
n→+∞

Tun = lim
n→+∞

Sun = Sv, for some v ∈ X.

From our assumptions it follows that

supSun � Sv and supTun � Sv.

Notice that
Sxn � Su � Su1 � · · · � Sun � · · · � Sv,

we distinguish two cases:

Case 1: Suppose there is n0 ≥ 1 with Sxn0 = Sun0 , then Sxn0 = Su =
Sun0 = Su1 = Tu, we are done.

Case 2: Suppose Sxn �= Sun for all n ≥ 1, then from the assumption we
obtain

dBC(Sxn+1, Sun+1) = dBC(Txn, Tun)

�i2 α
(d(Sxn, Txn)dBC(Sun, Tun)

dBC(Sxn, Sun)

)
+ βdBC(Sxn, Sun)

+ γ
[
dBC(Sxn, Txn) + dBC(Sun, Tun)

]

+ δ
[
dBC(Sxn, Tun) + dBC(Sun, Txn)

]
.
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Let n → +∞, we get dBC(Su, Sv) �i2 (β + 2δ)dBC(Su, Sv), which implies that
Su = Sv since β + 2δ < 1. Hence Su = Sv = Su1 = Tu.

Now suppose that T and f are weakly compatible. Let w = Tu = Su. Then
Tw = TSu = STu = Sw. Consider

dBC(T (u), T (w)) �i2 α
dBC(Su, Tu)dBC(Sw, Tw)

dBC(Su, Sw)
+ βdBC(Su, Sw)

+ γ[dBC(Su, Tu) + dBC(Sw, Tw)]

+ δ[dBC(Su, Tw) + dBC(Sw, Tu)]

�i2 βdBC(Tu, Tw) + δ[dBC(Tu, Tw) + dBC(Tw, Tu)]

�i2 (β + 2δ)dBC(Tu, Tw).

This implies that dBC(Tu, Tw) = 0, as β + 2δ < 1. Therefore, Tw = Sw = w.
Now suppose that the set of common fixed points of T and S is well ordered.
We claim that the common fixed point of T and S is unique. Assume on the
contrary that Tu = fSu = u and Tv = Sv = v but u �= v. Consider

dBC(u, v) = dBC(Tu, Tv)

�i2 α
dBC(Su, Tu)dBC(Sv, Tv)

dBC(Su, Sv)
+ βdBC(Su, Sv)

+ γ[dBC(Su, Tu) + dBC(Sv, Tv)] + δ[dBC(Su, Tv) + dBC(Sv, Tu)]

�i2 βdBC(Tu, Tv) + δ[dBC(Tu, Tv) + dBC(Tv, Tu)]

�i2 (β + 2δ)dBC(Tu, Tv).

This implies that dBC(u, v) = 0, as β + 2δ < 1. Hence u = v. Conversely, if T
and S have only one common fixed point then the set of common fixed points
of S and T being a singleton is well ordered, the proof is complete. �

According to Theorem 3.2, we have the following corollaries.
If we take γ = δ = 0 in Theorem 3.9 we get the following result:

C o r o l l a r y 3.10. Let (X,�, dBC) be a partially ordered complete bicomplex-
valued metric space. Suppose that T and S are self mappings on X, T (X) ⊆
S(X), T is a S-monotone non-decreasing mapping and

dBC(Tx, Ty) �i2 α
(dBC(Sx, Tx)dBC(Sy, Ty)

dBC(Sx, Sy)

)
+ βdBC(Sx, Sy),

for all x, y ∈ X with Sx � Sy, Sx �= Sy and for some α, β ∈ [0, 1) with
α+ β < 1.
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Also assume that S(X) is closed and for any non-decreasing sequence (xn) in
X which converges to x we have xn � x for all n. If there exists x0 ∈ X such
that Sx0 � Tx0, then T and f have a coincidence point.

Further, if T and S are weakly compatible, then T and S have a common
fixed point. Moreover, the set of common fixed points of T and S is well ordered
if and only if T and S have one and only one common fixed point.

Rema r k 3.11. Corollary 3.10 extends Theorem 2.3 [8] from metric spaces
to bicomplex-valued metric spaces.

C o r o l l a r y 3.12. Let (X,�, dBC) be a partially ordered complete bicomplex-
valued metric space. Suppose that T and S are self mappings on X, T (X) ⊆
S(X), T is a S-monotone non-decreasing mapping and

dBC(Tx, Ty) �i2 α
(dBC(Sx, Tx)dBC(Sy, Ty)

dBC(Sx, Sy)

)
,

for all x, y ∈ X with Sx � Sy, Sx �= Sy and for some α ∈ [0, 1). Also
assume that S(X) is closed and for any non-decreasing sequence (xn) in X
which converges to x we have xn � x for all n. If there exists x0 ∈ X such that
Sx0 � Tx0, then T and f have a coincidence point.

Further, if T and S are weakly compatible, then T and S have a common
fixed point. Moreover, the set of common fixed points of T and S is well ordered
if and only if T and S have one and only one common fixed point.

Rema r k 3.13. Corollary 3.12 extends Corollary 2.4 of [8] from metric
spaces to bicomplex-valued metric spaces.

T h e o r em 3.14. Let (X,�, dBC) be a partially ordered complete bicomplex-
valued metric space. Let T : X → X be a continuous and nondecreasing map-
ping. Suppose there exist nonnegative real numbers α, β and γ with α+2β+2γ <
1 such that for all x, y ∈ X with x � y,

(3.1)

dBC(Tx, Ty) �i2 α
(dBC(y, Ty)[1 + dBC(x, Tx)]

1 + dBC(x, y)

)

+β
[
dBC(x, Tx) + dBC(y, Ty)

]

+ γ
[
dBC(y, Tx) + dBC(x, Ty)

]
.

If there exists x0 ∈ X with x0 � Tx0, then T has a fixed point.

P r o o f. If x0 = Tx0, then we have the result. Suppose that x0 ≺ Tx0.
Then we construct a sequence (xn) in X such that

xn+1 = Txn, for every n ≥ 0.(3.2)
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Since T is a nondecreasing mapping, we obtain by induction that

(3.3) x0 ≺ Tx0 = x1 � Tx1 = x2 � . . . � Txn−1 = xn � Txn = xn+1 � . . . .

If there exists some n0 ≥ 1 such that xn0+1 = xn0 , then from (3.2), xn0+1 =
Txn0 = xn0 , that is, xn0 is a fixed point of T and the proof is finished. Then
we can suppose that xn+1 �= xn, for all n ≥ 1, since xn ≺ xn+1, for all n ≥ 1,
applying (3.1) we have

dBC(Txn, Txn+1) �i2 α
(dBC(xn+1, Txn+1)[1 + dBC(xn, Txn)]

1 + dBC(xn, xn+1)

)

+β
[
dBC(xn, Txn) + dBC(xn+1, Txn+1)

]

+ γ
[
dBC(xn+1, Txn) + dBC(xn, Txn+1)

]
,

that is,

dBC(xn+1, xn+2) �i2 α
(dBC(xn+1, xn+2)[1 + dBC(xn, xn+1)]

1 + dBC(xn, xn+1)

)

+β
[
dBC(xn, xn+1) + dBC(xn+1, xn+2)

]

+ γ
[
dBC(xn+1, xn+1) + dBC(xn, xn+2)

]
,

which implies that

dBC(xn+1, xn+2) �i2 αdBC(xn+1, xn+2) + β
[
dBC(xn, xn+1) + dBC(xn+1, xn+2)

]

+ γ
[
dBC(xn, xn+1) + dBC(xn+1, xn+2)

]
,

that is

dBC(xn+1, xn+2) �i2

β + γ

1− α− β − γ
dBC(xn, xn+1).(3.4)

Now, α + 2β + 2γ < 1 implies that β+γ
1−α−β−γ < 1, put β+γ

1−α−β−γ = h, then by
repeated application (3.4), we have

(3.5) dBC(xn+1, xn+2) �i2 hdBC(xn, xn+1)

� h2dBC(xn−1, xn) �i2 . . . � hn+1dBC(x0, x1).

For any m > n,

dBC(xm, xn) �i2 dBC(xn, xn+1) + dBC(xn+1, xn+2) �i2 + . . .+ dBC(xm−1, xm)

�i2 [hn + hn+1 + hn+2 + . . .+ hm−1]dBC(x0, x1)

�i2
hn

1−hdBC(x0, x1)

,
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that is

‖ dBC(xm, xn) ‖≤
hn

1− h
‖ dBC(x0, x1) ‖ .

Taking limit as n → +∞, we obtain ‖ dBC(xn, xm) ‖→ 0, that is dBC(xn, xm) →
0 as n → +∞, which implies that, (xn) is a Cauchy sequence, from the com-
pleteness of X, there exists w ∈ X such that

xn → w as n → +∞.

The continuity of T implies that Tw = lim
n→+∞

Txn = lim
n→+∞

xn+1 = w, that is,

w is a fixed point of T . �

In our next theorem we relax the continuity assumption of the mapping
T in Theorem 3.14 by imposing the following order condition of the complex
valued metric space X: if (xn) is a non-decreasing sequence in X such that
xn → x, then xn � x, for all n ∈ N.

T h e o r em 3.15. Let (X,�, dBC) be a partially ordered complete Bicomplex
valued metric space. Assume that if (xn) is a nondecreasing sequence in X such
that xn → x, then xn � x, for all n ∈ N. Let T : X → X be a nondecreasing
mapping such that for all x, y ∈ X with x � y, (3.1) is satisfied, where the
condition on α, β and γ are same as in Theorem 3.14. If there exists x0 ∈ X
with x0 � Tx0, then T has a fixed point.

P r o o f. We take the same sequence (xn) as in the proof of Theorem 3.14.
Arguing like in the proof of Theorem 3.14, we prove that (xn) is a nondecreasing
sequence which satisfies xn → w as n → +∞. Then, by the conditions of the
Theorem xn � w, for all n ∈ N. Applying (3.1), we have

dBC(xn+1, Tw) = dBC(Txn, Tw)

�i2 α
(dBC(w, Tw)[1 + dBC(xn, xn+1)]

1 + dBC(xn, w)

)

+β
[
dBC(xn, xn+1) + dBC(w, Tw)

]

+γ
[
dBC(w, xn+1) + dBC(xn, Tw)

]
.

Taking the limit as n → +∞ in the above inequality, we have

d(w, Tw) �i2 (α+ β + γ)d(w, Tw),

that is

‖ d(w, Tw) ‖≤ (α+ β + γ) ‖ d(w, Tw) ‖ .
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Since α+β+γ < 1 , it is a contradiction unless d(w, Tw) = 0, that is, Tw = w,
that is, w is a fixed point of T . �

Now, we shall prove the uniqueness of the fixed point.

T h e o r em 3.16. In addition to the hypotheses of Theorem 3.14 (or Theo-
rem 3.15), suppose that for every x, y ∈ X, there exists z ∈ X such that z � x
and z � y, then T has a unique fixed point.

P r o o f. It follows from the Theorem 3.14 (or Theorem 3.15) that the set
of fixed points of T is non-empty. We shall show that if v and w are two fixed
points of T , that is, if v = Tv and w = Tw, then v = w. By the assumption,
there exists z0 ∈ X such that z0 � v and z0 � w. Then, similarly as in the
proof of Theorem 3.14, we define the sequence (zn) such that

zn+1 = Tzn = Tn+1z0, n = 0, 1, 2, . . .(3.6)

monotonicity of T implies that Tnz0 = zn � v = Tnv and Tnz0 = zn � w =
Tnw, if there exists a positive integer m such that v = zm, then v = Tv =
Tzn = zn+1, for all n ≥ m. Then zn → v as n → +∞. Now we suppose that
v �= zn, for all n ≥ 0, so zn ≺ v, for all n ≥ 0, applying (3.1), we have

dBC(zn+1, v) = dBC(Tzn, T v)

�i2 α
(dBC(v, Tv)[1 + dBC(zn, zn+1)]

1 + dBC(zn, v)

)

+β
[
dBC(zn, zn+1) + dBC(v, Tv)

]

+ γ
[
dBC(v, zn+1) + dBC(zn, T v)

]

= βdBC(zn, zn+1) + γ
[
dBC(v, zn+1) + dBC(zn, v)

]

�i2 β
[
dBC(zn, v) + dBC(v, zn+1)

]
+ γ

[
dBC(v, zn+1) + dBC(zn, v)

]
,

which implies that

dBC(zn+1, v) �i2

β + γ

1− β − γ
dBC(zn, v).

Put β+γ
1−β−γ = k(< 1). Then it follows that

dBC(zn+1, v) �i2 kdBC(zn, v) �i2 k
2
dBC(zn−1, v) �i2 . . . �i2 kn+1d(z0, v),

then

‖ dBC(zn+1, v) ‖�i2 kn+1 ‖ d(z0, v) ‖ .
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Taking limit as n → +∞, we obtain dBC(zn, v) → 0 as n → +∞; that is,
zn → v as n → +∞. Using a similar argument, we can prove that zn → w as
n → +∞ Finally, the uniqueness of the limit implies that v = w. Hence T has
a unique fixed point. �

Ex amp l e 3.17. Let X = {0, 12 , 2}. Partial order � is defined as x � y iff
x ≥ y. Let the Bicomplex valued metric d be given as

dBC(x, y) =| x− y | i1i2, ∀x, y ∈ X.

Let T : X → X be defined as follows

T (0) = 0, T (
1

2
) = 0, T (2) =

1

2
.

Let α = γ = 1
8 and β = 1

4 .
Here all the conditions of Theorems 3.1 and 3.14 are satisfied. Additionally,

the conditions of Theorem 3.16 are also satisfied and it is seen that 0 is the
unique fixed point of T .
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