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Some remarks on twists and Euler products in the Selberg class

Abstract. We present a new variant of the method of J. Kaczorowski
and A. Perelli for obtaining the converse theorem via Euler products
in the Selberg class. A standard method requires proving a weak zero-
density estimate for functions from the Selberg class in the whole half-
plane o > 1/2. Such an estimate is not known in general, even for the
classical L-functions of high degrees, to hold. Our modification, while
providing the same result, does not need as an ingredient a weak zero-
density estimates for functions in the Selberg class.
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1 - Introduction

In [3, Theorem 4| J. Kaczorowski and A. Perelli proved a converse theorem
stating that the square of the Riemann zeta is the only function F' € S of degree
two and conductor one with a pole at 1. This converse statement was obtained,
among others, by means of [3, Theorem 1] giving polynomial shape of Euler
factors for function F' € S. To prove [3, Theorem 1] one requires a weak-zero
density estimate for a function F' to hold in the entire half-plane o > 1/2. Such
a condition is not known to be satisfied in general, even for classical L-functions
of high degrees. In this paper we prove Theorem 1 which does not have any
assumptions on zero distribution for F', but gives polynomial shape of almost
all Euler factors for function F'. Then we show how to change the strategy of J.
Kaczorowski and A. Perelli to reprove the converse theorem.

We start by recalling definitions of the Selberg class S and the extended
Selberg class S#. We say that a not identically vanishing function F is an
element of S7 iff
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ar(n)

o0
1. F is an absolutely convergent Dirichlet series F'(s) := Z , Where

n=1
s=oc+1itand o > 1;
2. (s—1)™F F(s) is an entire function of finite order for some integer mp > 0;

3. F satisfies a functional equation of type @p(s) = w®Pp(1 —35), where |w| =
1 and

Dp(s) = Q° [[ I (Ajs+ wy) F(s),
j=1

where Q >0, r >0, A; > 0 and Rp; > 0.
Moreover, F' is an element of S iff F' belongs to S# and

4. (Ramanujan condition) the Dirichlet coefficients of F satisfy ap(n) <. n®
for every € > 0;

5. (Euler product) F' has the following Euler product expansion

F(s) = H F,(s), foro>1,

p—prime

where for each prime p we have

[e.9]
b m
log F,(s) = Z F (P ), with b (p™) < p’™ for a certain 6 < 1/2.

For a function F' € S# and a real number a we denote by F (s, «) the additive
twist of F, i. e.

F(s,a) == iW’ o> 1,
n=1

where e(z) = e?™@. Moreover, for a Dirichlet character , we denote by F(s,x)
the corresponding multiplicative twist,

F (s,x) :_iW’ o> 1.
n=1

For the sake of clarity we recall the definition of the class M(d, h) from [3].
We say that f € M(d, h) iff:

e f(o +it) is meromorphic over C and holomorphic for o < 1;
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e for every A < B there exists a constant C' = C(A, B) such that

o]
. h
flo+it) <anapy o = jo|©
(2me)

as 0 — —oo uniformly for A <t < B.

Let us recall that the degree and the conductor of F € S# are defined by
T T 21
drp = Z)\j’ qr = (27T)dF QZ H )\j 7
j=1 j=1

respectively, and are well-known invariants of F' (see [2]). Moreover, Sf and Sq
denote subclasses of S# and S consisting of functions of degree d.
The following Theorem is a modified version of |3, Theorem 1].

Theorem 1. Let d > 0 and F € Sq. Moreover, let p be a prime number
and h > 0. Then there exists a constant »x(F) > 0 such that the following
statements are equivalent

1. for every amodp, p1a and every p > »(F') the twist F (s,a/p) belongs to
M(dp, h);

2. for every x(modp), x # xo and every p > »x(F) the twist F(s,x) belongs
to M(dp,h) and moreover

A0 =TT (1= 22) ™ vits o, <1 a3, < [ELe)

J=1

Remark 1. For [3, Theorem 1] to hold, F' € S needs to satisfy a week
zero-density estimate, namely Np(o,T) = o(T) for every fixed o > 1/2, where
Np(o,T) = |{F(B+iy)=0]| 8 >0, |y] <T}|. Under this condition |3, Theo-
rem 1] implies that for a function F' and every prime number p, p-th Euler factor
of F' is of a polynomial type. Theorem 1 does not require any assumptions on
the distribution of zeros of F', alas it guaranties that only for p > »(F), p-th
Euler of F' is of a polynomial type.

Remark 2. Axiom (5) of S impose the restriction 6 < 1/2, yet, for Theorem
1 to hold, it is sufficient to have 6 < 1.

With the theorem above we reprove the following converse theorem.

Theorem 2 ([3, Theorem 4|). Let F' € Sy with gr = 1 has a pole at s = 1.
Then F(s) = (%(s).
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2 - Proofs of theorems

Following [3], for F' € S# we put

Sy
S

Aj

TF ‘= max
1<j<r

Using criteria described in [1,2] one checks that the above number is an invariant
of F.
In the proof of the Theorem 1 we use the following two lemmas.

Lemma 1 ([3|, Lemma 2.1). Let F' € S# with dp > 0; then F' € M(dF, qr).
Moreover, if [A, B]N [—71p,7r] =0 and o > 1 we also have

F(—0 +it) > 0% (q—F> o¢

(2me)?
for some C' = C(A, B), uniformly as o — 0.

Lemma 2 ([3], Lemma 2.2). Let F' € Sq with d > 0. Let p be a prime
number, o > 1 and 7(x) denote the Gauss sum of a Dirichlet character x,

X # Xo, we have

(2.1) Fs, ) (12 (5, — /)

a=1

while for any (a,p) = 1 we have

22) Fo.—) =1 PR (im =1 Fo
XFXO0

Proof of Theorem 1. In order to prove implication (2) = (1), one fol-
lows unmodified strategy of [3].

To prove (1) = (2) we observe first that by (2.1) and our assumptions we
have, that F'(s,x) is meromorphic on C and holomorphic for ¢ < 1, provided
X # Xo- Moreover, for such characters we have

lo]
h C
F(o+it,x) < max |F(o+1it,—¢ < |o|?Flal o
( )< max |F( I oo

uniformly for A <t < B as 0 — —o0, for some constant C' = C(A, B). Thus
F(s,x) belongs to M(dp, h).
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Since the Dirichlet series expansion of log F},(s), provided by axiom (5) of the
Selberg class, is absolutely convergent for o > 6, the function 1/, is holomorphic
on a half-plane where o > 6. As remarked above (cf. Remark 2) we need only
6 < 1. By (2.2) we have

(2.3)
S e U S Y PR S () B
e - p |TTEE | FET p_lx(r%p)xu (%) F(5,X)
XFX0

which gives us a meromorphic continuation of 1/F, to C.

Since for o < 1 both F' (s, —a/p) and F(s, x) are holomorphic and moreover,
for o0 < 0 and |t| > 7p the function F' is non-vanishing, hence by (2.3) the
function 1/F, is also holomorphic in the region o < 0, |t| > 7p. By 27i/logp-
periodicity of 1/F, we conclude that 1/F, is holomorphic in the entire half-plane
o <0.

In the vertical strip 0 < ¢ < 6 < 1 both F (s,—a/p) and F(s,x) are holo-
morphic, thus the singularities of 1/F, may come only from the non-trivial zeros
of F there. Let v,(F) > 0 denote the n'® ordinate of the non-trivial zero of F
on the upper half-plane. Then we put

Z(F) = Sglplvn+1(F) — ()|

With this notation there exists rectangle R with vertices at the points 7T,
14Ty, 1+ i(To + Z(F)) and i(Ty + Z(F')), without non-trivial zeros of F' and
hence without singularities of 1/F,. We set

#(F) = eZ(F),

Then for p > »(F') we have 27/logp < Z(F'). Therefore for by 27i/10g p-periodicity
of 1/F, we infer that the function 1/F, is holomorphic inside the vertical strip
0 <o <60 <1, and consequently it is an entire function.

We prove

Fyls) = 18_[ (1 - %@)A with |a;(p)] < 1 and 9, < {%J

j=1

in the same way as in [3, Theorem 1| and the result follows. O
Remark 3. Observe that if
Z(F) >

then Theorem 1 holds for all primes p (cf. Remark1).

~ 9.06472028

log 2



298 KAROL GIERSZEWSKI |6]

Proof of Theorem 2. We need following results.

Lemma 3 (|3, Theorem 3|). Let F' € Sf with qp = 1. Then for every
qg>1and 1 < a < q with (a,q) = 1 the linear twist F (s,a/q) belongs to
M (2,4?).

Following the strategy of [3|, from Theorem 1 and Theorem 3 we immediately
obtain the following

Corollary ([3, cf. Corollary|). Let F' € Sy with qp = 1. Then there exists
a number »x(F) > 0 such that for every prime p > »(F) and every x(modp),
X # Xo, the twist F(s,x) belongs to M (2,p2) and

Ip ) -1
Fo(s) = H <1 — %@) with |aj(p)| <1 and 0, < 2.
j=1

We also need the following form of the strong multiplicity one property for
the Selberg class.

Lemma 4 ([4]). Let F,G € S. If F, = G, for almost all primes p, then
F=aG.

Essentially to prove Theorem 2 one follows the complete argument of [3]
with a minor addendum at the end.

Since Corollary above holds only for p > (F'), following the proof of |3,
Theorem 4], under the assumptions of Theorem 2 we have

Fy(s) = <1 - %){ for p > »(F).

Hence the Euler factor F), agrees with that of the square of the Riemann zeta
function for almost all primes p. Thus by Lemma 4 we have that

F(s) = ¢*(s).

Acknowledgments. The author thanks Jerzy Kaczorowski and t.ukasz
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