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Some remarks on twists and Euler products in the Selberg class

Abstract. We present a new variant of the method of J. Kaczorowski
and A. Perelli for obtaining the converse theorem via Euler products
in the Selberg class. A standard method requires proving a weak zero-
density estimate for functions from the Selberg class in the whole half-
plane σ > 1/2. Such an estimate is not known in general, even for the
classical L-functions of high degrees, to hold. Our modification, while
providing the same result, does not need as an ingredient a weak zero-
density estimates for functions in the Selberg class.
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1 - Introduction

In [3, Theorem 4] J. Kaczorowski and A. Perelli proved a converse theorem
stating that the square of the Riemann zeta is the only function F ∈ S of degree
two and conductor one with a pole at 1. This converse statement was obtained,
among others, by means of [3, Theorem 1] giving polynomial shape of Euler
factors for function F ∈ S. To prove [3, Theorem 1] one requires a weak-zero
density estimate for a function F to hold in the entire half-plane σ > 1/2. Such
a condition is not known to be satisfied in general, even for classical L-functions
of high degrees. In this paper we prove Theorem 1 which does not have any
assumptions on zero distribution for F , but gives polynomial shape of almost
all Euler factors for function F . Then we show how to change the strategy of J.
Kaczorowski and A. Perelli to reprove the converse theorem.

We start by recalling definitions of the Selberg class S and the extended
Selberg class S#. We say that a not identically vanishing function F is an
element of S# iff
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1. F is an absolutely convergent Dirichlet series F (s) :=

∞
∑

n=1

aF (n)

ns
, where

s = σ + it and σ > 1;

2. (s−1)mFF (s) is an entire function of finite order for some integer mF ≥ 0;

3. F satisfies a functional equation of type ΦF (s) = ωΦF (1− s), where |ω| =
1 and

ΦF (s) = Qs
r
∏

j=1

Γ (λjs+ µj)F (s),

where Q > 0, r ≥ 0, λj > 0 and ℜµj ≥ 0.

Moreover, F is an element of S iff F belongs to S# and

4. (Ramanujan condition) the Dirichlet coefficients of F satisfy aF (n) ≪ε n
ε

for every ε > 0;

5. (Euler product) F has the following Euler product expansion

F (s) =
∏

p−prime

Fp(s), for σ > 1,

where for each prime p we have

log Fp(s) =

∞
∑

m=0

bF (pm)

pms
, with bF (pm) ≪ pθm for a certain θ < 1/2.

For a function F ∈ S# and a real number α we denote by F (s, α) the additive
twist of F , i. e.

F (s, α) :=

∞
∑

n=1

aF (n)e(−nα)

ns
, σ > 1,

where e(x) = e2πix. Moreover, for a Dirichlet character χ, we denote by F (s, χ)
the corresponding multiplicative twist,

F (s, χ) :=

∞
∑

n=1

aF (n)χ(n)

ns
, σ > 1.

For the sake of clarity we recall the definition of the class M(d, h) from [3].
We say that f ∈ M(d, h) iff:

• f(σ + it) is meromorphic over C and holomorphic for σ < 1;
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• for every A < B there exists a constant C = C(A,B) such that

f(σ + it) ≪d,h,A,B,f |σ|d|σ|
(

h

(2πe)d

)|σ|

|σ|C

as σ → −∞ uniformly for A ≤ t ≤ B.

Let us recall that the degree and the conductor of F ∈ S# are defined by

dF :=

r
∑

j=1

λj, qF := (2π)dF Q2
r
∏

j=1

λ
2λj

j ,

respectively, and are well-known invariants of F (see [2]). Moreover, S#d and Sd
denote subclasses of S# and S consisting of functions of degree d.

The following Theorem is a modified version of [3, Theorem 1].

Th e o r em 1. Let d > 0 and F ∈ Sd. Moreover, let p be a prime number

and h > 0. Then there exists a constant κ(F ) > 0 such that the following

statements are equivalent

1. for every amodp, p ∤ a and every p > κ(F ) the twist F (s, a/p) belongs to

M(dF , h);

2. for every χ(modp), χ �= χ0 and every p > κ(F ) the twist F (s, χ) belongs

to M(dF , h) and moreover

Fp(s) =

∂p
∏

j=1

(

1−
αj(p)

ps

)−1

with |αj(p)| ≤ 1 and ∂p ≤

⌊

log (h/qF )

log p

⌋

.

R ema r k 1. For [3, Theorem 1] to hold, F ∈ S needs to satisfy a week
zero-density estimate, namely NF (σ, T ) = o(T ) for every fixed σ > 1/2, where
NF (σ, T ) := |{F (β + iγ) = 0 | β > σ, |γ| ≤ T}|. Under this condition [3, Theo-
rem 1] implies that for a function F and every prime number p, p-th Euler factor
of F is of a polynomial type. Theorem 1 does not require any assumptions on
the distribution of zeros of F , alas it guaranties that only for p > κ(F ), p-th
Euler of F is of a polynomial type.

R ema r k 2. Axiom (5) of S impose the restriction θ < 1/2, yet, for Theorem
1 to hold, it is sufficient to have θ < 1.

With the theorem above we reprove the following converse theorem.

Th e o r em 2 ([3, Theorem 4]). Let F ∈ S2 with qF = 1 has a pole at s = 1.
Then F (s) = ζ2(s).
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2 - Proofs of theorems

Following [3], for F ∈ S# we put

τF := max
1≤j≤r

∣

∣

∣

∣

ℑµj

λj

∣

∣

∣

∣

.

Using criteria described in [1,2] one checks that the above number is an invariant
of F .

In the proof of the Theorem 1 we use the following two lemmas.

L emma 1 ([3], Lemma 2.1). Let F ∈ S#d with dF > 0; then F ∈ M(dF , qF ).
Moreover, if [A,B] ∩ [−τF , τF ] = ∅ and σ > 1 we also have

F (−σ + it) ≫ σdσ

(

qF

(2πe)d

)

σC

for some C = C(A,B), uniformly as σ → ∞.

L emma 2 ( [3], Lemma 2.2). Let F ∈ Sd with d > 0. Let p be a prime

number, σ > 1 and τ(χ) denote the Gauss sum of a Dirichlet character χ,

χ �= χ0, we have

(2.1) F (s, χ) =
1

τ(χ)

p
∑

a=1

χ(a)F (s,−a/p)

while for any (a, p) = 1 we have

(2.2) F (s,−a/p) =
1

p− 1

∑

χ(modp)
χ �=χ0

χ(a)τ(χ)F (s, χ) −

(

p

p− 1

1

Fp(s)
− 1

)

F (s).

P r o o f o f Th e o r em 1. In order to prove implication (2) ⇒ (1), one fol-
lows unmodified strategy of [3].

To prove (1) ⇒ (2) we observe first that by (2.1) and our assumptions we
have, that F (s, χ) is meromorphic on C and holomorphic for σ < 1, provided
χ �= χ0. Moreover, for such characters we have

F (σ + it, χ) ≪ max
a(mod)p

|F (σ + it,−a/p)| ≪ |σ|dF |σ|

(

h

(2πe)dF

)|σ|

|σ|C

uniformly for A ≤ t ≤ B as σ → −∞, for some constant C = C(A,B). Thus
F (s, χ) belongs to M(dF , h).
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Since the Dirichlet series expansion of log Fp(s), provided by axiom (5) of the
Selberg class, is absolutely convergent for σ > θ, the function 1/Fp is holomorphic
on a half-plane where σ > θ. As remarked above (cf. Remark 2) we need only
θ < 1. By (2.2) we have
(2.3)

1

Fp(s)
=

p− 1

p









1 +
1

F (s)









F (s,−a/p)−
1

p− 1

�

χ(modp)
χ �=χ0

χ(a)τ (χ)F (s, χ)

















which gives us a meromorphic continuation of 1/Fp to C.
Since for σ < 1 both F (s,−a/p) and F (s, χ) are holomorphic and moreover,

for σ < 0 and |t| > τF the function F is non-vanishing, hence by (2.3) the
function 1/Fp is also holomorphic in the region σ < 0, |t| > τF . By 2πi/log p-
periodicity of 1/Fp we conclude that 1/Fp is holomorphic in the entire half-plane
σ < 0.

In the vertical strip 0 ≤ σ ≤ θ < 1 both F (s,−a/p) and F (s, χ) are holo-
morphic, thus the singularities of 1/Fp may come only from the non-trivial zeros
of F there. Let γn(F ) > 0 denote the nth ordinate of the non-trivial zero of F
on the upper half-plane. Then we put

Z(F ) := sup
n

|γn+1(F )− γn(F )| .

With this notation there exists rectangle R with vertices at the points iT0,
1 + iT0, 1 + i(T0 +Z(F )) and i(T0 +Z(F )), without non-trivial zeros of F and
hence without singularities of 1/Fp. We set

κ(F ) = e
2π

Z(F ) .

Then for p > κ(F ) we have 2π/log p < Z(F ). Therefore for by 2πi/log p-periodicity
of 1/Fp we infer that the function 1/Fp is holomorphic inside the vertical strip
0 ≤ σ ≤ θ < 1, and consequently it is an entire function.

We prove

Fp(s) =

∂p
�

j=1

�

1−
αj(p)

ps

�−1

with |αj(p)| ≤ 1 and ∂p ≤

�

log (h/qF )

log p

�

in the same way as in [3, Theorem 1] and the result follows.

R ema r k 3. Observe that if

Z(F ) >
2π

log 2
≈ 9.06472028

then Theorem 1 holds for all primes p (cf. Remark 1).
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P r o o f o f Th e o r em 2. We need following results.

L emma 3 ( [3, Theorem 3]). Let F ∈ S#
2 with qF = 1. Then for every

q ≥ 1 and 1 ≤ a ≤ q with (a, q) = 1 the linear twist F (s, a/q) belongs to

M
(

2, q2
)

.

Following the strategy of [3], from Theorem 1 and Theorem 3 we immediately
obtain the following

Co r o l l a r y ( [3, cf. Corollary]). Let F ∈ S2 with qF = 1. Then there exists

a number κ(F ) > 0 such that for every prime p > κ(F ) and every χ(modp),
χ �= χ0, the twist F (s, χ) belongs to M

(

2, p2
)

and

Fp(s) =

∂p
∏

j=1

(

1−
αj(p)

ps

)−1

with |αj(p)| ≤ 1 and ∂p ≤ 2.

We also need the following form of the strong multiplicity one property for
the Selberg class.

L emma 4 ( [4]). Let F,G ∈ S. If Fp = Gp for almost all primes p, then

F = G.

Essentially to prove Theorem 2 one follows the complete argument of [3]
with a minor addendum at the end.

Since Corollary above holds only for p > κ(F ), following the proof of [3,
Theorem 4], under the assumptions of Theorem 2 we have

Fp(s) =

(

1−
1

ps

)−2

, for p > κ(F ).

Hence the Euler factor Fp agrees with that of the square of the Riemann zeta
function for almost all primes p. Thus by Lemma 4 we have that

F (s) = ζ2(s).

Ac k n ow l e d gm en t s. The author thanks Jerzy Kaczorowski and Łukasz
Pańkowski for reading the previous version of this paper and suggesting several
improvements in the presentation.
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