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Characterizing a surface by invariants

Abstract. Canonical principal parameters are introduced for surfaces
in R

3 without umbilical points. It is proved that in these parameters,
the surface is determined (up to position in space) by a pair of invariants
satisfying a partial differential equation equivalent to the Gauss equation.
The principal curvatures or the Gauss and the mean curvature may be
used as such a pair of invariants.
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1 - Introduction

An important problem in differential geometry is to characterize a geometric
object by its invariants. For example, it is well known that any curve in R

3 is
determined (up to position in space) by its curvature and torsion as functions
of its natural parameter.

Until now, no similar theorem for surfaces in R
3 has been known. A stan-

dard characterization of a surface is given by Bonnet’s classical theorem, ac-
cording to which the surface is determined (up to position in space) by six
functions – the coefficients of the first and the second fundamental forms sat-
isfying the equations of Gauss and Codazzi. However, the coefficients of the
fundamental forms are not invariant functions, unlike the curvature and torsion
of a curve, although these coefficients remain unchanged in motions. Neverthe-
less, as we shall see, the above mentioned Bonnet’s theorem can help us study
the determination of a surface by invariants.
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Investigations of surfaces by their invariants have a long history. The deter-
mination of surfaces by their first fundamental form and principal curvatures
was first studied by Bonnet [1]. There are several subsequent works in this
direction, see e.g. Cartan [4] and S.-S. Chern [5]. Finikoff and Gambier [8]
and recently Bryant [2] have studied surfaces in view of their curvature lines
and principal curvatures, or their shape operator. In all of the above studies,
entire families of surfaces with the considered properties appear. So we have
to specify the conditions to obtain a characterization of surfaces analogous to
the above mentioned characterization of curves.

Note that some differential equations between the invariants of the surfaces
arise in a natural way as a result of the Gauss and Codazzi equations. The so-
called Lund-Regge problem here is to find the minimum possible invariants and
relations between them that characterize a surface, see [12], [13]. When trying
to reduce the number of invariants and the compatibility conditions involved,
it is common to search for special parameters, just as in the case of curves and
their natural parameters.

New results in the above directions have been obtained in [10] – a work
that has actually inspired the present paper. More precisely, in [10] it is proved
that a strongly regular surface is determined (up to position in space) by four

invariants – the principal curvatures ν1, ν2, and the geodesic curvatures γ1,
γ2 of the principal lines. These invariants satisfy three partial differential
equations equivalent to the Gauss and Codazzi equations. In particular, for
the class of Weingarten surfaces, the authors use special parameters that they
call geometric and they prove that in these parameters the surface is determined
by three functions, one of which is invariant and the two other determine the
Weingarten nature of the surface. These three functions are closely related to
the principal curvatures and are subject to a single partial differential equation
equivalent to the Gauss equation.

In the present paper, we introduce canonical parameters for an arbitrary
surface in R

3 without umbilical points and we prove that in these parameters
the surface is locally determined up to position in space by just two invari-
ant functions related by just one partial differential equation equivalent to the
Gauss equation. In Theorem 3.1 these two invariants are the principal cur-
vatures and in Theorem 3.2 – the Gauss curvature and the mean curvature.
It is clear that the surface cannot be determined by just one of these invari-
ant functions – for example there exist many surfaces with the same constant
Gauss or mean curvature. For example, Bonnet [1] proved that a surface of
constant mean curvature can be isometrically deformed, preserving the mean
curvature. So it appears that our results solve the Lund-Regge problem for
surfaces without umbilical points.
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In the last section, some particular cases are considered and relations with
some results in [6], [10] and [16] are shown.

For similar investigations about surfaces in upper dimensional spaces of
constant curvature c, we refer the reader e.g. to [14], where some special
isothermal parameters are used in the case of minimal non-superconformal
surfaces in Q

4
c and it is proved that the surface is determined by its Gauss and

normal curvatures, which satisfy a system of two partial differential equations;
see also [9].

2 - Preliminaries

Let a regular surface in R
3 be given by the parametric equation S : x =

x(u, v). We denote by E, F , G, resp. L, M , N the coefficients of the first,
resp. the second fundamental form. A point of S is called umbilical if the two
fundamental forms are proportional at that point. The Gauss curvature K and
the mean curvature H of S, which are the most important invariants of the
surface, are expressed with these coefficients respectively by

K =
LN −M2

EG− F 2
H =

EN − 2FM +GL

2(EG − F 2)
.

Moreover, the coefficients of the two fundamental forms satisfy Gauss’s equation
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where W =
√
EG− F 2. The classical theorem of Bonnet [1] states that con-

versely, given six functions E, F , G, L, M , N (E > 0, EG−F 2 > 0) satisfying
these three equations, then locally there exists a unique (up to position in space)
surface, having E, F , G as coefficients of its first fundamental form and L, M ,
N as coefficients of its second fundamental form; see also e.g. [3], p. 236.
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Suppose that a curve c on S is defined by

c : u = u(s) , v = v(s) ,

where s is the natural parameter of c. Then the Frenet formulas are

t′ = γp+ νl

p′= −γt+ αl

l′ = −νt− αp

where t is the unit tangent vector field of c, l is the unit normal vector field
of S, and p = l × t. The functions γ, ν, α are the geodesic curvature, the
normal curvature and the geodesic torsion of c on S, respectively. The normal
curvature of c is given by

ν =
Lu̇2 + 2Mu̇ v̇ +Nv̇2

Eu̇2 + 2Fu̇ v̇ +Gv̇2
.

Actually, at each point of c the normal curvature ν depends not on the curve
itself, but on the direction of its tangent vector at that point, so we speak about
a normal curvature of a direction at any point. The maximal and the minimal
values of the normal curvatures at a point are called principal curvatures and
the corresponding directions and vectors – principal directions and principal

vectors. A curve on S is called principal if its tangent vector is principal at any
point. When the surface has no umbilical points, the parameters (u, v) can be
chosen (at least locally) such that the parametric lines are principal. Then the
parameters (u, v) of S are called principal. In terms of the coefficients of the
fundamental forms, this means that F = M = 0 on S. In this case, the geodesic
torsions of the parametric lines vanish identically and the geodesic curvatures
of the parametric lines are

(2.1) γ1 = −
Ev

2E
√
G

, γ2 =
Gu

2G
√
E

.

Let ν1 and ν2 be the principal curvatures of S. Then the classical definition
of the Gauss curvature and the mean curvature becomes

(2.2) K = ν1ν2 , H =
1

2
(ν1 + ν2) .

3 - Determining non-umbilical surfaces

Suppose that S has no umbilical points and the parametric lines are prin-
cipal, i.e. F = M = 0 on S. Then Gauss’s equation is

(3.1) K = ν1ν2 = −
1

2
√
EG

{(

Ev√
EG

)

v

+
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Gu√
EG

)

u
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and Codazzi’s equations take the form

2EGLv = (EN +GL)Ev , 2EGNu = (EN +GL)Gu .

On the other hand, the principal curvatures ν1, ν2 are given by

(3.2) ν1 =
L

E
, ν2 =

N

G
.

Since the surface has no umbilical points, the difference ν1 − ν2 cannot vanish.
Hence it is easy to see that Codazzi’s equations may be written as

(3.3)
Ev

2E
= −

(ν1)v
ν1 − ν2

,
Gu

2G
=

(ν2)u
ν1 − ν2

.

Let us fix a point (u0, v0). The last equations imply that there exist two func-
tions ϕ1(u) and ϕ2(v), such that

√
E = ϕ1(u)e

−

∫

v

v0

(ν1)v
ν1 − ν2

dv
,

√
G = ϕ2(v)e

∫

u

u0

(ν2)u
ν1 − ν2

du
.

In other words, for any functions φ1(u), φ2(v), the function

φ1(u)
√
E e

∫

v

v0

(ν1)v
ν1 − ν2

dv

does not depend on v and the function

φ2(v)
√
Ge

−

∫

u

u0

(ν2)u
ν1 − ν2

du

does not depend on u. Now we introduce new parameters (ū, v̄) by the formulas

u =
1

√

E(u0, v0)

∫

u
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√
E e

∫
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∫

u

u0
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(u, v0)du
du+ u0

v =
1

√

G(u0, v0)

∫

v
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√
Ge

−

∫

u
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ν1 − ν2

du−

∫

v

v0

(ν2)v
ν1 − ν2

(u0, v)dv
dv + v0

for some constants u0, v0. The parameters (u, v) are principal too, since ū =
ū(u), v̄ = v̄(v). Moreover we have

(3.4)

√
E

√
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e

∫
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u
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√
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e
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∫

u

u0

(ν2)u
ν1 − ν2

du−
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v
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= 1 .
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We shall call canonical principal parameters any principal parameters (u, v)
satisfying (3.4) for certain constants (u0, v0). For Weingarten surfaces, these
parameters were found by Weingarten [15], see also [7], p. 292, and are called
in [10] geometric principal parameters.

We can easily see that if (u, v) are also canonical principal parameters, then

u = λu+ c1

v = µ v + c2
or

u = λ v + c1

v = µu+ c2

for some constants λ, µ, c1, c2 (λ �= 0, µ �= 0). More precisely, if for example
u0 = u(u0), v0 = v(v0), then

(u− u0)
√

E(u0, v0) = ±(u− u0)
√

E(u0, v0)

(v − v0)
√

G(u0, v0) = ±(v − v0)
√

G(u0, v0) .

In the following, we assume that the surface is parametrized with canon-
ical principal parameters (u, v). Then the coefficients E and G of the first
fundamental form satisfy

(3.5)
E = a e

−2

∫

v

v0

(ν1)v
ν1 − ν2

dv − 2

∫

u

u0

(ν1)u
ν1 − ν2

(u, v0)du

G = b e
2

∫

u

u0

(ν2)u
ν1 − ν2

du+ 2

∫

v

v0

(ν2)v
ν1 − ν2

(u0, v)dv

where a = E(u0, v0), b = G(u0, v0). In this case the Gauss equation (3.1) can
be written in the following equivalent form

(3.6) ν1ν2Ψ1Ψ2 =
1

b

(

(ν1)v
ν1 − ν2

Ψ1

Ψ2

)

v

−
1

a

(

(ν2)u
ν1 − ν2

Ψ2

Ψ1

)

u

where the functions Ψ1 and Ψ2 are defined by

(3.7)
Ψ1 = e

−

∫

v

v0

(ν1)v
ν1 − ν2

dv −

∫

u

u0

(ν1)u
ν1 − ν2

(u, v0)du

Ψ2 = e

∫

u

u0

(ν2)u
ν1 − ν2

du+

∫

v

v0

(ν2)v
ν1 − ν2

(u0, v)dv
.

Conversely, consider two differentiable functions ν1, ν2 that satisfy the equa-
tion (3.6) for some positive constants a, b, the functions Ψi being defined by
(3.7) (of course we suppose that the difference ν1 − ν2 never vanishes). With
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these functions ν1, ν2 we define E and G by (3.5) and after that, L and N by
(3.2). Note that as a consequence of the definition (3.5) the equations (3.3)
(which are equivalent to the Codazzi equations) are satisfied. Then using Bon-
net’s theorem we obtain:

T h e o r em 3.1. Let there be given two differentiable functions ν1(u, v),
ν2(u, v), such that ν1 − ν2 never vanishes. Define Ψ1, Ψ2 by (3.7) and sup-

pose that (3.6) is satisfied for some positive constants a and b. Then locally

there exists a unique (up to position in space) surface, such that ν1 and ν2
are its principal curvatures in canonical principal parameters. For this surface

E(u0, v0) = a, G(u0, v0) = b.

Note that the integrability condition (3.6) (which is a form of the Gauss
equation) is expressed only by the two invariants ν1 and ν2 – the principal
curvature functions of the surface in canonical principal parameters.

Note also that the above theorem and the Gauss integrability equation (3.6)
can be put in a different form in terms of the Gauss curvature and the normal
curvature instead of the principal curvatures ν1, ν2. Indeed, according to (2.2)
we have (supposing ν1 > ν2)

ν1 = H +
�

H2 −K , ν2 = H −
�

H2 −K .

In this case, the condition that ν1−ν2 never vanishes is replaced by the condition
thatH2−K never vanishes. As a result, the surface is determined up to position
in space by its Gauss and mean curvature. More precisely, let as define

(3.8)
Φ1 = e

−

�

v

v0

Hv

2
√
H2 −K

dv −

�

u

u0

Hu

2
√
H2 −K

(u, v0)du

Φ2 = e

�

u

u0
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2
√
H2 −K

du+

�

v

v0

Hv

2
√
H2 −K

(u0, v)dv
.

Then we can see that

Ψ1 =
4
�

(H2 −K)(u0, v0)
4
√
H2 −K

Φ1 , Ψ2 =
4
�

(H2 −K)(u0, v0)
4
√
H2 −K

Φ2 .

Substituting these in (3.6) and using Theorem 3.1 we obtain

Th e o r em 3.2. Let K(u, v), H(u, v) be differentiable functions such that

H2 −K never vanishes and define Φ1, Φ2 by (3.8). Suppose that the equation

2K
√
H2 −K

Φ1Φ2 =
1
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Φ2

�
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√
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�
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H2 −K
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−
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�
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√
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is satisfied for some positive constants a, b. Then locally there exists a unique

(up to position in space) surface, such that K and H are respectively its Gauss

curvature and mean curvature in canonical principal parameters. For this sur-

face
(

E
√

(H2 −K)
)

(u0, v0) = a,
(

G
√

(H2 −K)
)

(u0, v0) = b.

Having two functions ν1, ν2 satisfying the conditions of Theorem 3.1 (or,
which is the same, two functions K, H satisfying the conditions of Theorem
3.2), we determine the coefficients E, G of the first fundamental form of the
induced surface S by (3.5). Now we can find the geodesic curvatures γ1, γ2 of
the principal lines of the surface using (2.1). A geometric method to construct
the surface with invariants ν1, ν2, γ1, γ2 is obtained in [10].

4 - Particular cases

The surface S : x = x(u, v), (u, v) ∈ D is called strongly regular Wein-

garten surface (see [10]) if there exist two differentiable functions f(t), g(t)
defined on an interval I and a function ν(u, v) defined on D, such that

(4.1) f(t)− g(t) > 0 , f ′(t)g′(t) �= 0 , t ∈ I ,

(4.2) νu(u, v)νv(u, v) �= 0, (u, v) ∈ D ,

(4.3) ν1 = f(ν) , ν2 = g(ν) .

Theorem 3.1 implies that given three functions f(t), g(t), ν(u, v) with the
properties (4.1), (4.2) and satisfying the equation

(4.4)

A

{

f ′νvv +

(

f ′′ −
2f ′2

f − g

)

ν2v

}

e
2

∫

ν

ν0

g′dt

g − f

−B

{

g′νuu +

(

g′′ +
2g′2

f − g

)

ν2u

}

e
2

∫

ν

ν0

f ′dt

f − g = fg(f − g)

for two positive constants A, B and ν0 = ν(u0, v0) for (u0, v0) ∈ D, then there
exists a unique (up to position in space) Weingarten surface S with principal
curvatures in canonical principal parameters given by (4.3). This is one of
the main results in [10]. Note again that in this case our canonical principal
parameters coincide with the geometric principal parameters defined in [10].

For the form of the Gauss equation (4.4) for some important subclasses of
Weingarten surfaces, e.g. surfaces of constant mean curvature, see [10], where
the principal curvatures are used.
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It is more interesting to consider the surfaces of constant mean curvature H
from another point of view. Namely, according to Theorem 3.2 such a surface
is uniquely determined by its Gauss curvature. More precisely, Theorem 3.2
(with a = b = 1) implies that for a real number H and a differentiable function
K = K(x, y) satisfying K < H2 and the differential equation

(4.5) ∆(log(H2 −K)) =
4K

√
H2 −K

,

where ∆ is the Laplace operator, there exists a unique (up to position) surface
with Gauss curvature K and constant mean curvature H. Conversely, the
Gauss curvature K(x, y) of any surface of constant mean curvature H gives a
solution of the above partial differential equation. Note that the equation (4.5)
is exactly equation (6.2) from [16]:

(4.6) ∆λ = 2(e−λ −H2eλ) ,

where λ(x, y) = −1
2 log(H

2 −K(x, y)). It is shown in [16] that (4.6), or, which
is the same, (4.5), is satisfied for a family of surfaces Xt with coefficients of the
first and the second fundamental form given by

Et = Gt = eλ Ft = 0 ,

Lt = Heλ + cos 2t Mt = sin 2t Nt = Heλ − cos 2t .

Moreover, it is proved in [16] that any surface of Gauss curvature K(u, v) and
constant mean curvature H satisfies locally the above. Of course for t �= kπ

(k – integer) the surface Xt is not in principal parameters. More precisely, it
can be seen that in canonical principal parameters the Gauss curvature of the
surface Xt is

K(u cos t− v sin t, u sin t+ v cos t)

and this function also satisfies (4.5). So these functions give a family of solutions
of (4.5) (and (4.6)).

In particular, for minimal surfaces (H = 0) (4.5) reduces to

∆
(

log
√
−K

)

+ 2
√
−K = 0

or, if ν =
√
−K is the positive principal curvature,

(4.7) ∆(log ν) + 2ν = 0 .

It follows from (3.5) that in this case E = G. Hence, since F = 0, the canonical
principal parameters (u, v) are isothermal. When we consider minimal surfaces,
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it is very common to use complex parameters; in real coordinates this gives
isothermal parameters. A method to obtain canonical principal parameters for
a minimal surface from arbitrary isothermal ones is found in [11]. In [10], a
different form of (4.7) is called natural partial differential equation of minimal

surfaces.

Flat surfaces, i.e. surfaces with vanishing Gauss curvature K, are well
studied – they are in some sense (locally) general cylinders, general cones and
tangent developable surfaces. When a surface has no umbilical points (for
example for a tangent developable surface the torsion of the directrix must not
vanish), the mean curvature H cannot vanish. It follows from Theorem 3.2 that
these surfaces are characterized by

(

1

H

)

vv

= 0 or H =
1

f(u)v + g(u)

in canonical principal parameters for some functions f(u), g(u). In particular,
up to Euclidean motion for any nonzero real number H there exists only one
flat surface with mean curvature H (rather than a nontrivial family of isometric
surfaces, as stated in [6]).

Ac k n ow l e d gm en t. The author wants to thank the Referee for his useful
comments that improved this article.
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