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Real square roots of matrices: differential properties
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Abstract. We study the differential and metric structures of the set
of real square roots of a non-singular real matrix, under the assumption
that the matrix and its square roots are semi-simple, or symmetric, or
orthogonal.
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Introduction

A square root of an n× n matrix M is any matrix Y such that Y 2 = M .
As remarked in [14], matrix square roots arise in many applications, often

in connection with other matrix problems such as polar decomposition, ma-
trix geometric means, Markov chains, quadratic matrix equations, generalized
eigenvalue problems and recently in connection with machine learning. For
more information we refer to [15], [13], [16] and [14].

As suggested in [14], if M satisfies certain given properties, it is natural to
ask if there exist square roots, having the same or analogous properties.

Moreover, if the set of such square roots of M is not empty, it seems also
natural to us to ask what sort of algebraic, topological, differential or metric
structures can be induced by M on this set.

In this paper we work with semi-simple matrices in GLn (the set of real n×n

non-singular matrices). It is well-known that such matrices admit real square
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roots if and only if their (possible) negative eigenvalues have even multiplicity,
hence in this paper we work under these further assumptions.

Let M ∈ GLn be semi-simple, whose (possible) negative eigenvalues have
even multiplicity; our aim is to study the following sets:

- SR(M), the set of all real square roots of M (see §2);

- SSR(M), the set of all real symmetric square roots of M , when M is
supposed to be symmetric positive definite (see §3);

- OSR(M), the set of all orthogonal square roots of M , when M is sup-
posed to be special orthogonal (see §4).

Preliminary material is in § 1, where, in particular, we recall the so-called
trace metric, g, and its properties on the manifold of real non-singular matrices
and on its submanifolds of symmetric matrices with fixed signature and of
orthogonal matrices (Recall 1.5). We have already considered such metric in
[7], [9], [11], [12] and now we adapt our previous techniques and results to the
study of square roots.

The trace metric (called also affine-invariant metric or Fisher-Rao metric)
is widely considered in the setting of positive definite real matrices (together
with some other metrics) in order to deal with many applications. For more
information we refer, for instance and among many others, to [6], [5], [3], [21],
[4], [1], [24], [2], [22].

In general the sets SR(M), SSR(M) and OSR(M) have not a structure
of manifold, but each of them is disjoint union of suitable subsets, consisting in
matrices having the same eigenvalues with the same multiplicities (Remarks-
Definitions 2.2, 3.2 and 4.1). All these subsets are manifolds of various dimen-
sions; we describe them explicitly and investigate their differential and metric
properties (§2, §3 and §4 respectively).

In § 2 we prove that each of these suitable subsets of SR(M) is a closed em-
bedded totally geodesic homogeneous semi-Riemannian submanifold of (GLn, g)
(Proposition 2.3 and Theorem 2.5).

In § 3 we prove that the above suitable subsets of SSR(M) agree with its
connected components and that they are compact totally geodesic homoge-
neous semi-Riemannian submanifolds of (GLn, g), always diffeomorphic to the
product of real Grassmannians (Proposition 3.3 and Theorem 3.4).

Finally, in § 4 we prove that each of the previous suitable subsets of OSR(M)
is a compact totally geodesic homogeneous Riemannian submanifold of the
Riemannian manifold of orthogonal matrices endowed with the metric induced
by the Frobenius metric (Proposition 4.2 and Theorem 4.3). Indeed this last
metric agrees on On with the opposite of the trace metric.
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1 - Preliminary facts

No t a t i o n s 1.1.

Mn (and Symn): the R-vector space of the real square matrices of order n

(which are symmetric);

GLn: the multiplicative group of the non-singular real matrices of order n;

GLSymn(q): the matrices of GLn ∩ Symn having q positive eigenvalues and
n− q negative eigenvalues (i.e. having signature (q, n − q));

On (and SOn or O−
n ): the multiplicative group of real orthogonal matrices of

order n (with determinant 1 or −1);

son: the Lie algebra of skew-symmetric real matrices of order n;

Mn(C): the C-vector space of the complex square matrices of order n;

GLn(C): the multiplicative group of the non-singular complex matrices of or-
der n;

Hermn: the vector space of the complex hermitian matrices of order n;

Hermn(µ): the matrices of GLn(C)∩Hermn having µ positive eigenvalues and
n− µ negative eigenvalues (i.e. having signature (µ, n− µ));

Un: the multiplicative group of complex unitary matrices of order n;

In: the identity matrix of order n;

i: the imaginary unit.

We write
⊔

j Xj to emphasize the union of mutually disjoint sets.

For every A ∈ Mn(C), tr(A) is its trace, A
T is its transpose, A∗ := A

T
is its

transpose conjugate, det(A) is its determinant and, provided that det(A) �= 0,
A−1 is its inverse.

For every θ ∈ R, we denote Eθ :=

(

cos θ − sin θ
sin θ cos θ

)

; hence Eθ = (cos θ)I2 +

(sin θ)Eπ/2.

If B1, · · · , Bm are square matrices (of various orders), B1 ⊕ · · · ⊕Bm is the
block diagonal square matrix with B1, · · · , Bm on its diagonal and, for every
square matrix B, B⊕m denotes B⊕· · ·⊕B (m times). The notations (±I0)⊕B

and B ⊕ (±I0) simply indicate the matrix B.
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If S1, . . . ,Sm are sets of square matrices, then S1⊕· · · ⊕Sm denotes the set
of all matrices B1 ⊕ · · · ⊕Bm with Bj ∈ Sj for every j.

For every matrix B ∈ GLn we denote CB := {X ∈ GLn : [B,X] = 0},
where [B,X] := BX −XB is the usual commutator of B and X.

It is easy to prove that CB is a closed Lie subgroup of GLn.

For any other notation and for information on the matrices, not explicitly
recalled here, we refer to [16] and to [13].

D e f i n i t i o n 1.2. Let M ∈ Mn any matrix. A real square root of M is
every matrix of Mn, solving the matrix equation X2 = M .

R ema r k 1.3. When M is non-singular, the following fact is well-known
(see for instance [13, Thm. 1.23]):

M ∈ GLn has a real square root if and only if it has an even number of
Jordan blocks of each size, for every negative eigenvalue.

Note that, if the matrix M ∈ GLn is semi-simple too, then it has a real
square root if and only if each of its negative eigenvalues has even multiplicity;
hence no matrix in O−

n has real square roots.

No t a t i o n s 1.4. Assume thatM ∈ GLn is semi-simple and that its (possi-
ble) negative eigenvalues have even multiplicity. We want to study the following
sets:

SR(M), the set of all real square roots of M (see §2);

SSR(M) := SR(M) ∩ Symn, the set of all real symmetric square roots of M ,
when M is supposed to be symmetric positive definite (see §3);

OSR(M) := SR(M) ∩ On, the set of all orthogonal square roots of M , when
M is supposed to be an element of SOn (see §4).

R e c a l l 1.5. We can consider the so-called trace metric on GLn , given by

gA(V,W ) = tr(A−1V A−1W )

for every A ∈ GLn and every V,W ∈ TA(GLn) = Mn.
The trace metric, g, induces a semi-Riemannian structure on GLn and its

restrictions (denoted always with the same symbol g) induce a semi-Riemannian
structure on GLSymn(q), for every q, a Riemannian structure on the manifold,
GLSymn(n), of real symmetric positive definite matrices, while, on On, the
opposite metric, −g, agrees with the Riemannian metric induced by the usual
(flat) Frobenius metric of Mn. Moreover (On, g) and all GLSymn(q) are totally
geodesic semi-Riemannian submanifolds of (GLn, g).

As recalled in Introduction, we have studied all these metrics and their prop-
erties in [7], [9], [11], [12], to which we refer for more information.
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R ema r k s -D e f i n i t i o n s 1.6. a) In this paper we consider the following
maps, defined on GLn:

- j(X) := X−1 ( inversion);

- LM (X) := MX ( left-translation by a fixed matrix M ∈ GLn);

- RM (X) := XM ( right-translation by a fixed matrix M ∈ GLn);

- ̂ΓM (X) := MXM−1 ( conjugation by a fixed matrix M ∈ GLn);

- ΓM (X) := MXMT ( congruence by a fixed matrix M ∈ GLn).

The above maps are isometries of (GLn, g), for any M ∈ GLn, while they
are isometries also of (On,±g), for any M ∈ On. Finally the maps j and ΓM

are isometries of (GLSymn(q), g), for any M ∈ GLn (see again [7], [9], [11],
[12] for more information).

b) For every bijection F of GLn (or of On) the set of fixed points of F in
GLn (or in On) is denoted by Fix(F ).

For any matrix M ∈ GLn, the set Fix(LM ◦ j) agrees with the set of square
roots of M : indeed Y ∈ Fix(LM ◦ j) if and only if Y = MY −1 if and only if
Y 2 = M .

If M ∈ SOn, LM ◦ j defines also a map from On onto itself and, so,
Fix(LM ◦ j) = OSR(M).

Rema r k 1.7. Let G be a real Lie group acting smoothly on a differentiable
manifold X. The orbit of every x ∈ X is an immersed submanifold of X,

diffeomorphic to the homogeneous space
G

Gx
, where Gx is the isotropy subgroup

of G at x.

This submanifold is not necessarily embedded in X, but, if G is compact,
then all orbits are embedded submanifolds (see [23, p. 1]).

Rema r k -D e f i n i t i o n 1.8. The mapping ρ1 : C → M2,
ρ1(z) = Re(z)I2 + Im(z)Eπ/2, is clearly a monomorphism of R-algebras.

Note that ρ1(z) = ρ1(z)
T and that ρ1(z) ∈ GL2 as soon as z �= 0.

More generally, for any h ≥ 1, we define the mapping ρh : Mh(C) → M2h,
which maps the h × h complex matrix Z = (zij) to the (2h) × (2h) block real
matrix (ρ1(zij)), having h2 blocks of order 2× 2.

We have already considered the mappings ρh in [12, Rem. 2.8]; in particular
we recall that tr(ρh(Z)) = 2Re(tr(Z))), det(ρh(Z)) = |det(Z)|2 and that ρh is
a monomorphism of R-algebras, whose restriction to GLh(C) has image into
GL2h and it is a monomorphism of Lie groups.



320 alberto dolcetti and donato pertici [6]

Furthermore we have: ρh(Z
∗) = ρh(Z)T , so the restriction of ρh to Uh is a

monomorphism of Lie groups and ρh(Uh) = ρh(GLh(C))∩SO2h = ρh(GLh(C))
∩ O2h; analogously the restriction of ρh to Hermh has image into Sym2h and
it is a monomorphism of R-vector spaces.

To simplify the notations and in absence of ambiguity, we will omit to write
the symbol ρh, so, for instance, we can consider Mh(C) as an R-subalgebra of
M2h, GLh(C) as a Lie subgroup of GL2h, Uh as a Lie subgroup of SO2h and
Hermh as an R-vector subspace of Sym2h.

2 - Semi-simple case

Aim of this section is to study SR(M): the set of all real square roots of a
non-singular semi-simple matrix M , whose (possible) negative eigenvalues have
even multiplicity (Notations 1.4).

R ema r k 2.1. Let A ∈ GLn. Then A is semisimple if and only if A2 is
semisimple.

One implication is trivial.
For the other, assume that A2 is semisimple. The multiplicative Jordan-

Chevalley decomposition implies that there is a semisimple matrix S and a
nilpotent matrix N such that A = S(I +N) = (I +N)S (see for instance [17,
§ 4.2] and also [8], [10]).

Now A2 = S2(I + 2N + N2) with S2 semisimple and 2N + N2 nilpotent,
so from the uniqueness of the multiplicative Jordan-Chevalley decomposition we
get A2 = S2 and N2 + 2N = 0. Hence the minimal polynomial, xk, of N is a
divisor of x2 + 2x, hence k = 1, N = 0 and A is semisimple.

Rema r k s -D e f i n i t i o n s 2.2. a) Let M ∈ GLn be a semisimple matrix,
whose every (possible) negative eigenvalue has even multiplicity, and denote its
eigenvalues in the following way:

- the distinct positive eigenvalues are: λ1 < λ2 < · · · < λp (p ≥ 0) with
multiplicity h1, h2, · · · , hp respectively (if p ≥ 1);

- the distinct non-real eigenvalues are: ρ1,1 exp(±iθ1), · · · , ρ1,s1 exp(±iθ1),
ρ2,1 exp(±iθ2), · · ·, ρ2,s2 exp(±iθ2) up to ρr,1 exp(±iθr), · · ·, ρr,sr exp(±iθr),
where both ρlt exp(±iθl) have multiplicity mlt for every admissible l and t

(r ≥ 0) and where 0 < θ1 < θ2 < · · · < θr < π and 0 < ρi1 < ρi2 < · · · <
ρisi for every i = 1, · · · , r (if r ≥ 1);

- the distinct negative eigenvalues are: −ζ1 > −ζ2 > · · · > −ζq (q ≥ 0)
with multiplicity 2k1, 2k2, · · · , 2kq respectively (if q ≥ 1).
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Note that
∑p

i=1 hi + 2
∑r

l=1

∑sl
t=1 mlt + 2

∑q
i=1 ki = n.

We denote by JM the matrix

JM :=
(
⊕p

i=1 λiIhi

)

⊕
(
⊕r

l=1

⊕sl
t=1 ρltE

⊕mlt
θl

)

⊕
(
⊕q

i=1(−ζi)I2ki
)

.

Then there is a matrix C ∈ GLn such that

M = CJMC−1

(see for instance [16, Cor. 3.4.1.10 p. 203]).
Following [12, Remark-Definition 1.7], we call such matrix JM the real Jor-

dan standard form (shortly: RJS form) of M .

b) Let M be as in (a) and denote by Y ∈ GLn a square root of M . By
Remark 2.1, Y is semisimple and its eigenvalues are (complex) square roots of
the eigenvalues of M . Hence the eigenvalues of Y are

-
√
λi with multiplicity ui ≥ 0 and −

√
λi with multiplicity vi ≥ 0 where

ui + vi = hi (i = 1, · · · , p, if p ≥ 1);

-
√
ρlt exp(±iθl/2) both with multiplicity µlt and

√
ρlt exp(±i(θl/2−π)) both

with multiplicity νlt, where µlt + νlt = mlt (for every admissible l and t);

- ±
√
ζii both with multiplicity ki (i = 1, · · · , q, if q ≥ 1).

We denote by ˜JY the matrix

˜JY :=

[

p
⊕

i=1

(
√

λi(Iui⊕(−Ivi)))
]

⊕
[

r
⊕

l=1

sl
⊕

t=1

√
ρlt(E

⊕µlt

θl/2
⊕E

⊕νlt
(θl/2−π))

]

⊕
[

q
⊕

i=1

√

ζiE
⊕ki
π/2

]

.

Then there exists a matrix K ∈ GLn such that

Y = K ˜JYK
−1.

Note that
Eφ−π = −Eφ, ∀φ, and ( ˜JY )

2 = JM .

Remark that the last equality implies that CJ̃Y
⊆ CJM

.

Analogously to [12, Remark-Definition 1.8], we can call the matrix ˜JY the
real Jordan auxiliary form (shortly: RJA form) of Y .

c) We denote by SR(M)
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
the subset of SR(M) of all

real square roots of M whose eigenvalues have the same multiplicities of the
eigenvalues of Y as in (b).
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Note that any two matrices in SR(M)
(µ11,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
have the same

RJA form; indeed the matrix M and the two families of indices (u1, · · · , up) and
(µ11, · · · , µ1s1 ; · · · ;µr1, · · · , µrsr) determine also the vi’s, the νlt’s and the kj ’s.
One or both families of indices (u1, · · · , up) and (µ11, · · ·, µ1s1 ; · · · ;µr1, · · ·, µrsr)
can be empty (indeed p and r can vanish). In this case we can use the same
notations, by omitting the family or both families of indices.

Note that, if p = r = 0 (and so q ≥ 1), then the RJA form of every square
root of M is

⊕q
i=1

√
ζiE

⊕ki
π/2 and that SR(M) (without any lower and upper

index) agrees with the set of all real square roots of M .

Note also that, if at least one between p and r is non-zero, then SR(M) =

⊔SR(M)
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
, where the disjoint union is taken on all indices

0 ≤ ui ≤ hi for every 1 ≤ i ≤ p (if p ≥ 1) and 0 ≤ µlt ≤ mlt for every 1 ≤ l ≤ r

and for every 1 ≤ t ≤ sl (if r ≥ 1).

In the following statements of this section it is understood that one or both
families of the above indices can be empty.

P r op o s i t i o n 2.3. Let M ∈ GLn be a semisimple matrix, whose every
(possible) negative eigenvalue has even multiplicity and let C ∈ GLn be such
that M = CJMC−1 as in Remarks-Definitions 2.2 (a).

Fix any set SR(M)
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
as in Remarks-Definitions 2.2 (c)

and denote by ˜J the RJA form of every Y ∈ SR(M)
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
.

Then

SR(M)
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
= {CX ˜JX−1C−1 : X ∈ CJM

} =

̂ΓC({X ˜JX−1 : X ∈ CJM
}).

Moreover SR(M)
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
is a closed embedded submanifold of

GLn, diffeomorphic to the homogeneous space
CJM

CJ̃
.

P r o o f. If Y ∈ SR(M)
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
, then Y = K ˜JYK

−1 for

some K ∈ GLn and Y 2 = K( ˜JY )
2K−1 = KJMK−1 = CJMC−1 = M . Hence

C−1K ∈ CJM
and, so, K = CX for some X ∈ CJM

. This gives one inclusion of
the first equality. The reverse inclusion is a simple computation. The second
equality follows directly from the definition of ̂ΓC .

Now ̂ΓC is a diffeomorphism of GLn, so it suffices to prove that the set

{X ˜JX−1 : X ∈ CJM
} = SR(JM )

(µ11,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
has the requested

properties. Let us consider the left action by conjugation of CJM
on GLn.



[9] real square roots of matrices 323

The set {X ˜JX−1 : X ∈ CJM
} is the orbit of ˜J . By Remark 1.7, this set

is an immersed submanifold of GLn, diffeomorphic to the homogeneous space
CJM

C
J̃

, being CJ̃ ⊆ CJM
and being CJ̃ the isotropy subgroup of the action.

Finally SR(JM )
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
is closed in GLn. Indeed if {Ym} is

a sequence in SR(JM )
(µ11,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
, converging to Y ∈ GLn, then

Y 2 = JM too and the characteristic polynomial of Y is the same character-
istic polynomial of all Ym’s (constant with respect to m).

Hence Y ∈ SR(JM )
(µ11,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
and this last is closed and, there-

fore, it is an embedded submanifold of GLn (see for instance [20, § 2.13 Theo-
rem, p. 65]). �

L emma 2.4. a) Let J be the matrix

J =
(
⊕p

i=1 λiIhi

)

⊕
(
⊕r

l=1

⊕sl
t=1 ρltE

⊕mlt
θl

)

⊕
(
⊕q

i=1(−ζi)I2ki
)

,

where all indices satisfy the numerical conditions of Remarks-Definitions 2.2(a).
Then the Lie group of non-singular matrices, commuting with J , is

CJ = (
⊕p

i=1 GLhi
)⊕ (

⊕r
l=1

⊕sl
t=1 GLmlt

(C))⊕ (
⊕q

i=1 GL2ki).

b) Let ˜J be the matrix
˜J :=

[

p
⊕

i=1

(
√

λi(Iui⊕(−Ivi)))
]

⊕
[

r
⊕

l=1

sl
⊕

t=1

√
ρlt(E

⊕µlt

θl/2
⊕E

⊕νlt
(θl/2−π))

]

⊕
[

q
⊕

i=1

√

ζiE
⊕ki
π/2

]

,

where all indices satisfy the numerical conditions of Remarks-Definitions 2.2(b).
Then the Lie group of non-singular matrices, commuting with ˜J , is CJ̃ =

[

⊕p
i=1(GLui⊕GLvi)

]

⊕
[

⊕r
l=1

⊕sl
t=1(GLµlt

(C)⊕GLνlt(C))
]

⊕
[

⊕q
i=1 GLki(C)

]

.

P r o o f. Part (a) is similar to [12, Lemma 3.3] and part (b) can be easily
obtained by similar arguments. �

The o r em 2.5. Let M ∈ GLn be a semisimple matrix, whose every (pos-
sible) negative eigenvalue has even multiplicity. Then

a) every connected component of SR(M) is a closed totally geodesic homo-
geneous semi-Riemannian submanifold of (GLn, g);

b) every manifold SR(M)
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
, as in Remarks-Definitions

2.2 (c), is diffeomorphic to the following product of homogeneous spaces:
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(
∏p

i=1

GLhi

GLui ⊕GLvi

)

×
(
∏r

l=1

∏sl
t=1

GLmlt
(C)

GLµlt
(C)⊕GLνlt(C)

)

×
(
∏q

i=1

GL2ki

GLki(C)

)

,

where vi = hi − ui and νlt = mlt − µlt.

P r o o f. Since SR(M) = ̂ΓC(SR(JM )) (with C as in Proposition 2.3)
and ̂ΓC is an isometry of (GLn, g), it suffices to prove (a) for the matrix JM

instead of M . Every connected component of SR(JM ) is contained in some

SR(JM )
(µ11,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
= {X ˜JX−1 : X ∈ CJM

} (remember the no-

tations of Proposition 2.3) and this last is the orbit of ˜J under the action
by conjugation of CJM

on GLn. Since all conjugation maps are isometries of

(GLn, g), every connected component of SR(JM )
(µ11,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
is a

semi-Riemannian submanifold of (GLn, g).
Now the map LM ◦ j : (GLn, g) → (GLn, g), LM ◦ j(X) = MX−1 is an

isometry of (GLn, g), whose set of fixed points is SR(M). Hence we can con-
clude (a) by [19, Ex. 8.1 p. 61, Prop. 8.3 p. 56], remembering again Proposition
2.3 too.

Part (b) follows from Proposition 2.3 and from Lemma 2.4. �

De f i n i t i o n 2.6. Let M ∈ GLn be a semisimple matrix, whose every
(possible) negative eigenvalue has even multiplicity. We say that a matrix X is
a generalized principal square root of M , if X2 = M and every eigenvalue of X
has principal argument in [−π/2, π/2].

This definition is more general than the usual one of principal square root
(see for instance [13, Thm. 1.29 p. 20]).

We denote by PSR(M) the set of all generalized principal square roots
of M .

R ema r k s 2.7. Let M ∈ GLn be a semisimple matrix, whose every (pos-
sible) negative eigenvalue has even multiplicity.

a) We have PSR(M) = SR(M)
(m11 ,··· ,m1s1 ;··· ;mr1,··· ,mrsr )

(h1,··· ,hp)
and so, by The-

orem 2.5, it is a single point if M has no negative eigenvalue, according to
the usual definition (see [13, Thm. 1.29 p. 20]), otherwise it is diffeomorphic to

the product of homogeneous spaces:
∏q

i=1

GL2ki

GLki(C)
(q is the number of distinct

negative eigenvalues and 2k1, · · · , 2kq are their multiplicities).
In any case PSR(M) has 2q connected components, since every factor has

2 connected components.

b) Every SR(M)
(µ11 ,··· ,µ1s1 ;··· ;µr1,··· ,µrsr )

(u1,··· ,up)
has dimension 2

[
∑p

i=1 ui(hi−ui)+

2
∑r

l=1

∑sl
t=1 mlt(mlt − µlt) +

∑q
i=1 k

2
i

]

.
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From this, we get that SR(M) if finite if and only if the eigenvalues of M
have multiplicity 1 and no eigenvalue of M is negative. In this case M has
exactly 2p 2(n−p)/2 = 2(p+n)/2 distinct real square roots, where p is the number
of positive eigenvalues of M .

3 - Symmetric case

Aim of this section is to study SSR(M): the set of all real symmetric square
roots of M , with M symmetric positive definite (Notations 1.4).

R ema r k 3.1. If X ∈ GLn is symmetric, then X2 is symmetric positive
definite. Hence, to have real symmetric square roots of a real symmetric matrix
M , we must assume that M is positive definite too.

Rema r k s -D e f i n i t i o n s 3.2. Let M ∈ GLn be a symmetric positive def-
inite matrix with distinct (real positive) eigenvalues λ1 < λ2, · · · < λp with mul-
tiplicity h1, h2, · · · , hp respectively, so the RJS form of M is JM =

⊕p
i=1 λiIhi

;
in this case there exists Q ∈ On such that M = QJMQT .

We denote by SSR(M)(u1,··· ,up) = SR(M)(u1,··· ,up) ∩ Symn (with
0 ≤ ui ≤ hi for every 1 ≤ i ≤ p): the set of all Y ∈ SSR(M), having
˜J =

⊕p
i=1[

√
λi(Iui ⊕ (−I(hi−ui)))] as its RJA form.

We have SSR(M)(u1,··· ,up) ⊆ GLSymn(u) (with u :=
∑p

i=1 ui) and, if

Y ∈ SSR(M)(u1,··· ,up), then there exists R ∈ On such that Y = R ˜JRT .

Note also that SSR(M) = ⊔SSR(M)(u1,··· ,up), where the disjoint union is
taken on all indices u1, · · · , up as above.

P r o p o s i t i o n 3.3. Let M be a symmetric positive definite real matrix
with distinct (real positive) eigenvalues λ1 < λ2, · · · < λp with multiplicity
h1, h2, · · · , hp respectively and let Q ∈ On be such that M = QJMQT .

Fix any set SSR(M)(u1,··· ,up) as above and denote by ˜J the RJA form of
any Y ∈ SSR(M)(u1,··· ,up). Then

SSR(M)(u1,··· ,up) = {QX ˜JXTQT : X ∈ CJM
∩On} = ΓQ(SSR(JM )(u1,··· ,up)),

where SSR(JM )(u1,··· ,up) =
⊕p

i=1

√
λi

(

Ohi
∩GLSymhi

(ui)
)

.

Moreover SSR(M)(u1,··· ,up) is a compact submanifold of GLSymn(u) (with

u :=
∑p

i=1 ui), diffeomorphic to the homogeneous space
CJM

∩ On

C
J̃
∩ On

.

P r o o f. As in Propositions 2.3 we can proof that SSR(M)(u1,··· ,up) =

{QX ˜JXTQT : X ∈ CJM
∩On} = ΓQ({X ˜JXT : X ∈ CJM

∩On}) and {X ˜JXT :
X ∈ CJM

∩On} is clearly equal to SSR(JM )(u1,··· ,up).
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By Lemma 2.4 (a) we have CJM
∩ On = (

⊕p
i=1GLhi

) ∩ On =
⊕p

i=1Ohi
.

Hence, if X = ⊕p
i=1Vi ∈

⊕p
i=1 Ohi

= CJM
∩ On, then we obtain: X ˜JXT =

⊕p
i=1

√
λi Vi(Iui ⊕ (−I(hi−ui)))V

T
i .

In the last expression the i-th summand is clearly a generic element of√
λi (Ohi

∩GLSymhi
(ui)); this concludes the first part.

Now SSR(M)(u1,··· ,up) and SSR(JM )(u1,··· ,up) are diffeomorphic, since ΓQ

is a diffeomorphism of GLSymn(u).

By considering the action by congruence of CJM
∩ On on GLSymn(u),

SSR(JM )(u1,··· ,up) is the orbit of ˜J , while the isotropy subgroup at ˜J is
C
J̃
∩ On ⊆ CJM

∩ On.

Hence SSR(JM )(u1,··· ,up) (and also SSR(M)(u1,··· ,up)) is a compact sub-

manifold of GLSymn(u) diffeomorphic to
CJM

∩On

C
J̃
∩ On

(see Remark 1.7). This

concludes the proof. �

The o r em 3.4. Let M be a symmetric positive definite real matrix with dis-
tinct (real positive) eigenvalues λ1 < λ2 · · · < λp with multiplicity h1, h2, · · · , hp
respectively. Then

a) every manifold SSR(M)(u1,··· ,up), as above, is diffeomorphic to the fol-
lowing product of homogeneous spaces:

∏p
i=1

Ohi

Oui ⊕Ovi

,

where vi = hi−ui (note that
Ohi

Oui ⊕Ovi

is diffeomorphic to the real Grassman-

nian Gui(R
hi));

b) the connected components of SSR(M)are the manifolds SSR(M)(u1,··· ,up)

and each of them is a compact totally geodesic homogeneous semi-Riemannian
submanifold of (GLn, g).

P r o o f. From Proposition 3.3, SSR(M)(u1,··· ,up) is diffeomorphic to the

homogeneous space
CJM

∩ On

CJ̃ ∩On
. By Lemma 2.4, CJM

∩ On =
⊕p

i=1 Ohi
and

CJ̃ ∩ On =
⊕p

i=1(Oui ⊕Ovi). This allows to conclude (a).

Every manifold
Ohi

Oui ⊕Ovi

is diffeomorphic to a real Grassmannian and, so,

it is compact and connected. This implies that SSR(M)(u1,··· ,up) is compact
and connected too. Since SSR(M) is disjoint union of such manifolds, these
last are its connected components.
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As in the proof of Theorem 2.5, it is possible to prove that SSR(M)(u1,··· ,up)

is a semi-Riemannian submanifold of (GLn, g).
Now every connected component of SR(M) is a totally geodesic semi-

Riemannian submanifold of (GLn, g) again by Theorem 2.5 and, for every
0 ≤ q ≤ n, GLSymn(q) is a totally geodesic semi-Riemannian submanifold
of (GLn, g) by [11, Prop. 2.3].

We can conclude part (b), since SSR(M)(u1,··· ,up) = SR(M)(u1,··· ,up) ∩
GLSymn(u) (with u :=

∑p
i=1 ui): intersection of two totally geodesic sub-

manifolds. �

Rema r k s 3.5. Assume the same hypotheses and notations as in Theo-
rem 3.4.

a) If u1 = h1, · · · , up = hp or if u1 = · · · = up = 0, then the manifold
SSR(M)(u1,··· ,up) is a single point. In the first case this point is a symmetric
positive definite matrix: the usual (positive definite) square root of M , denoted
by

√
M = M1/2; in the second case it is a symmetric negative definite matrix

and precisely −
√
M = −M1/2.

b) SSR(M) is a finite set if and only if all eigenvalues of M have multi-
plicity 1; in this case SSR(M) has cardinality 2n and SR(M) = SSR(M).

4 - Orthogonal case

Aim of this section is to study OSR(M), the set of all orthogonal square
roots of M , where M is in SOn (Notations 1.4). We have already remarked
that Fix(LM ◦ j) = OSR(M) (remember Remarks-Definitions 1.6 (b)).

R ema r k s -D e f i n i t i o n s 4.1. a) Remembering 2.2, the RJS form of M ∈
SOn is

(∗) JM = Ih ⊕ E⊕m1

θ1
⊕ · · · ⊕ E⊕mr

θr
⊕ (−I2k)

with h, r, k ≥ 0, h+2m1 + · · ·+2mr +2k = n and 0 < θ1 < θ2 < · · · < θr < π;
the eigenvalues of M are: 1 with multiplicity h ≥ 0, exp(±iθ1) both with mul-
tiplicity m1, · · · , up to exp(±iθr) both with multiplicity mr (mj > 0 ∀j, if
r > 0) and −1 with multiplicity 2k ≥ 0.

The eigenvalues of any (orthogonal) square root Y of M are necessarily: 1
with multiplicity u, −1 with multiplicity h − u (where 0 ≤ u ≤ h), exp(±1

2 iθj)
both with multiplicity µj and exp(±i(12θj − π)) both with multiplicity mj − µj

(0 ≤ µj ≤ mj), for every 1 ≤ j ≤ r, if r > 0, and finally ±i both with
multiplicity k, so that the RJA form of Y is the following:

(∗∗) ˜J := Iu⊕(−I(h−u))⊕E
⊕µ1
1

2
θ1

⊕E
⊕(m1−µ1)

( 1
2
θ1−π)

⊕· · ·⊕E
⊕µr
1

2
θr

⊕E
⊕(mr−µr)

( 1
2
θr−π)

⊕E⊕k
π
2

.
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b) We denote by OSR(M)
(µ1,··· ,µr)
u the subset of OSR(M) of matrices

whose RJA form is of the type (∗∗) above.

If Y ∈ OSR(M)
(µ1 ,··· ,µr)
u , then there is a matrix H ∈ On such that Y =

H ˜JHT .

On the indices u and µ1, · · · , µr we can make analogous observations as
in Remarks-Definitions 2.2 (c); for instance, the matrix M , the index u and
the family of indices (µ1, · · · , µr) determine the RJA form above; moreover the
same agreements as in Remarks-Definitions 2.2 (c) hold, if one or both families
of indices are empty.

Note that, if both families of indices are empty (i.e. h = r = 0), then
M = −In with n even.

Of course det(Y ) = (−1)h−u for every Y ∈ OSR(M)
(µ1,··· ,µr)
u and, if h > 0

or r > 0, then OSR(M) is the disjoint union of all OSR(M)
(µ1,··· ,µr)
u for every

0 ≤ u ≤ h (if h > 0) and 0 ≤ µj ≤ mj, 1 ≤ j ≤ r (if r > 0).

In the following statements of this section it is understood that one or both
families of the above indices can be empty.

P r op o s i t i o n 4.2. Let M ∈ SOn whose RJS form, JM , is as in Remarks-
Definitions 4.1 (∗) and let C0 ∈ On be such that M = C0JMCT

0 . For every

0 ≤ u ≤ h, 0 ≤ µj ≤ mj, 1 ≤ j ≤ r, let ˜J be the matrix of the form (∗∗)

as in Remarks-Definitions 4.1. Then OSR(M)
(µ1 ,··· ,µr)
u = {C0X ˜JXTCT

0 :

X ∈ CJM
∩ On} = ΓC0

(OSR(JM )
(µ1,··· ,µr)
u ), where OSR(JM )

(µ1,··· ,µr)
u :=

[Oh ∩ Symh(u)]⊕ [
⊕r

j=1 exp(
1

2
iθj)(Umj ∩Hermmj(µj)]⊕ [O2k ∩ so2k].

Moreover OSR(M)
(µ1,··· ,µr)
u is a compact submanifold of On, diffeomorphic

to the homogeneous space
CJM

∩ On

CJ̃ ∩ On
.

P r o o f. As in Propositions 2.3 and 3.3, we have: OSR(M)
(µ1,··· ,µr)
u =

{C0X ˜JXTCT
0 : X ∈ CJM

∩ On} = ΓC0
({X ˜JXT : X ∈ CJM

∩ On}) and

{X ˜JXT : X ∈ CJM
∩ On} = OSR(JM )

(µ1,··· ,µr)
u .

Analogously to Proposition 3.3, by Lemma 2.4 (a), we get: CJM
∩ On =

(

GLh⊕GLm1
(C)⊕· · ·⊕GLmr(C)⊕GL2k

)

∩On = Oh⊕Um1
⊕· · ·⊕Umr ⊕O2k.

Hence, ifX = V ⊕Z1⊕· · ·⊕Zr⊕W ∈ Oh⊕Um1
⊕· · ·⊕Umr⊕O2k = CJM

∩On,
then, remembering Remark-Definition 1.8, we obtain:

X ˜JXT = [V (Iu ⊕ (−I(h−u)))V
T ]⊕ [

⊕r
j=1 exp(

1

2
iθj)Zj [Iµj ⊕ (−I(mj−µj))]Z

∗
j ]⊕

[W (E⊕k
π
2

)W T ].

In the last expression the first and the last summand are clearly generic
elements of Oh ∩ Symh(u) and of O2k ∩ so2k, respectively. Finally, for every j,
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the matrix Zj[Iµj ⊕ (−I(mj−µj))]Z
∗
j is a generic element of Umj ∩Hermmj (µj);

this concludes the first part.

Again OSR(M)
(µ1,··· ,µr)
u and OSR(JM )

(µ1,··· ,µr)
u are diffeomorphic, since

ΓC0
is a diffeomorphism of On.

In the action by congruence of CJM
∩ On on On, OSR(JM )

(µ1,··· ,µr)
u is

the orbit of ˜J , while the isotropy subgroup at ˜J is C
J̃

∩ On ⊆ CJM
∩ On;

so OSR(JM )
(µ1,··· ,µr)
u and OSR(M)

(µ1,··· ,µr)
u are compact submanifolds of On

diffeomorphic to
CJM

∩ On

C
J̃
∩ On

(again by Remark1.7). This concludes the proof. �

The o r em 4.3. Let M ∈ SOn whose RJS form, JM , is as in Remarks-
Definitions 4.1 (∗) and let C0 ∈ On be such that M = C0JMCT

0 . For every
0 ≤ u ≤ h, 0 ≤ µj ≤ mj , 1 ≤ j ≤ r, we have:

a) OSR(M)
(µ1,··· ,µr)
u is a compact homogeneous differentiable manifold dif-

feomorphic to the product

Oh

Ou ⊕O(h−u)
×

r
∏

j=1

Umj

Uµj ⊕ U(mj−µj)
×

O2k

Uk

whose dimension is u(h− u) + 2
∑r

j=1 µj(mj − µj) + k(k − 1).

If k = 0 (i.e if −1 is not an eigenvalue of M), the manifold OSR(M)
(µ1 ,··· ,µr)
u

is connected, otherwise it has two connected components and both are diffeomor-

phic to
Oh

Ou ⊕O(h−u)
×

∏r
j=1

Umj

Uµj ⊕ U(mj−µj)
×

SO2k

Uk
.

b) OSR(M)
(µ1,··· ,µr)
u is also a totally geodesic homogeneous Riemannian

submanifold of (On,−g).

P r o o f. In the proof of Proposition 4.2 we have seen that CJM
∩ On =

Oh ⊕ Um1
⊕ · · · ⊕ Umr ⊕O2k.

By Lemma 2.4 (b), we get also: C
J̃

∩ On = {
(

GLu ⊕ GL(h−u)

)

⊕
(
⊕r

j=1GLµj (C) ⊕ GL(mj−µj)(C)
)

⊕ GLk(C)} ∩ On = Ou ⊕ O(h−u) ⊕ Uµ1
⊕

U(m1−µ1) ⊕ · · · ⊕ Uµr ⊕ U(mr−µr) ⊕ Uk.
Taking into account Proposition 4.2, we obtain the first part of (a), because

it is easy to see that the corresponding quotient is naturally diffeomorphic to the
product in the statement; the dimension is a trivial computation on the product
of the quotients. Since every factor is compact, the product is compact too.

The factor
Oh

Ou ⊕O(h−u)
is diffeomorphic to the real Grassmannian Gu(R

h),

every factor
Umj

Uµj ⊕ U(mj−µj)
is diffeomorphic to the complex Grassmannian
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Gµj (C
mj ), while the last factor

O2k

Uk
is diffeomorphic to the manifold of skew-

symmetric orthogonal matrices of order 2k. This allows to obtain the statement
about the connectedness (and hence to conclude (a)), for instance, by means

of the description of
O2k

Uk
, given in [9, Rem. 3.1 and Prop. 3.2]).

As in Theorem 2.5, the map LM ◦ j : (On,−g) → (On,−g), LM ◦ j(X) =
MX−1 is an isometry of (On,−g), whose set of fixed points is OSR(M); hence
we can conclude (b) by [18, Thm. 5.1, pp. 59-60]. �

Rema r k s 4.4. a) We have: OSR(−I2m) = O2m∩so2m = SO2m∩so2m for
every m ≥ 1 and (SO2m ∩ so2m,−g) is a compact totally geodesic Riemannian
submanifold of (SO2m,−g) with two connected components identified by the
sign of the pfaffian of their matrices. Both components are simply connected

and diffeomorphic to
SO2m

Um
.

This follows from Proposition 4.2 and Theorem 4.3, taking into account the
analysis developed in [9, § 3].

b) We have: OSR(In)u = On∩GLSymn(u) for every 0 ≤ u ≤ n and this is
a compact totally geodesic Riemannian submanifold of (On,−g), diffeomorphic
to the real Grassmannian Gu(R

n).

This follows again from Proposition 4.2 and Theorem 4.3 (see also [9, § 4]).

Rema r k 4.5. Let M ∈ SOn and assume the same notations as in Re-
marks-Definitions 4.1. Then OSR(M) is the disjoint union of the sets

OSR(M)
(µ1,··· ,µr)
u (on all admissible indices u, µ1, · · · , µr) and its connected

components are homogeneous differentiable manifolds of various dimensions.
The number of such components can be obtained from Theorem 4.3.

In particular there are finitely many orthogonal square roots of M if and

only if each possible OSR(M)
(µ1 ,··· ,µr)
u has dimension 0, i. e. if and only if

0 ≤ h,m1, · · ·mr, k ≤ 1, i. e. if and only if M has the eigenvalues different
from −1, all of multiplicity 1, and, if −1 is an eigenvalue, its multiplicity is 2.
Hence, if there are finitely many orthogonal square roots of M , their number is

precisely 2⌊(n+1)/2⌋, where ⌊(n+ 1)/2⌋ denotes the integer part of
n+ 1

2
.

Rema r k 4.6. Let M ∈ SOn and assume the same notations as in Re-
marks-Definitions 4.1.

If 1 is not an eigenvalue of M (i.e. if h = 0), then OSR(M) ⊆ SOn.

Otherwise (i.e. if h ≥ 1) OSR(M)∩SOn and OSR(M)∩O−
n are both not

empty with
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OSR(M) ∩ SOn =
⊔

0≤i≤⌊h/2⌋; 0≤µj≤mj ; 1≤j≤r OSR(M)
(µ1 ,··· ,µr)
h−2i ,

OSR(M) ∩O−
n =

⊔

0≤i≤⌊(h−1)/2⌋; 0≤µj≤mj ; 1≤j≤r OSR(M)
(µ1,··· ,µr)
h−2i−1 .

Indeed, det(Y ) = (−1)h−u, if Y ∈ OSR(M)
(µ1 ,··· ,µr)
u , by Remarks-Defi-

nitions 4.1.

Rema r k 4.7. Let M ∈ SOn and, analogously to Definition 2.6 and to
Remarks 2.7, we can define the set POSR(M) of generalized principal orthog-
onal square roots of M and, with the same notations as in Remarks-Definitions

4.1, we get: POSR(M) = OSR(M)
(m1 ,··· ,mr)
h .

By Theorem 4.3, POSR(M) is a single point if −1 is not an eingenvalue of

M , while it is diffeomorphic to
O2k

Uk
if −1 has multiplicity 2k ≥ 2 as eingenvalue

of M .

In particular, if k = 1, POSR(M) consists of two distinct points.

We refer, for instance, to [9, § 3] for more properties of the homogeneous

space
O2k

Uk

.
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